Spectral Normalisation for Deep Reinforcement Learning: An Optimisation Perspective

Florin Gogianu *12 Tudor Berariu *3 Mihaela Rosca 45 Claudia Clopath 34 Lucian Busoniu ² Razvan Pascanu ⁴

Abstract

Most of the recent deep reinforcement learning advances take an RL-centric perspective and focus on refinements of the training objective. We diverge from this view and show we can recover the performance of these developments not by changing the objective, but by regularising the value-function estimator. Constraining the Lipschitz constant of a single layer using spectral normalisation is sufficient to elevate the performance of a Categorical-DQN agent to that of a more elaborated RAINBOW agent on the challenging Atari domain. We conduct ablation studies to disentangle the various effects normalisation has on the learning dynamics and show that is sufficient to modulate the parameter updates to recover most of the performance of spectral normalisation. These findings hint towards the need to also focus on the neural component and its learning dynamics to tackle the peculiarities of Deep Reinforcement Learning.

1. Introduction

Deep Reinforcement Learning has made considerable strides in recent years, scaling up to complex games as Go and Starcraft. However, besides relying on neural network function approximation, by and large the community has taken an RL-centric stance, with a plethora of approaches from prioritised replay (Schaul et al., 2016) to improving exploration (Fortunato et al., 2018; Osband et al., 2016). Many of these advances have been collated in the RAINBOW agent (Hessel et al., 2018), a strong single-threaded Deep Reinforcement Learning (DRL) algorithm on the Atari Arcade

Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

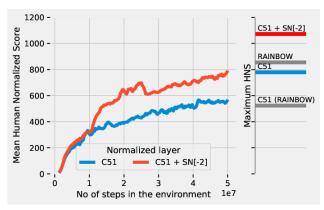


Figure 1: Optimisation rivals algorithmic improvements.

Left: Average Human Normalised Score (HNS) per time-step for C51 with Spectral Normalisation (SN). Right: Comparison of Maximum HNS reported in the literature (same as in Table 1). Average over 54 Arcade Learning Environment (ALE) games.

Learning Environment (ALE) benchmark (Bellemare et al., 2013). We take an orthogonal approach by focusing instead on the neural network learning dynamics. Most of modern deep learning assumes the optimisation of an objective on a finite and fixed data-set where i.i.d. sampling is possible. These assumptions are rarely satisfied in DRL, where data is non-stationary, the observed samples tend to be highly correlated, and sometimes the updates do not form a gradient vector field (Czarnecki et al., 2019; Bengio et al., 2020). These shortcomings are often reflected in practice, as attested by multiple reports of narrow good hyper-parameter ranges for optimisation (Henderson et al., 2018b;a), undergeneralisation in Temporal-difference learning (TD) (Bengio et al., 2020), and, as opposed to the supervised setting, ineffective regularisation where Batch Normalisation (BN), dropout or L2 hurt performance (Bhatt et al., 2019; Liu et al., 2019; Cobbe et al., 2019). We emphasise the importance of studying the learning dynamics of neural networks in DRL by showing the gains such studies can provide.

In our paper we explore Spectral Normalisation (SN), one such technique originating in the Generative Adversarial Networks (GANs) literature (Miyato et al., 2018), another field having to deal with non-stationarity and challenging optimisation dynamics. SN was primarily used for its *regu*-

^{*}Equal contribution ¹Bitdefender, Bucharest, Romania ²Department of Automation, Technical University of Cluj-Napoca, Romania ³Imperial College London, Department of Bioengineering, London, UK ⁴DeepMind, London, UK ⁵Centre for Artificial Intelligence, University College London, London, UK. Correspondence to: Tudor Berariu < tudor.berariu@gmail.com>.

larisation effect of controlling the smoothness of the function. In (Farnia et al., 2018) authors rely on SN as a defense against adversarial examples, (Anil et al., 2019) for improving estimation of Wasserstein distance and (Yu et al., 2020) to regularise model-based Reinforcement Learning (RL).

However SN also decouples the norm of the weight vector from its direction, therefore affecting *optimisation* in subtle ways, especially in the case of adaptive, momentum based methods (Rosca et al., 2020).

Our main contributions in this paper are:

Efficiency of SN in DRL. We show that SN can lead to *performance gains that rivals other algorithmic improvements* such as those collated in the RAINBOW agent (Fig. 1). We additionally provide code to ensure reproducibility.¹

Optimisation effect of SN. We investigate the role of SN and argue that *its effect is primarily an optimisation one*. Although we identify a small correlation between smoothness and performance in our careful ablation studies, we argue the effect of smoothness is secondary. In particular, we can mimic the impact of SN on the parameter updates without changing the function represented by the neural network, hence without smoothness constraints, recovering the performance of SN.

Reducing hyper-parameter sensitivity. We show through large scale experiments that SN can extend Adam's range of usable hyper-parameters.

