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Abstract
Sliced Stein discrepancy (SSD) and its kernel-
ized variants have demonstrated promising suc-
cesses in goodness-of-fit tests and model learning
in high dimensions. Despite their theoretical ele-
gance, their empirical performance depends cru-
cially on the search of optimal slicing directions
to discriminate between two distributions. Un-
fortunately, previous gradient-based optimisation
approaches for this task return sub-optimal results:
they are computationally expensive, sensitive to
initialization, and they lack theoretical guaran-
tees for convergence. We address these issues in
two steps. First, we provide theoretical results
stating that the requirement of using optimal slic-
ing directions in the kernelized version of SSD
can be relaxed, validating the resulting discrep-
ancy with finite random slicing directions. Sec-
ond, given that good slicing directions are crucial
for practical performance, we propose a fast algo-
rithm for finding such slicing directions based on
ideas of active sub-space construction and spectral
decomposition. Experiments on goodness-of-fit
tests and model learning show that our approach
achieves both improved performance and faster
convergence. Especially, we demonstrate a 14-
80x speed-up in goodness-of-fit tests when com-
paring with gradient-based alternatives.

1. Introduction
Discrepancy measures between two distributions are crit-
ical tools in modern statistical machine learning. Among
them, Stein discrepancy (SD) and its kernelized version,
kernelized Stein discrepancy (KSD), have been extensively
used for goodness-of-fit (GOF) testing (Liu et al., 2016;
Chwialkowski et al., 2016; Huggins & Mackey, 2018; Jitkrit-
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tum et al., 2017; Gorham & Mackey, 2017) and model learn-
ing (Liu & Wang, 2016; Pu et al., 2017; Hu et al., 2018;
Grathwohl et al., 2020). Despite their recent success, appli-
cations of Stein discrepancies to high-dimensional distribu-
tion testing and learning remains an unsolved challenge.

These “curse of dimensionality” issues have been recently
addressed by the newly proposed Sliced Stein discrepancy
(SSD) and its kernelized variants SKSD (Gong et al., 2021),
which have demonstrated promising results in both high
dimensional GOF tests and model learning. They work by
first projecting the score function and the test inputs across
two slice directions r and gr and then comparing the two
distributions using the resulting one dimensional slices. The
performance of SSD and SKSD crucially depends on choos-
ing slicing directions that are highly discriminative. Indeed,
Gong et al. (2021) showed that such discrepancy can still be
valid despite the information loss caused by the projections,
if optimal slices – directions along which the two distribu-
tions differ the most – are used. Unfortunately, gradient-
based optimization for searching such optimal slices often
suffers from slow convergence and sub-optimal solutions. In
practice, many gradient updates may be required to obtain a
reasonable set of slice directions (Gong et al., 2021).

We aim to tackle the above practical challenges by proposing
an efficient algorithm to find good slice directions with
statistical guarantees. Our contributions are as follows:

• We propose a computationally efficient variant of
SKSD using a finite number of random slices. This re-
laxes the restrictive constraint of having to use optimal
slices, with the consequence that convergence during
optimisation to a global optimum is no longer required.

• Given that good slices are still preferred in practice,
we propose surrogate optimization tasks to find such
directions. These are called active slices and have
analytic solutions that can be computed very efficiently.

• Experiments on GOF test benchmarks (including test-
ing on restricted Boltzmann machines) show that our
algorithm outperforms alternative gradient-based ap-
proaches while achieving at least a 14x speed-up.

• In the task of learning high dimensional independent
component analysis (ICA) models (Comon, 1994), our
algorithm converges much faster and to significantly
better solutions than other baselines.
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Road map: First, we give a brief background for SD,
SKSD and its relevant variants (Section 2). Next, we show
that the optimality of slices are not necessary. Instead, finite
random slices are enough to ensure the validity of SKSD
(3.1). Despite that relaxing the optimality constraint gives
us huge freedom to select slice directions, choosing an ap-
propriate objective for finding slices is still crucial. Unfortu-
nately, analysing SKSD in RKHS is challenging. We thus
propose to analyse SSD as a surrogate objective by show-
ing SKSD can be well approximated by SSD (Section 3.2).
Lastly, by analyzing SSD, we propose algorithms to find
active slices for SKSD (Sections 4, 5, 6), and demonstrate
the efficacy of our proposal in the experiments (Section 7).
Assumptions and proofs of theoretical results as well as the
experimental settings can be found in the appendix.

2. Background
For a distributions p on X ⊂ RD with differentiable density,
we define its score function as sssp(xxx) = ∇xxx log p(xxx). We
also define the Stein operator Ap for distribution p as

Apf(xxx) = sssp(xxx)Tf(xxx) +∇Txxx f(xxx) , (1)

where f : X → RD is a test function. Then the Stein
discrepancy (SD) (Gorham & Mackey, 2015) between two
distributions p, q with differentiable densities on X is

DSD(q, p) = sup
f∈Fq

Eq[Apf(xxx)] , (2)

where Fq is the Stein’s class of q that contains test func-
tions satisfying Eq[Aqf(xxx)] = 0 (also see Definition B.2 in
appendix B). The supremum can be obtained by choosing
f∗ ∝ sssp(xxx)− sssq(xxx) if Fq is rich (Hu et al., 2018).