2. Background

2.1. Value based deep reinforcement learning

An RL problem is usually described as a Markov Decision Process (MDP) $\mathcal{M}=(\mathcal{S},\mathcal{A},P,r,\rho_0,\gamma)$ consisting of state space \mathcal{S} , the set of all possible actions \mathcal{A} , a transition distribution P(s'|s,a) and a reward function $r:\mathcal{S}\times\mathcal{A}\to\mathbb{R}$. The goal of an agent is to find a policy π that maximises the expected sum of discounted rewards: $Q^{\pi}(s,a)=\mathbb{E}_{s_0\sim\rho_0,a_t\sim\pi(s_t)}\left[\sum_{t=0}\gamma^t r(s_t,a_t)\right]$. An important class of algorithms rely on state-action values to find π . These approaches focus on minimising the *temporal difference* (TD) error to learn the Q-function and define π greedily with respect to it. We are particularly interested in scenarios where Q is approximated by a neural network. The prototypical algorithm is DQN (Mnih et al., 2015), where Q is learned by minimising:

$$\mathcal{L}(\theta) = \underset{(s,a,r,s') \sim \mathcal{D}}{\mathbb{E}} \left(Q_{\theta}(s,a) - \left(r + \gamma \max_{a'} Q_{\theta'}(s',a') \right) \right)^{2}$$
(1)

In TD error (Eq. 1), the bootstrapped term uses held-back parameters θ' to bring extra stability. During training random

batches of transitions are sampled from the last million experiences which are kept in a replay buffer \mathcal{D} . This mitigates, but does not enforce the i.i.d. and stationarity assumption required by stochastic gradient descent.

Since DQN first reported human-level results on the ALE Atari environment, several refinements of the algorithm were proposed. A remarkable line of research proposes to model the distribution of the state-action value rather than just its mean. For example, C51 (Bellemare et al., 2017) predicts a categorical distribution of expected returns. RAINBOW (Hessel et al., 2018) integrates several advances on top of C51: prioritised experience replay for improved data sampling (Schaul et al., 2016), n-step returns for lower variance bootstrap targets, double Q-learning for unbiasing estimates (Van Hasselt et al., 2016), disambiguation of state-action value estimates (Wang et al., 2016) and noisy nets for improved exploration (Fortunato et al., 2018).

An often overlooked aspect is that the emergence of RM-SProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014) adaptive optimisation algorithms is closely linked with the recent success of DRL.

2.2. Spectral Normalisation

Spectral Normalisation (SN) is an approach for controlling the Lipschitz constant of certain families of parametric functions such as linear operators. While it can be defined more generally, for our purpose we will consider a function to be Lipschitz continuous in the ℓ_2 norm if $\|f(x_1) - f(x_2)\|_2 \le k \|x_1 - x_2\|_2$ and we call k the Lipschitz constant of the function. A linear map $y = \mathbf{W}x$ is 1-Lipschitz (k = 1) if $\|\mathbf{W}x\|_2 \le \|x\|_2$ for any x. This makes it apparent that normalising the spectral radius (largest singular value) of \mathbf{W} enforces the 1-Lipschitz constraint on the linear map $\hat{\mathbf{W}} = \mathbf{W} / \|\mathbf{W}\|_2 = \rho^{-1}\mathbf{W}$. This holds for convolutions as they are linear operators. A function is k-Lipschitz if the largest singular value of $\|\mathbf{J}_{xy}\|$ is bounded by k. We make use of this relation to characterise the local smoothness of the learned neural networks in Sec. 5.2.

The Lipschitz constant of a composition of two functions, f_1 with Lipschitz constant k_1 and f_2 with constant k_2 , will be bounded by the product $k_1 \cdot k_2$. This implies that the Lipschitz constant of a neural network can be bounded by setting the Lipschitz constant of each layer. For a complete overview over the Lipschitz constant of various layers, pooling and common activation functions including ReLU we refer to (Anil et al., 2019; Gouk et al., 2020).

3. Methods

Computing the spectral radius at each training step would be prohibitive, therefore we approximate it with one step of power iteration (Golub & van der Vorst, 2000) at every

https://github.com/floringogianu/snrl

forward pass. The algorithm is sketched below with **u** and **v** being the right, and left singural vectors.

$$\mathbf{v} \leftarrow \mathbf{W} \mathbf{u}^{(t-1)}; \qquad \alpha \leftarrow \|\mathbf{v}\|; \qquad \mathbf{v}^{(t)} \leftarrow \alpha^{-1} \mathbf{v}$$
$$\mathbf{u} \leftarrow \mathbf{W}^{\mathsf{T}} \mathbf{v}^{(t)}; \qquad \rho \leftarrow \|\mathbf{u}\|; \qquad \mathbf{u}^{(t)} \leftarrow \rho^{-1} \mathbf{u}$$

We then use the spectral radius estimation to perform a hard projection of the parameters: $\hat{\mathbf{W}} = \mathbf{W}/\max(\lambda, \ \rho)$. In all our experiments $\lambda = 1$ if not specified otherwise. For convolutional layers we adapt the procedure in (Gouk et al., 2020) and the two matrix-vector multiplications are replaced by convolutional and transposed convolutional operations.

3.1. Relaxations of Spectral Normalisation

Our first experiments with SN quickly highlighted several interesting observations. First, constraining all layers has a negative impact on the agent's performance. This is not surprising, a priori there is no reason for the true Q-functions to be smooth. Actions can often lead to drastic changes in the score, where taking a single action at time t forfeits the game while the same action at previous step might carry no significance, as for example in Pong when the paddle is close to the ball or in MS-PacMan when a ghost is close to the agent. This require very different values for close-by states, making the optimal Q function non-smooth.

These initial findings made it apparent that controlling the amount of regularisation is required. To address similar issues, (Gouk et al., 2020) proposes changing the projection rule to $\hat{\mathbf{W}}_i = \mathbf{W}_i / \max(\lambda_i, \|\mathbf{W}_i\|_2)$ and conduct a hyperparameter search for the layer specific constants λ_i .

In contrast, we apply the normalisation only on a few layers of the network. We found it best to apply normalisation to the layers with the largest number of weights (Figs. 2, 4). For value functions networks in DRL, such as the classic Deep Q-Networks (DQN) architecture, this tends to be the layer before the output layer. We further motivate and discuss our design decisions in Sec. 5.3.

Because of the bias towards normalising layers deeper in the network we will refer to the index of the layer being normalised in a notation akin to Python list indexing syntax. For layers of any depth SN[-1] will refer to the output layer and SN[-2] to the one before it, while SN[-2, -3] refers to both layers being normalised together.

4. Spectral Normalisation on the Atari suite

Our intuition is that SN plays a dual role: one of smoothing the function and one of altering the optimisation dynamics of the neural network. This dual role has already been hinted to in other settings with non-stationary effects, such as GANs (Rosca et al., 2020). DRL is also characterised by problematic data shifts during training, therefore we seek to

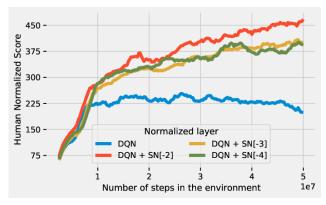


Figure 2: Human Normalised Score for a DQN-Adam baseline with SN applied on three different layers. Average over 54 Atari games.

AGENT	MEAN	MEDIAN
DQN (Wang et al., 2016)	216.84	78.37
DQN-ADAM*	358.45	119.45
DQN-ADAM SN[-2]	719.95	178.18
C51 (Hessel et al., 2018)	523.06	146.73
C51 (Bellemare et al., 2017)	633.49	174.84
C51*	778.68	182.26
RAINBOW (Hessel et al., 2018)	855.11	227.05
C51 SN[-2]	1073.18	248.45

Table 1: Mean and median Human Normalised Score on 54 Atari games with random starts evaluation. References indicate the sources for the scores for each algorithm. We mark our own implementations of the baseline with *. Our agents are evaluated with the protocol in (Hessel et al., 2018).

find out whether SN has a positive effect for RL-agents as well, and isolate its effect to SN's ability to either smooth the function or to affect the optimisation process.

To this end, we evaluate SN on the Arcade Learning Environment (ALE) (Bellemare et al., 2013). This collection of Atari games is varied and complex enough to ensure the generality of our claims and observations. Normalising only the penultimate layer (SN[-2]) while keeping everything else fixed enhances the performance of Categorical DQN (C51) beyond that of RAINBOW(Fig. 1, Table 1) an agent that aggregates the advantages of many other RL advances on top of C51.

SN also demonstrates strong performance in the case of nondistributional value-based methods. Results on smaller environments suggested that SN is less effective in conjunction with RMSProp therefore we train a DQN agent using the Adam optimiser instead of RMSProp. We use the optimiser settings and other hyper-parameters found in Dopamine (Castro et al., 2018) as detailed in appendix C.2. We keep the rest of the training and evaluation protocol similar to that of the other algorithms we compare with. Note that with

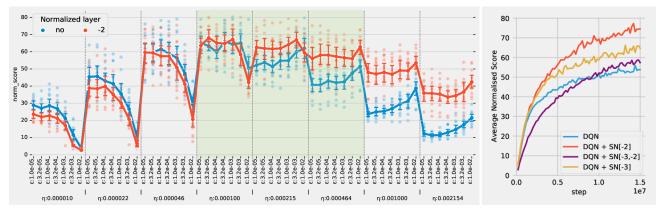


Figure 3: Left: SN decreases hyper-parameter sensitivity in Adam. Each $\{\eta, \epsilon\}$ combination is used to train 6 models of different depth and width on four MinAtar games, two seeds each. Dots represent the average maximum normalised score over the four games. Right: SN networks are more adaptable. On a 15M steps training run the normalised agents continue to learn, adapting to increasingly difficult dynamics while the baseline plateaus. Each line is an average of 10 seeds over four MinAtar games and four different model sizes.

this change we are not weakening the baseline. We show that applying SN to any of the hidden layers significantly improves upon the DQN baseline (Fig. 2). Moreover, the performance closes in on our own implementation of C51 further suggesting that performance gains coming from optimisation and regularisation advances may be comparable to those achieved by RL-centric methods. We consolidate all these results in Table 1 on a subset of 54 games². We note that we did not fine-tune our normalised variants but rather reused the same hyper-parameters as for the baseline. These hyper-parameters are the result of careful tuning reported in the literature and are detailed in appendix C. We also report results for DQN trained with RMSprop in Sec. C.3.

The mean and median Human Normalised Score have been critiqued in the past (Machado et al., 2018; Toromanoff et al., 2019) because they can be dominated by some large normalised scores. However we notice that with very few exceptions (3/54 for DQN and 11/54 games for C51, Fig. C) normalising at most one of the network's layers will not degrade the performance compared to the baseline but instead it will improve upon it, often substantially.

5. Analysis of results

In order to understand the strong performance of SN in Atari we proceed to answer several questions employing both large-scale experiments and technical arguments: How is SN interfering with optimisation? Is smoothness a factor in the performance we are observing? And are other regularisation methods leading to similar empirical gains?

Since the large scale study we require would have been prohibitive in ALE, all the experiments in this section if not mentioned otherwise are using for evaluation the MinAtar environment (Young & Tian, 2019) which reproduces five games from ALE complete with their non-stationary dynamics but without the visual complexity. MinAtar was found to be well-suited for reproducing the ablations of recent DRL contributions originally made on ALE (Obando-Ceron & Castro, 2020) and therefore we adopt it for our purposes.

Most of the MinAtar results we report are averages of normalised scores over four games. All agents employ an architecture with at least one convolutional layer and two final linear layers. When varying the depth of the architecture we only adjust the number of convolutional layers. When varying the width we increase the number of both feature maps and units in the linear layers.