Chwialkowski et al. (2016); Liu et al. (2016) further restricts
the test function space Fq to be a unit ball in an RKHS
induced by a c0−universal kernel k : X × X → R. This
results in the kernelized Stein discrepancy (KSD), which
can be computed analytically:

D2(q, p) =

(
sup

f∈Hk,||f ||Hk≤1
Eq[Apf(xxx)]

)2

= ||Eq[sp(x)k(x, ·) +∇xk(x, ·)]||2Hk ,
(3)

whereHk is the k induced RKHS with norm || · ||Hk .

2.1. Sliced kernelized Stein discrepancy

Despite the theoretical elegance of KSD, it often suffers
from the curse-of-dimensionality in practice. To address
this issue, Gong et al. (2021) proposed a divergence family
called sliced Stein discrepancy (SSD) and its kernelized
variants, under mild assumptions on the regularity of prob-
ability densities (Assumptions 1-4 in appendix B) and the

richness of the kernel (Assumption 5 in appendix B). The
key idea is to compare the distributions on their one dimen-
sional slices by projecting the score sp and test input x
with two directions r and its corresponding gr, respectively.
Readers are referred to appendix C for details. Despite that
one cannot access all the information possessed by sp and
x due to the projections, the validity of the discrepancy can
be ensured by using an orthogonal basis for r along with
the corresponding most discriminative gr directions. The
resulting valid discrepancy is called maxSSD-g, which uses
a set of orthogonal basis r ∈ Or and their corresponding
optimal gr directions:

Smaxgr (q, p) =
∑
r∈Or

sup
hrgr∈Fq
gr∈SD−1

Eq[srp(x)hrgr (x
Tgr)+

rTgr∇xT grhrgr (x
Tgr)] ,

(4)

where hrgr : K ⊆ R → R is the test function, SD−1
is the D-dimensional unit sphere and srp(x) = sp(x)Tr
is the projected score function. Under certain scenarios
(Gong et al., 2021), i.e. GOF test, one can further improve
the performance of maxSSD-g by replacing

∑
r∈Or with

the optimal supr∈SD−1 in Eq.4, resulting in another variant
called maxSSD-rg (Smaxrgr ). This increment in performance
is due to the higher discriminative power provided by the
optimal r.

However, the optimal test functions h∗rgr in maxSSD-g (or
-rg) are intractable in practice. Gong et al. (2021) further pro-
posed kernelized variants to address this issue by letting Fq
to be in a unit ball of an RKHS induced by a c0−universal
kernel krgr . With

ξp,r,gr (x, ·) = srp(x)krgr (x
Tgr, ·)+

rTgr∇xT grkrgr (x
Tgr, ·) ,

(5)

the maxSKSD-g (the kernelized version of maxSSD-g) is

SKmaxgr (q, p) =
∑
r∈Or

sup
gr∈SD−1

||Eq[ξp,r,gr (x)]||2Hrgr ,

(6)
where Hrgr is the RKHS induced by krgr with the asso-
ciated norm || · ||Hrgr . Similarly, a kernelized version of
maxSSD-rg, denoted by maxSKSD-rg (SKmaxrgr ), is ob-
tained by replacing

∑
r∈Or with supr∈SD−1 in Eq.6.

Despite that maxSKSD-g (or -rg) addresses the tractability
of test functions, the practical challenge of computing them
is the computation of the optimal slice directions r and gr.
Gradient-based optimization (Gong et al., 2021) for such
computation suffers from slow convergence; even worse,
it is sensitive to initialization and returns sub-optimal solu-
tions only. In such case, it is unclear whether the resulting
discrepancy is still valid, making the correctness of GOF
test unverified. Therefore, the first important question to
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Figure 1. The relationship between different SSD discrepancies,
where green texts indicate our contributions, red symbols indicate
valid discrepancies and Hrgr is the RKHS induced by kernel krgr .
The leftmost part are the discrepancies proposed by Gong et al.
(2021), whereas the rightmost part + central “Active Slices” are
our contributions. The arrows ⇒ indicate the connections between
Gong et al. (2021) and our work.

ask is: are the optimality of slices a necessary condition for
the validity of maxSKSD-g (or -rg)? Remarkably, we show
that the answer is No with mild assumptions on the kernel
(Assumption 5-6 in appendix B).

As the sliced Stein discrepancy defined previously involves
a sup operator, making them difficult to analyze, we need
to define notations for their “sub-optimal” versions. For
example, maxSSD-g (Eq.4) involves a sup operator over
slices gr. We thus define SSD-g (Sgr ) as Eq.4 with a given
gr instead of the sup:

Sgr =
∑
r∈Or

sup
hrgr∈Fq

Eq[srp(x)hrgr (x
Tgr)+

rTgr∇xT grhrgr (x
Tgr)]

(7)

Following similar logic, we define the “sub-optimal” version
for each of the discrepancy mentioned in this section as table
1 and appendix A.