5.1. Spectral Normalisation decreases hyper-parameter sensitivity

We characterise empirically the impact SN has on an agent's performance with a wide variety of architectures and optimisation settings. In particular, we consider six models of different depths and widths, many learning rates and epsilon values for both Adam and RMSProp with and without SN or layer [-2] or layers [-2,-3] for four different games, two seeds for each configuration, resulting in 14000 DQN agents. Fig. 3 reveals several interesting observations:

- 1. SN almost never degrades the performance of the baseline therefore it can be safely used in existing agents.
- 2. SN extends the usable range of Adam's hyperparameters. Assuming ideal hyper-parameters for the un-normalised network, which typically reside in a very narrow hyper-parameter subspace, applying SN

²Only 54 out of 57 because *Surround* ROM is not part of the Atari-Py library we are using, *Defender* crashes on the current version of the library and *Video Pinball* dominates the score due to low human scores and induces noise in the comparisons.

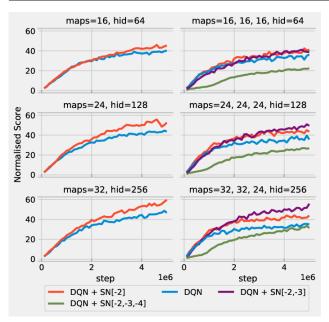


Figure 4: SN shows gains for all model sizes. We note two regimes of the DQN baseline (—): for shallow models performance increases with the width of the model; for deeper models performance stagnates with increasing depth and width. In both regimes applying SN on individual (—) or multiple (—) layers improves on DQN suggesting a regularisation effect we could not reproduce with other methods (Fig. 16). Normalising too many layers (—) decreases the capacity and is detrimental to learning. Normalised scores of 4 games × 10 seeds. Details in Fig. 12.

does not harm performance. However the normalised model performs well within a significantly larger range, highlighted by the green band in Fig. 3, while the baseline degrades dramatically.

3. SN allows for increased adaptability to changing dynamics in the environment. MinAtar share with ALE the property of increasing in difficulty as the policy improves. On a 15M training run (Fig. 3, right) SN demonstrates it can continue to learn better policies while the baseline plateaus. This finding is also supported on Atari (Fig. 2).

5.2. Smoothness and performance are weakly correlated

The Lipschitz constant of a neural network can be at most the product of the Lipschitz constants of its layers. Since in this work we normalise only a subset of layers, we naturally ask whether it is enough to produce smoother functions. Also, we seek to answer whether performance correlates with the smoothness of the function.

While the exact computation of k for a network is NP-hard (Virmaux & Scaman, 2018) we can compute a *local* smoothness measure with respect to the data distribution. To approximate the smoothness of our learned value functions we trained agents equipped with twelve different model

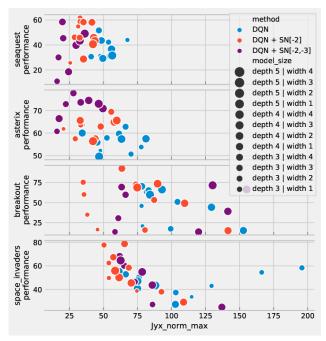


Figure 5: SN does not consistently produce smoother networks. Often normalising a subset of the network's layers makes the network less smooth than the baseline while performance improves still. MinAtar games, average over 10 seeds, for completeness refer to Fig. 14

sizes. For each game-architecture combination we trained a DQN baseline and normalised various layers, 10 seeds each, resulting in 2400 trained agents. We then used the best checkpoint for each combination to sample 100k steps in the game and compute for each state s the norm of the gradient of the state-action value with respect to the state and we report the largest norm encountered.

We note that while a slight correlation can be measured using Spearman's rank, SN does not *generally* produce smoother networks. The relation between performance and smoothness is not consistent across MDPs, ranging from strong dependence in Space Invaders to no correlation in Breakout (see Fig. 5). The baseline of a three-layer network exhibits a higher empirical norm of the Jacobian than any of the normalised models but this is not the case for deeper models. For models larger than three layers the topperforming normalised experiments exhibit a smoothness similar to that of the baseline but also increased performance. A detailed description of the setup and results can be found in appendix B.3. In conclusion, smoothness does not fully account for the higher performance brought by SN.

To further explore a possible connection between smoothness and performance we did several experiments with other regularisation methods. First we perform a careful tuning of Gradient Penalty (GP) (Gulrajani et al., 2017) as an alternative method of imposing smoothness constraints on

the learned action-value functions and we found it generally hurts performance and at best it makes no difference. We then considered Batch Normalisation (BN) (Ioffe & Szegedy, 2015) for its ability to control the Lipschitz constant of the loss function w.r.t. the parameters (Santurkar et al., 2018), but also generally thought to improve the optimisation properties of neural networks (Arora et al., 2018). We once again found it degrades performance, which is also consistent with the DRL literature in the small batchsize regime (Bhatt et al., 2019). We give the full details in supplementary B.4.

5.3. Limitations of 1-Lipschitz networks and practical considerations

Fig. 4 characterises the performance of SN as a function of the model size and the number of normalised layers. SN generally leads to a good performance when a small number of layers are targeted. However, normalising more than half of the number of layers in a depth-5 network results in degraded behaviour suggesting a too strong regularisation effect (see Appendix Fig. 12).

We find this to be consistent with prior work showing that when ReLU networks are constrained to be 1-Lipschitz by applying SN to all their layers, it reduces the range of functions they can express (Huster et al., 2018; Anil et al., 2019). Related, smoothness regularisation methods are generally employed with small coefficients in order to avoid performance penalties. For example Spectral Norm Regularisation (SR) in (Yoshida & Miyato, 2017) uses a coefficient $\lambda = 0.01$ and the orthogonality regularisation in Parseval Networks (Cissé et al., 2017) uses a $\beta \in \{0.0001, 0.0003\}$ which can make the network to be far from 1-Lipschitz as discussed in (Anil et al., 2019). When SN is deployed in the adversarial robustness task (Gouk et al., 2020), the optimal λ_i values for different layer types were found in the range $\{2, ..., 50\}$, a considerable departure from the 1-Lipschitz bound for the entire network. We find these reports of relaxing the 1-Lipschitz constraint consistent with our selective SN design choice.

5.4. Spectral Normalisation has primarily an optimisation effect

We claim that SN improves the performance of the valuefunction estimator by affecting the optimisation dynamics. Precisely, SN provides a scheduler that adapts the size and the direction of the optimisation step as the weights increase during training. In the case of Adam (Kingma & Ba, 2014) SN could be compensating for how curvature is being approximated in the late training regime by the expected squared gradient which should vanish at convergence.

We start by comparing the gradients of the normalised neural network with those of its standard counterpart. We then

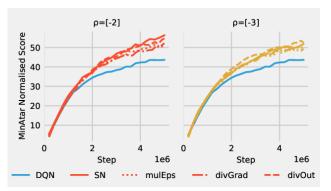


Figure 6: Spectral schedulers recover SN performance. Average normalised scores over MinAtar games and four different models. Refer to Fig. 18 for completion.

build two incremental approximations to SN which directly affect the optimisation step using the spectral radius. We provide empirical evidence that these data-dependent alterations of the optimiser recover and sometimes surpass the performance boost from SN, supporting our optimisation interpretation of the method.

Consider a feed-forward estimator with L parametric layers (for brevity we will assume linear projections, although everything applies to convolutions as well). All except the last layer are followed by rectifiers.

$$\mathbf{a}_0 \triangleq \mathbf{x} \tag{2}$$

$$\mathbf{z}_i = \mathbf{W}_i \mathbf{a}_{i-1} + \mathbf{b}_i$$
 $1 \le i \le L$ (3)
 $\mathbf{a}_i = \text{ReLU}(\mathbf{z}_i)$ $1 < i < L$ (4)

$$\mathbf{a}_i = \text{ReLU}(\mathbf{z}_i)$$
 $1 \le i < L$ (4)

We impose that a subset of layers $S \subseteq \{1, 2, ..., L\}$ are individually k-Lipschitz continuous by using normalised parameters $\forall i \in \mathcal{S} : \hat{\mathbf{W}}_i = \rho_i^{-1} \mathbf{W}_i \text{ with } \rho_i =$ $\max(\langle \rho(\mathbf{W}_i) \rangle, k)$. We use $\rho(\cdot)$ to denote the spectral radius (i.e. the largest singular value of W_i) and $\langle \cdot \rangle$ for the stop gradient function, using hat notations for all the quantities in the normalised network: $\hat{\mathbf{z}}_i = \hat{\mathbf{W}}_i \hat{\mathbf{a}}_{i-1} + \mathbf{b}_i$. Since the bias is not scaled along with the weights, the sign of the pre-activations is not preserved ($[\mathbf{z}_i > 0] \neq [\mathbf{\hat{z}}_i > 0]$) therefore one cannot write an explicit relation between $\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i}$ and $\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_i}$. We will now make a slight modification to SN such that writing such a relation becomes possible.

Bias scaling. Consider the following alteration of the spectral normalisation procedure presented above. As before, we perform spectral normalisation on a subset of layers S. In addition, for each normalised layer $l \in \mathcal{S}$ we also scale the bias terms of subsequent layers i > l with ρ_l^{-1} as shown in Eq. 7. By doing so we can relate the pre-activations $\hat{\mathbf{z}}_i$ on all layers to those from the unnormalised Multi-Layer

Perceptron (MLP) described in Eq. 3:

$$\rho_{i:j}^{-1} \triangleq \prod_{i \le k \le j \land k \in \mathcal{S}} \rho_k^{-1} \tag{5}$$

$$\hat{\mathbf{z}}_i = \rho_i^{-1} \left(\mathbf{W}_i \hat{\mathbf{a}}_{i-1} + \rho_{1:i-1}^{-1} \mathbf{b}_i \right)$$
 (6)

$$= \rho_i^{-1} \mathbf{W}_i \hat{\mathbf{a}}_{i-1} + \rho_{1:i} \mathbf{b}_i = \rho_{1:i}^{-1} \mathbf{z}_i$$
 (7)

$$\hat{\mathcal{L}} \triangleq \operatorname{loss}(\hat{\mathbf{z}}_L) = \operatorname{loss}(\rho_{1:i}^{-1}\mathbf{z}_i)$$
(8)

We can now compute the gradients w.r.t. the unnormalised parameters for both the standard estimator and the normalised one with scaled biases:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i} = \mathbf{J}_i \boldsymbol{\delta}_L \mathbf{a}_{i-1}^{\mathsf{T}} \qquad \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_i} = \rho^{-1} \mathbf{J}_i \hat{\boldsymbol{\delta}}_L \mathbf{a}_{i-1}^{\mathsf{T}} \qquad (9)$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}_i} = \mathbf{J}_i \boldsymbol{\delta}_L \qquad \qquad \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{b}_i} = \rho^{-1} \mathbf{J}_i \hat{\boldsymbol{\delta}}_L \qquad (10)$$

where $\rho^{-1} \triangleq \prod_{i \in \mathcal{S}} \rho_i^{-1}$; the jacobian w.r.t. estimator's outputs: $\hat{\boldsymbol{\delta}}_L \triangleq \frac{\partial \hat{\mathcal{L}}}{\partial \hat{\mathbf{z}}_L}$; and $\mathbf{J}_i \triangleq \prod_{j=i}^{L-1} \left[\operatorname{diag} \left(\left[\mathbf{z}_j > 0 \right] \right) \mathbf{W}_{j+1}^\intercal \right]$.