3. Relaxing constraints for the SKSD family
3.1. Is optimality necessary for validity?

As mentioned before, the discrepancy validity of max SKSD
requires the optimality of slice directions, which restricts its
application in practice. In the following, we show that these
restrictions can be much relaxed with mild assumptions on
the kernel. All proofs can be found in Appendix E.

The key idea is to use kernels such that the corresponding
term SKrgr is real analytic w.r.t. both r and gr, which is
detailed by Assumption 6 (Appendix B). A nice property
of any real analytic function is that, unless it is a constant
function, otherwise the set of its roots has zero Lebesgue
measure. This means the possible valid slices are almost

everywhere in RD, giving us huge freedom to choose slices
without worrying about violating validity.

Theorem 1 (Conditions for valid slices). Assuming assump-
tions 1-4 (density regularity), 5 (richness of kernel) and 6
(real analytic kernel) in Appendix B, let gr ∼ ηg for each
r ∼ ηr, where ηg , ηr are distributions on RD with a density,
then SKrgr (q, p) = 0 iff. p = q almost surely.

The above theorem tells us that a finite number of random
slices is enough to make SKrgr valid without the need of
using optimal slices (c.f. SKmaxrgr ). In practice, we often
consider r, gr ∈ SD−1 instead of RD. Fortunately, one can
easily transform arbitrary slices to SD−1 without violating
the validity. For any r, gr, we (i) add Gaussian noises to
them, and (2) re-normalize the noisy r, gr to unit vectors.
We refer to corollary 6.1 in appendix E.1 for details.

3.2. Relationship between SSD and SKSD

Theorem 1 allows us to use random slices. However, it is
still beneficial to find good ones in practice. Unfortunately,
SKrgr is not a suitable objective for finding good slice
directions. This is because, unlike the test function in a
general function space (hrgr ∈ Fq), the optimal kernel test
function (Eq[ξp,r,gr (x, ·)]) can not be easily analyzed for
finding good slices due to its restriction in RKHS.

Instead, we propose to use Sg (or Srgr ) as the optimization
objective. To justify Srgr as a good replacement for SKgr ,
we show that SKrgr approximates Srgr arbitrarily well if
the corresponding RKHS of the chosen kernel is dense in
continuous function space. Similar results for SKg ≈ Sg
can be derived accordingly as the only difference between
Sgr and Srgr is the summation over orthogonal basis Or.
However, Srgr still involves a sup operator over test func-
tions hrgr , which hinders further analysis. To deal with
this, we give an important proposition that are needed in
almost every theoretical claims we made. This proposition
characterises the optimal test functions for Srgr (or Sgr ).

Proposition 1 (Optimal test function given r, gr). Assume
assumptions 1-4 (density regularity) and given directions
r, gr. Assume an arbitrary orthogonal matrix Gr =
[a1, . . . ,aD]

T where ai ∈ SD×1 and ad = gr. Denote
x ∼ q and y = Grx which is also a random variable with
the induced distribution qGr . Then, the optimal test function
for Srgr is

h∗rgr
(
xTgr

)
∝ EqGr (y−d|yd)

[(
srp
(
G−1r y

)
− srq

(
G−1r y

))]
(8)

where yd = xTgr and y−d contains other y elements.

Intuitively, assumeGr is a rotation matrix. Then h∗rgr is the
conditional expected score difference between two rotated p
and q. This form is very similar to the optimal test function
for SD, which is just the score difference between the origi-
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Table 1. Notations for “sub-optimal” versions of SSD & SKSD.

Optimal form maxSSD-g (Smaxgr ) maxSSD-rg (Smaxrgr ) maxSKSD-g (SKmaxgr ) maxSKSD-rg (SKmaxrgr )

Modifications Change supgr Change supr,gr
to given Same as maxSSD-g. Same as maxSSD-rg

to given gr in Eq.4 r, gr in Eq.37 (App. C) in Eq.6 in Eq.41 (App. C)

“sub-optimum” SSD-g (Sgr ) SSD-rg (Srgr ) SKSD-g (SKgr ) SKSD-rg (SKrgr )

nal p, q. Knowing the optimal form of h∗rgr , we can show
SKrgr can be well approximated by Srgr .
Theorem 2 (SKrgr ≈ Srgr ). Assume assumptions 1-4
(density regularity) and 5 (richness of kernel). Given r
and gr, ∀ε > 0 there exists a constant C such that

0 ≤ Srgr − SKrgr < Cε .

As Srgr approximates SKrgr arbitrary well, the hope is
that good slices for Srgr also correspond to good slices for
SKrgr in practice. Therefore in the next section we focus
on analyzing Srgr instead to propose an efficient algorithm
for finding good slices.

4. Active slice direction g
Finding good slices involves alternating maximization of
r and gr. To simplify the analysis, we focus on good di-
rections gr given fixed r, e.g. the orthogonal basis r ∈ Or
for now. Finding good gr is achieved in two steps: (i)
Rewriting the problem of the maximizing Sgr w.r.t gr into
an equivalent minimization problem, called controlled ap-
proximation; (ii) Establish an upper-bound of the controlled
approximation objective such that its minimizer is analytic.
This derivation is based on an important inequality: Poincaré
inequality, which upper bounds the variances of a function
by its gradient magnitude. Therefore, we need Assump-
tions 7-8 (Appendix B) to make sure this inequality is valid.
We name the resulting gr that minimizes the upper bound
as active slices. All proofs can be found in appendix F.

4.1. Controlled Approximation

To start with, we need an upper bound for Sgr so that we can
transform the maximization of Sgr into the minimization of
their gap. Hence, we propose a generalization of SD (Eq.2)
called projected Stein discrepancy (PSD):

PSD(q, p;Or) =
∑
r∈Or

sup
fr∈Fq

Eq[srp(x)fr(x)+rT∇xfr(x)]

(9)
where fr : X ⊆ RD → R. SD is a special case of PSD by
settingOr as identity matrix I . In proposition 4 of appendix
F.1, we show that if Fq contains all bounded continuous
functions, then the optimal test function in PSD is

f∗r (x) ∝
(
srp(x)− srq(x)

)
. (10)

It can also be shown that PSD is equivalent to the Fisher
divergence, which has been extensively used in training en-
ergy based models (Song et al., 2020; Song & Ermon, 2019)
and fitting kernel exponential families (Sriperumbudur et al.,
2017; Sutherland et al., 2018; Wenliang et al., 2019).

We now prove that PSD upper-bounds Sgr , with the gap as
the expected square error between their optimal test func-
tions f∗r and h∗rgr (Proposition 1). Since PSD is constant
w.r.t. gr, maximization of Sgr is equivalent to a minimiza-
tion task, called controlled approximation.

Theorem 3 (Controlled Approximation). Assume assump-
tions 1-4 (density regularity), and the coefficient for the
optimal test functions to be 1 w.l.o.g., then PSD ≥ Sgr and

PSD− Sgr =
∑
r∈Or

Eq[(f∗r (x)− h∗rgr (xTgr))2], (11)

with f∗r and h∗rgr are optimal test functions for PSD and
Sgr defined in Eq.10 and Eq.8 respectively.

Intuitively, minimizing the above gap can be regarded as a
function approximation problem, where we want to approx-
imate a multivariate function f∗r : RD → R by a univariate
function h∗rgr : R→ R with optimal parameters gr.

4.2. Upper-bounding the error

Solving the controlled approximation task directly may be
difficult in practice. Instead, we propose an upper-bound
of the approximation error, such that this upper-bound’s
minimizer gr is analytic. The inspiration comes from the
active subspace method for dimensionality reduction (Con-
stantine et al., 2014; Zahm et al., 2020), therefore we name
the corresponding minimizers as active slices.

Theorem 4 (Error upper-bound and active slices gr).
Assume assumptions 2, 4 (density regularity) and 7-8
(Poincaré inequality conditions), we can upper bound the
inner part of the controlled approximation error (Eq.11) by

Eq
[(
f∗r (x)− h∗rgr

(
xTgr

))2] ≤ Csup tr
(
Gr\dHrG

T
r\d

)
,

(12)

Hr =

∫
q(x)∇xf∗r (x)∇xf

∗
r (x)T dx. (13)

Here Csup is the Poincaré constant defined in assumption 8
and Gr\d ∈ R(D−1)×D is an arbitrary orthogonal matrix
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Gr excluding the dth row gr. The orthogonal matrix has the
formGr = [a1, . . . ,aD]T where ai ∈ SD−1 and ad = gr.

The above upper-bound is minimized when the row space
of Gr\d is the span of the first D − 1 eigenvectors of Hr

(arranging eigenvalues in ascending order). One possible
choice for active slice gr is vD, where (λi,vi) is the eigen-
pair ofHr and λ1 ≤ λ2 ≤ . . . ≤ λD.

Intuitively, the active slices gr = vD are the directions
where the test function f∗r varies the most. Indeed, we
have vTDHrvD = Eq[||∇xf

∗
r (x)TvD||2] = λD, where the

eigenvalue λD measures the averaged gradient variation in
the direction defined by vD.

5. Active slice direction r
The dependence of active slice gr on r motivate us to con-
sider the possible choices of r. Although finite random
slices r are sufficient for obtaining a valid discrepancy, in
practice using sub-optimal r can result in weak discrimina-
tive power and poor active slices gr. We address this issue
by proposing an efficient algorithm to search for good r.
Again all the proofs can be found in appendix G.

5.1. PSD Maximization for searching r

Directly optimizing Srgr w.r.t. r is particularly difficult due
to the alternated updates of r and gr. To simplify the anal-
ysis, we start from the task of finding a single direction r.
Our key idea to sidestep such alternation is based on the
intuition that Srgr with active slices gr should well approxi-
mate PSDr (PSD with given r) from theorem 4. The inde-
pendence of PSDr to gr allows us to avoid the alternated
update and the accurate approximation validates the direct
usage of the resulting active slices in Srgr . Indeed, we will
prove that maximizing PSDr is equivalent to maximizing a
lower-bound for Srgr .