Output scaling. The right-hand expressions in Eq. 9 and 10 show that SN+BIAS SCALING is computationally equivalent with simply scaling the un-normalised network's output with ρ^{-1} . Doing so yields the same gradients as SN+BIAS SCALING, reducing the importance of the depths where weights are conditioned. We refer to this approximations as DIVOUT. We argue that outside some pathological cases, the bias terms easily adapt to the layer's mean activation in both cases therefore SN and DIVOUT should have similar behaviours. Indeed, experiments performed on MinAtar confirm that the DIVOUT approximation recovers the performance of SN (see Figure 6). Inspecting the performance on multiple architectures and normalisations we also observe that DIVOUT fails to learn when SN fails (Fig. 18 in Appendix). We therefore consider SN + BIAS SCALING (and its equivalent formulation DIVOUT) a reasonable proxy to study the effects of SN.

The gradient scaling effect. Eq. 9, and 10 show that the effect SN+BIAS SCALING has on the updates is two-fold. First, gradients are scaled by ρ^{-1} . Second, the model changes, therefore the jacobians of the loss function with respect to the network's output changes: $\delta_L \neq \hat{\delta}_L$. We argue that specifically for DQN where the TD-error is put in a Huber cost, there is no evident scaling relation between δ_L and $\hat{\delta}_L$ (for values larger than 1, the gradient is just the sign of y-t). We therefore isolate the first effect, i.e. scaling the gradients with the inverse spectral radius before passing it to the gradient based optimiser, in a scheduler we name DIVGRAD.

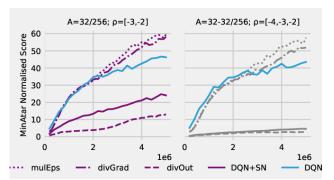


Figure 7: Spectral schedulers improve performance even when the radii of all layers are used. In these cases SN fails to train. Minatar Normalised Score for two models. Refer to Fig.18 for completion.

We again evaluate this scheduler using multiple architectures and sets of spectral radii on the games in MinAtar. The averaged learning curves in Figure 6 demonstrate that this gradient scaling effect of SN is sufficient to explain the performance gain, indicating that SN actually proposes better optimisation steps rather than conditioning the network in a better subspace.

We also notice that DIVGRAD improves the performance of DQN event when the spectral norms of all hidden layers are considered, case in which SN fails to train (Figure 7).

Interactions with Adam. In order to account for the surprising performance of DIVGRAD, we study its effect when the optimiser used is Adam (Kingma & Ba, 2014) (Eqs. 11, 12, 13), the recent³ first choice for optimising DRL algorithms. To do that we compare an optimisation step in a regular MLP with the same quantity when gradients are inversely scaled with the spectral radius.

$$\mathbf{v}_{t+1} \longleftarrow \beta_1 \mathbf{v}_t + (1 - \beta_1) \, \mathbf{g}_t \tag{11}$$

$$\mathbf{s}_{t+1} \longleftarrow \beta_2 \mathbf{s}_t + (1 - \beta_2) \,\mathbf{g}_t^2 \tag{12}$$

$$\Delta \mathbf{W}_{t} \triangleq \eta \frac{(1 - \beta_{1}^{t})^{-1} \mathbf{v}_{t+1}}{\sqrt{(1 - \beta_{2}^{t})^{-1} \mathbf{s}_{t+1} + \epsilon}}$$
(13)

The spectral radius changes slowly during training (Fig.13 in Appendix), making it reasonable to approximate the exponentially decayed sums in $\hat{\mathbf{v}}_t$, and $\hat{\mathbf{v}}_t$:

$$\mathbf{v}_{t+1}^{'} \approx \rho_t^{-1} \mathbf{v}_{t+1} \tag{14}$$

$$\mathbf{s}_{t+1}^{'} \approx \rho_t^{-2} \mathbf{s}_{t+1} \tag{15}$$

$$\Delta \mathbf{W}_{t}' \approx \eta \frac{(1 - \beta_{1}^{t})^{-1} \mathbf{v}_{t+1}}{\sqrt{(1 - \beta_{2}^{t})^{-1} \mathbf{s}_{t+1} + \rho_{t} \epsilon}}$$
(16)

It means that (in a instantaneous comparison with the gradient for the unregularized network) the step size when apply-

³DON and its immediate successors used RMSprop.

ing gradient scaling with a slowly increasing ρ reduces the learning rate while making the projection closer and closer to SGD with momentum. Or, equivalently, as learning progresses the curvature approximation in the denominator is dominated by the uniform scale factor $\rho\epsilon$. We therefore propose a scheduler (MULEPS) where we multiply the ϵ term by the product of spectral radii as in Eq. 16, expecting a close behaviour to that of DIVGRAD. Experiments on MinAtar confirm this, providing a possible interpretation for the efficiency of SN, namely that it modulates ϵ .

While in Supervised Learning (SL) ϵ is mostly used for numerical stability, its role in dealing with unreliable approximation of the curvature has been considered. Since gradient statistics are typically assumed to be unreliable early in training (Liu et al., 2019), a decreasing schedule for the damping factor was suggested in (Martens & Grosse, 2015). However these heuristics do not seem to match the needs of DRL. This is emphasised by the typical use of much higher ϵ in DRL (Bellemare et al., 2017; Mnih et al., 2015) and by our findings, suggesting the modulation of ϵ .