Assume we have two slices r1 and r2, with given gr1 , gr2 .
Then finding good r1 is equivalent to maximizing the dif-
ference Sr1,gr1 − Sr2,gr2 . The following proposition estab-
lishes a lower-bound for this difference.

Proposition 2 (Lower-bound for the Srgr gap). Assume the
conditions in theorem 4 are satisfied, then for any slices r1,
r2 and gr1 , gr2 , we have

Sr1,gr1 − Sr2,gr2 ≥ PSDr1 − PSDr2 − CsupΩ, (14)

where Csup is the Poincaré constant defined in assumption
8 and Ω =

∑D
i=1 ωi where {ωi}Di is the eigenvalue of

Eq[∇xf
∗(x)∇xf

∗(x)T ], f∗(x) = sp(x)− sq(x).

Proposition 2 justifies the maximization of PSDr1 w.r.t. r1
as a valid surrogate. But more importantly, this alternative

objective admits an analytic maximizer of r, which is then
used as the active slice direction:

Theorem 5 (Active slice r). Assuming assumptions 1-
4 (density regularity), then the maximum of the PSDr is
achieved at r∗ = vmax:

max
r∈SD−1

Eq
[
srp(x)f∗r (x) + rT∇xf

∗
r (x)

]
= λmax.

Here (λmax,vmax) is the largest eigenpair of the matrix S =
Eq
[
f∗(x)f∗(x)T

]
5.2. Constructing the orthogonal basis Or

Under certain scenarios, e.g. model learning, we want to
train the model to perform well in every directions instead
of a particular one. Thus, using a good orthogonal basis is
preferred over a single active slice r. Here gradient-based
optimization is less suited as it breaks the orthogonality
constraint. Also proposition 2 is less useful here as well, as
PSD is invariant to the choice of Or, i.e. PSD(q, p;Or1) =
PSD(q, p;Or2) and Or1 6= Or2 .

Inspired by the analysis of single active r, we propose to
use the eigendecomposition of S to obtain a good orthogo-
nal basis Or. Theoretically, this operation also corresponds
to a greedy algorithm, where in step i it searches for the
optimal direction ri that is orthogonal to {r<i} and maxi-
mizes PSDri (see Corollary 6.2 in appendix G.3). Although
there is no guarantee for finding the optimal Or due to its
myopic behavior, in practice this greedy algorithm at least
finds some good directions with high discriminative power
(eigenvectors with large eigenvalues).

6. Practical algorithm
The proposed active slice method is summarized in Al-
gorithm 1, which requires the intractable score difference
sp(x)− sq(x). Two types of approximations can be used.
The first approach applies gradient estimators (GE) to esti-
mate sq(x) from x samples. We use the Stein gradient esti-
mator (Li & Turner, 2017) for the GE approach, although
other estimators (Sriperumbudur et al., 2017; Sutherland
et al., 2018; Shi et al., 2018; Zhou et al., 2020) can also be
employed. The second method directly estimates the score
difference using a kernel-smoothed estimator (KE):

sp(y)− sq(y) ≈Ex∼q[(sp(x)− sq(x))k(x,y)]

=Ex∼q[sp(x)k(x,y) +∇xk(x,y)],
(15)

where the second expression comes from integration by part,
and it can be computed in practice. Figure 1 summarizes the
relationships between different SSD discrepancies and high-
lights our contributions. For GOF test specifically, we also
derive the asymptotic distribution and propose an practical
GOF algorithm in appendix D.
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Algorithm 1 Active slice algorithm
Input: Samples x ∼ q, density p, kernel k : X×X → R,
Gaussian noise γ, pruning factor m (optional)
Result: Õr,G
Estimate sp(x) − sq(x) using KE or GE with kernel k
and samples x.
if Pruning then

Top m eigenvectors of S to form Õr (Theorem 5)
else

Getting all eigenvectors of S to form Õr
end if
Add noise γ to Õr, then normalize. (Section 3.1)
for r ∈ Õr do
gr is the top 1 eigenvector ofHr (Theorem 4)
Add noise γ to gr then normalize (Section 3.1)
Concatenate gr toG

end for
Further optimize Õr, G with SKSD-g (SKgr ) using
gradient-based optimization (Optional)
Return: Õr,G

6.1. Computational cost

The overall complexity includes the cost for (1) finding
active slices (algorithm 1) (2) applying the downstream
test. For finding the active slices r, one important fact
is that we only need the m (m � D) most important r
(importance characterised by eigenvalues). Luckily, fast
eigenvalue-decomposition algorithm, e.g. randomized SVD
from Saibaba et al. (2021), requires O(m) matrix-vector
product. For g, from algorithm 1, we only need to solve
m eigenvalue-decomposition, each only cares about the
most important eigenvector. Therefore, O(m× 1) matrix-
vector product are needed. So the overall complexity for
finding slices is O(mD2), where D2 comes from matrix-
vector product. For gradient-based optimization (GO), the
complexity is O(l(D2 + Cgrad)) (l is optimization step and
Cgrad is the back-prop cost, D2 coms from evaluating SKgr

or SKrgr ). Our algorithm in general has lower training cost
as l� m and Cgrad can be expensive. For (2), our method
has O(mD) cost compared to O(D2) for GO. As m� D,
active slices have less complexity compared to pure GO
based method proposed in Gong et al. (2021). For memory
cost, our method costs O(mD) to store r, g whereas GO
uses O(D2). Overall, our method requires nearly an order
of magnitude less complexity in terms of computation and
memory consumption.

7. Experiments
GOF test aims to test the fitness of the model to the target
data. The test procedure roughly proceeds as: (1) Define
null hypothesis (model matches the data distribution) and

alternative hypothesis (model does not match the data distri-
bution); (2) Compute test statistic (e.g. KSD) and threshold
(e.g. bootstrap method); (3) Reject null hypothesis (statis-
tic > threshold) or not (statistic ≤ threshold). Refer to
appendix D for more details.

7.1. Benchmark GOF tests

We demonstrate the improved test power results (in terms
of null rejection rates) and significant speed-ups of the pro-
posed active slice algorithm on 3 benchmark tasks, which
have been extensively used for measuring GOF test perfor-
mances (Jitkrittum et al., 2017; Huggins & Mackey, 2018;
Chwialkowski et al., 2016; Gong et al., 2021). Here the
test statistic is based on SKSD-g (SKgr ) with fixed basis
Or = I . Two practical approaches are considered for com-
puting the active slice gr: (i) gradient estimation with the
Stein gradient estimator (SKSD-g+GE), and (ii) gradient es-
timation with the kernel-smoothed estimator (KE), plus fur-
ther gradient-based optimization (SKSD-g+KE+GO). For
reference, we include a version of the algorithm with ex-
act score difference (SKSD-g+Ex) as an ablation for the
gradient estimation approaches.

In comparison, we include the following strong baselines:
KSD with RBF kernel (Liu et al., 2016; Chwialkowski et al.,
2016), maximum mean discrepancy (MMD, Gretton et al.,
2012) with RBF kernel, random feature Stein discrepancy
with L1 IMQ kernel (L1-IMQ, Huggins & Mackey, 2018),
and the current state-of-the-art — maxSKSD-g with random
initialized gr followed by gradient optimization (SKSD-
g+GO, Gong et al., 2021). For all methods requiring GO or
active slices, we split the 1000 test samples from q into 800
test and 200 training data, where we run GO or active slice
method on the training set.

The 3 GOF test benchmarks, with details in appendix
H.1, are: (1) Laplace: p(x) = N (0, I), q(x) =∏D
d=1 Lap(xd|0, 1/

√
2); (2) Multivariate-t: p(x) =

N (0, 53I), q(x) is a fully factorized multivariate-t with 5
degrees of freedom, 0 mean and scale 1; (3) Diffusion:
p(x) = N (0, I), q(x) = N (0,Σ1) where in q(x) the
variance of 1st-dim is 0.3 and the rest is I .

The upper panels in Figure 2 show the test power re-
sults as the dimensions D increase. As expected, KSD
and MMD with RBF kernel suffer from the curse-of-
dimensionality. L1-IMQ performs relatively well in
Laplace and multivariate-t but still fails in diffusion. For
SKSD based approaches, SKSD-g+GO with 1000 training
epochs still exhibits a decreasing test power in Laplace and
multivariate-t. On the other hand, SKSD-g+KE+GO with
50 training epochs has nearly optimal performance. SKSD-
g+Ex and SKSD-g+GE achieve the true optimal rejection
rate without any GO. Specifically, Table 2 shows that the ac-
tive slice method achieves significant computational savings
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Figure 2. (Upper panel): The null rejection rate w.r.t. different dimensional benchmark problems. SKSD-g+Ex and SKSD-g+GE coincide
at the optimal rejection rate (Lower panel): Null rejection rate with different number of gradient optimization epochs.

with 14x-80x speed-up over SKSD-g+GO.

For approaches that require gradient optimization, the lower
panels in Figure 2 show the test power as the number of
training epochs increases. SKSD-g+GO with random slice
initialization requires a huge number of gradient updates
to obtain reasonable test power, and 1000 epochs achieves
the best balance between run-time and performance. On
the other hand, SKSD-g+KE+GO with active slice achieves
significant speed-ups with near-optimal test power using
around 50 epochs on Laplace and Multivariate-t. Remark-
ably, on Diffusion test, gr initialized by the active slices
achieves near-optimal results already, so that the later gradi-
ent refinements are not required.

7.2. RBM GOF test

Following Gong et al. (2021), we conduct a more
complex GOF test using restrict Boltzman machines
(RBMs, (Hinton & Salakhutdinov, 2006; Welling
et al.)). Here the p distribution is an RBM: p(x) =
1
Z exp

(
x>Bh + b>x + c>x− 1

2‖x‖2
)
, where x ∈ RD

and h ∈ {±1}dh denotes the hidden variables. The q dis-
tribution is also an RBM with the same b, c parameters as
p but a different B matrix perturbed by different levels of
Gaussian noise. We use D = 50 and dh = 40, and block
Gibbs sampler with 2000 burn-in steps. The test statistics
for all the approaches are computed on a test set containing
1000 samples from q.