6. Related work

SN and its penalty term formulation Spectral Norm Regularisation (SR) (Yoshida & Miyato, 2017), have been mostly researched in the context of regularisation for example as a defense against adversarial examples (Tsuzuku et al., 2018; Farnia et al., 2018; Gouk et al., 2020), to improve the stability of Generative Adversarial Network (GAN) training (Kurach et al., 2019) or to improve robustness of uncertainty estimates (Liu et al., 2020). It was recently used in DRL (Yu et al., 2020) also in the context of robust uncertainty estimation for model based RL. However the optimisation effect investigated in Sec. 5 has not been considered. (Rosca et al., 2020) provides a thorough overview of the current understanding of smoothness constraints, applications and methods, including SN.

Probably the most related method that has been extensively studied from an optimisation perspective is Weight Normalisation (WN) (Salimans & Kingma, 2016). Similary to SN they rely on a hard projection $\hat{\mathbf{W}}_i = g\mathbf{v}/\|\mathbf{v}\|_F$, with the exception that g is learned and the use of a simpler Frobenius matrix norm. The authors also report results on a subset of ALE environments for DQN, showing gains over the baseline. (Miyato et al., 2018) contrasts SN and WN and argue that the Frobenius norm encourages a loss in the number of usable features of the learned representations. Our experiments support this argument: measuring the *effective rank* (Kumar et al., 2020) shows a faster loss of feature rank for the baseline agent compared to any SN agent (Fig. 21 in Appendix). Since WN fuels a loss in rank we believe this might explain the performance difference between the two.

SN together with WN and Batch Normalisation (BN) (Ioffe & Szegedy, 2015), are part of a larger family of normalisation methods that make the layer invariant to change in the scale of the parameters. In (Van Laarhoven, 2017; Hoffer et al., 2018; Arora et al., 2018) the authors study the effect of L2 regularisation in BN and WN networks deriving an effective learning rate $\eta' = \eta/\|\mathbf{W}\|$ that depends on the evolution of the weight norm. They also show that the norm interacts with the damping factor in adaptive algorithms, including Adam, such that $\epsilon' = \epsilon \|\mathbf{W}\|$ effectively behaving as a scheduler on these hyper-parameters. Our analysis in Sec. 5.4 looks at the relation between the regular and normalised update steps and identifies a similar scaling factor of the damping term, while preserving the learning rate.

The damping term ϵ has been often overlooked in SL and relegated only to numerical stability, however in DRL it is usually set rather high in both Adam and RMSprop without a justification. We believe part of the gains we report is due to the implicit scheduling of ϵ . We corroborate this finding with work on accurate approximation of the curvature of the loss function where scheduling the Tikhonov damping is proposed. For example, in K-FAC, the damping value starts high and it is decreased as the information about curvature improves (Martens, 2010; Martens & Grosse, 2015). The ϵ term in Adam has a similar purpose but on a weaker approximation of the curvature based on the Empirical Fisher Information Matrix (Pascanu & Bengio, 2014; Kunstner et al., 2019). Our study in Sec. 5.4 suggests that in DRL this approximation is even more deficient and does not improve during training, as in general we see a benefit from the monotonic increase of the damping factor.

Recent works address the optimisation issues specific to TD learning. (Bengio et al., 2020) discusses the negative interplay between the adaptive methods from SL (RMSprop, Adam) and TD(0). Others propose optimisers for RL, but they are either restricted to linear estimators (Givchi & Palhang, 2014; Sun et al., 2020), or they show no empirical advantages (Romoff et al., 2020).

7. Conclusion

We identify and characterise the strong performance boost when applying Spectral Normalisation (SN) on the network DRL agents use for state-action value estimation. Through careful ablations on a large number of architectures and settings we disentangle between smoothness and optimisation effects. We find that rather than restricting the irregularities of the network function, SN changes the optimisation dynamics providing a good scheduler. We also derive explicit schedulers by moving the spectral norm in the update step of Adam and show that these recover the performance of SN. These observations suggest there is much to gain by designing better adapting optimisers for DRL.

References

- Anil, C., Lucas, J., and Grosse, R. Sorting out lipschitz function approximation. In *International Conference on Machine Learning*, pp. 291–301. PMLR, 2019.
- Arora, S., Li, Z., and Lyu, K. Theoretical analysis of auto rate-tuning by batch normalization. *arXiv* preprint *arXiv*:1812.03981, 2018.
- Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:253–279, 2013.
- Bellemare, M. G., Dabney, W., and Munos, R. A distributional perspective on reinforcement learning, 2017.
- Bengio, E., Pineau, J., and Precup, D. Interference and generalization in temporal difference learning. *ArXiv*, abs/2003.06350, 2020.
- Bhatt, A., Argus, M., Amiranashvili, A., and Brox, T. Crossnorm: Normalization for off-policy td reinforcement learning. *arXiv preprint arXiv:1902.05605*, 2019.
- Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G. Dopamine: A research framework for deep reinforcement learning. arXiv preprint arXiv:1812.06110, 2018.
- Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks: Improving robustness to adversarial examples. *ArXiv*, abs/1704.08847, 2017.
- Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. Quantifying generalization in reinforcement learning. In *ICML*, 2019.
- Czarnecki, W. M., Pascanu, R., Osindero, S., Jayakumar, S., Swirszcz, G., and Jaderberg, M. Distilling policy distillation. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 1331–1340. PMLR, 2019.
- Farnia, F., Zhang, J. M., and Tse, D. Generalizable adversarial training via spectral normalization. *arXiv preprint arXiv:1811.07457*, 2018.
- Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S. Noisy networks for exploration. *ArXiv*, abs/1706.10295, 2018.
- Givchi, A. and Palhang, M. Quasi newton temporal difference learning. In *ACML*, 2014.
- Golub, G. H. and van der Vorst, H. A. Eigenvalue computation in the 20th century. *Journal of Computational and Applied Mathematics*,