The test statistic is constructed using SKSD-rg (SKrgr )
with r, gr obtained either by gradient-based optimization
(SKSD-rg+GO) or the active slice algorithms (+KE, +GE

and +Ex) without the gradient refinements. Specifically,
SKSD-rg+GO runs 50 training epochs with r and gr initial-
ized to I . For the active slice methods, we also prune away
most slices and only keep the top-3 most important r slices.

The left panel of Figure 3 shows that SKSD-rg+KE achieves
the best null rejection rates among all baselines, except
for SKSD-rg+Ex whose performance is expected to upper-
bound all other active slice methods. This shows the po-
tential of our approach with an accurate score difference
estimator. Although SKSD-rg+GO performs reasonably
well, its run-time is 53x longer than SKSD-rg+KE as shown
in Table 4. Interestingly, SKSD-rg+GE performs worse than
KSD due to the significant under-estimation of the mag-
nitude of sq(x). Therefore, we omit this approach in the
following ablation studies.

Ablation studies The first ablation study, with results
shown in the middle panel in Figure 3, considers pruning the
active slices at different pruning levels, where the horizontal
axis indicates the number of r slices used to construct the
test statistic. We observe that the null rejection rates of ac-
tive slice methods peak with pruning level 3, indicating their
ability to select the most important directions. Their perfor-
mances decrease when more r are considered since, in prac-
tice, those less important directions introduce extra noise to
the test statistic. On the other hand, SKSD-rg+GO shows
no pruning abilities due to its sensitivity to slice initializa-
tion. Remarkably, the final performance of SKSD-rg+GO
without pruning is still worse than SKSD-rg+KE with prun-
ing, showing the importance of finding ’good’ instead of
many ’average-quality’ directions. Another advantage of
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Table 2. Test power for 100 dimensional benchmarks and time consumption. The run-time for SKSD-g+KE+GO include both the active
slice computation and the later gradient-based refinement steps. NRR stands for null rejection rate.

Laplace Multi-t Diffusion
Method NRR sec/trial Speed-up NRR sec/trial Speed-up NRR sec/trial Speed-up
SKSD-g+Ex 1 0.38 103x 1 0.49 90x 1 0.34 102x
SKSD-g+GO 0.58 39.39 1x 0.67 44.24 1x 0.96 34.73 1x
SKSD-g+KE+GO 0.99 2.72 14x 0.97 2.38 19x 1 0.43 81x
SKSD-g+GE 1 0.66 60x 1 0.67 66x 1 0.78 44x
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Figure 3. (Left): The GOF test power of each method with different level of noise perturbations (Mid): The effect of different pruning
level towards the test power (Right): The effect of gradient based optimization epoch to the test power. 3 and 50 indicates the pruning
level. KE+GO or Ex+GO means active slices with further gradient refinement steps.

pruning is to reduce the computational and memory costs
from O(MD) to O(mD), where m and M are the number
of pruned r and slice initializations, respectively (m�M ).

The second ablation study investigates the quality of the ob-
tained slices either by gradient-based optimization or by the
active slice approaches. Results are shown in the right panel
of Figure 3, where the horizontal axis indicates the number
of training epochs, and the numbers annotated in the legend
(3 and 50) indicate the pruning. We observe that the null
rejection rate of SKSD-rg+KE+GO starts to improve only
after 100 epochs, meaning that short run of GO refinements
are redundant due to the good quality of active slices. The
performance decrease of SKSD-rg+Ex+GO is due to the
over-fitting of GO to the training set. The null rejection rate
of SKSD-rg+GO gradually increases with larger training
epochs as expected. However, even after 100 epochs, the
test power is still lower than active slices without any GO.

In appendix H.2, another ablation study also shows the
advantages of good r compared to using random slices.

7.3. Model learning: ICA

We evaluate the performance of the active slice methods
in model learning by training an independent component
analysis (ICA) model, which has been extensively used
to evaluate algorithms for training energy-based models
(Gutmann & Hyvärinen, 2010; Hyvärinen & Dayan, 2005;
Ceylan & Gutmann, 2018; Grathwohl et al., 2020). ICA
follows a simple generative process: it first samples a D-

dimensional random variable z from a non-Gaussian pz (we
use multivariate-t), then transforms z to x = Wz with a
non-singular matrix W ∈ RD×D. The log-likelihood is
log p(x) = log pz(W