- 123(1):35 65, 2000. ISSN 0377-0427. doi: https://doi.org/10.1016/S0377-0427(00)00413-1. URL http://www.sciencedirect.com/science/article/pii/S0377042700004131. Numerical Analysis 2000. Vol. III: Linear Algebra.
- Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. Regularisation of neural networks by enforcing lipschitz continuity. *Machine Learning*, pp. 1–24, 2020.
- Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of wasserstein gans. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 30, pp. 5767–5777. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf.
- Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. Deep reinforcement learning that matters. *ArXiv*, abs/1709.06560, 2018a.
- Henderson, P., Romoff, J., and Pineau, J. Where did my optimum go?: An empirical analysis of gradient descent optimization in policy gradient methods. *ArXiv*, abs/1810.02525, 2018b.
- Hessel, M., Modayil, J., Hasselt, H. V., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., and Silver, D. Rainbow: Combining improvements in deep reinforcement learning. In AAAI, 2018.
- Hoffer, E., Banner, R., Golan, I., and Soudry, D. Norm matters: efficient and accurate normalization schemes in deep networks. arXiv preprint arXiv:1803.01814, 2018.
- Huster, T. P., Chiang, C. J., and Chadha, R. Limitations of the lipschitz constant as a defense against adversarial examples. In *Nemesis/UrbReas/SoGood/IWAISe/GDM@PKDD/ECML*, 2018.
- Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456. PMLR, 2015.
- Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit under-parameterization inhibits data-efficient deep reinforcement learning. *arXiv preprint arXiv:2010.14498*, 2020.

- Kunstner, F., Hennig, P., and Balles, L. Limitations of the empirical fisher approximation for natural gradient descent. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems*, volume 32, pp. 4156–4167. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf.
- Kurach, K., Lučić, M., Zhai, X., Michalski, M., and Gelly, S. A large-scale study on regularization and normalization in gans. In *International Conference on Machine Learning*, pp. 3581–3590. PMLR, 2019.
- Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., and Lakshminarayanan, B. Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. arXiv preprint arXiv:2006.10108, 2020.
- Liu, Z., Li, X., Kang, B., and Darrell, T. Regularization matters in policy optimization an empirical study on continuous control, 2019.
- Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.
- Martens, J. Deep learning via hessian-free optimization. In *ICML*, volume 27, pp. 735–742, 2010.
- Martens, J. and Grosse, R. Optimizing neural networks with kronecker-factored approximate curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.
- Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks, 2018.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement learning. *nature*, 518(7540): 529–533, 2015.
- Obando-Ceron, J. S. and Castro, P. S. Revisiting rainbow: Promoting more insightful and inclusive deep reinforcement learning research. *ArXiv*, abs/2011.14826, 2020.
- Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. Deep exploration via bootstrapped dqn. In *NIPS*, 2016.
- Pascanu, R. and Bengio, Y. Revisiting natural gradient for deep networks. In *International Conference on Learning*

- Representations 2014 (Conference Track), April 2014. URL http://arxiv.org/abs/1301.3584.
- Romoff, J., Henderson, P., Kanaa, D., Bengio, E., Touati, A., Bacon, P., and Pineau, J. Tdprop: Does jacobi preconditioning help temporal difference learning? *ArXiv*, abs/2007.02786, 2020.
- Rosca, M., Weber, T., Gretton, A., and Mohamed, S. A case for new neural network smoothness constraints, 2020.
- Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. *arXiv preprint arXiv:1602.07868*, 2016.
- Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How does batch normalization help optimization? In *Advances in neural information processing systems*, pp. 2483–2493, 2018.
- Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. *CoRR*, abs/1511.05952, 2016.
- Sun, T., Shen, H., Chen, T., and Li, D. Adaptive temporal difference learning with linear function approximation. *arXiv* preprint arXiv:2002.08537, 2020.
- Tieleman, T. and Hinton, G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
- Toromanoff, M., Wirbel, E., and Moutarde, F. Is deep reinforcement learning really superhuman on atari? leveling the playing field, 2019.
- Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 31, pp. 6542–6551. Curran Associates, Inc., 2018.
- Van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
- Van Laarhoven, T. L2 regularization versus batch and weight normalization. *arXiv preprint arXiv:1706.05350*, 2017.
- Virmaux, A. and Scaman, K. Lipschitz regularity of deep neural networks: analysis and efficient estimation. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 31, pp. 3835–3844. Curran Associates, Inc., 2018. URL https://proceedings.

neurips.cc/paper/2018/file/
d54e99a6c03704e95e6965532dec148b-Paper.
pdf.

- Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. Dueling network architectures for deep reinforcement learning. In *International conference on machine learning*, pp. 1995–2003. PMLR, 2016.
- Yoshida, Y. and Miyato, T. Spectral norm regularization for improving the generalizability of deep learning. *ArXiv*, abs/1705.10941, 2017.
- Young, K. and Tian, T. Minatar: An atari-inspired testbed for thorough and reproducible reinforcement learning experiments. *arXiv preprint arXiv:1903.03176*, 2019.
- Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. Mopo: Model-based offline policy optimization, 2020.