−1x) + C where C can be ignored
if trained by minimizing Stein discrepancies. We follow
Grathwohl et al. (2020); Gong et al. (2021) to sample 20000
training and 5000 test datapoints from a randomly initial-
ized ICA model. The baselines considered include KSD,
SKSD-g+GO, SKSD-rg+GO and the state-of-the-art learned
Stein discrepancy (LSD) (Grathwohl et al., 2020), where
the test function is parametrized by a neural network. For
active slice approaches, one optimization epoch include the
following two steps: (i) finding active slices for both orthog-
onal basis Or and gr at the beginning of the epoch, and (ii)
refining the gr directions and theW parameters in an adver-
sarial manner with Or fixed. For SKSD-g+GO, we fix basis
Or = I and only update gr with GO. We refer to appendix
H.3 for details on the setup and training procedure. We see
from Figure 4 that SKSD-g+KE+GO converges significantly
faster at 150 dimensions than all baselines; moreover, it has
much better NLL (Table 3). We argue this performance gain
is due to the use of the better orthogonal basis Or found by
the greedy algorithm, showing the advantages of better Or
in model learning. On the other hand, the importance of
orthogonality in Or is indicated by the poor performance of
SKSD-rg+GO, as gradient updates for r violate the orthog-
onality constraint. The goal of learning is to train the model
to match the data distribution along every slicing direction,
and the orthogonality constraint can help prevent the model
from ignoring important slicing directions.
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Table 3. The test NLL of different dimensional ICA model
Dimensions SKSD-g+KE+GO SKSD-g+Ex+GO SKSD-g+GO SKSD-rg+GO LSD KSD
10 7.93±0.31 7.95±0.31 8.06±0.33 10.03±0.61 7.42±0.31 7.82±0.31
80 7.88±0.77 15.17±0.97 19.03±1.06 62.53±0.92 6.26±1.49 80.75±1.22
100 6.93±1.36 21.50±1.41 22.22±1.08 75.28±1.63 17.55±1.60 110.78±1.19
150 11.67±2.46 27.37±3.04 21.63±3.27 107.25±1.93 32.15±3.75 180.47±1.91

Table 4. Test power and time consumption at 0.01 perturbation
Test Power Opt. Time Speed-up

SKSD-rg+Ex 0.95 0.04s 254x
SKSD-rg+KE 0.67 0.19s 53x
SKSD-rg+GO 0.45 10.15s 1x

0 2000 4000 6000 8000 10000 12000 14000
Itertations

101

102

N
LL

ICA Training Curve: 150 dimensions

SKSD-g+KE+GO
SKSD-g+Ex+GO
LSD
SKSD-g+GO
SKSD-rg+GO
KSD

Figure 4. Training Curve of ICA model, where y-axes indicates
the test NLL.

Interestingly, SKSD-g+Ex+GO performs worse than
+KE+GO. We hypothesize that this is because the +Ex+GO
approach often focuses on directions with large discrimina-
tive power but with less useful learning signal (see appendix
H.3). LSD performs well in low dimensional problems.
However, in high dimensional learning tasks it spends too
much time on finding good test functions, which slows down
the convergence significantly.

8. Related Work
Active subspace method (ASM): ASM is initially pro-
posed as a dimensionality reduction method, which con-
structs a subspace with low-rank projectors (Constantine
et al., 2014) according to the subspace Poincaré inequal-
ity. Zahm et al. (2020) showed promising results on the
application of ASM to approximating multivariate func-
tions with lower dimensional ones. However, they only
considered the subspace Poincaré inequality under Gaussian
measures, and a generalization to a broader family of fam-
lity is proposed by Parente et al. (2020). Another closely
related approach uses logarithmic Sobolev inequality in-

stead to construct the active subspace (Zahm et al., 2018),
which can be interpreted as finding the optimal subspace
to minimize a KL-divergence. It has shown successes in
Bayesian inverse problems and particle inference (Chen
et al., 2019). However, as the ASM method is based on the
eigen-decomposition of the sensitivity matrix, there is a po-
tential limitation when the sensitivity matrix is estimated by
Monte-Carlo method. We prove this limitation in appendix
I.

Sliced discrepancies: Existing examples of sliced dis-
crepancies can be roughly divided into two groups. Most of
them belong to the first group, and they use the slicing idea
to improve computational efficiency. For example, sliced
Wasserstein distance projects distributions onto one dimen-
sional slices so that the corresponding distance has an ana-
lytic form (Kolouri et al., 2019; Deshpande et al., 2019).
Sliced score matching uses Hutchinson’s trick to avoid
the expensive computation of the Hessian matrix (Song
et al., 2020). The second group focuses on the curse-of-
dimensionality issue which remains to be addressed. To the
best of our knowledge, existing integral probability metrics
in this category include SSD (Gong et al., 2021) and ker-
nelized complete conditional Stein discrepancy (KCC-SD,
Singhal et al., 2019). The former is more general and re-
quires less restrictive assumptions, while the latter requires
samples from complete conditional distributions. Recent
work has also investigated the statistical properties of sliced
discrepancies (Nadjahi et al., 2020).

9. Conclusion
We have proposed the active slice method as a practical solu-
tion for searching good slices for SKSD. We first prove that
the validity of the kernelized discrepancy only requires finite
number of random slices instead of optimal ones, giving us
huge freedom to select slice directions. Then by analyzing
the approximation quality of SSD to SKSD, we proposed
to find active slices by optimizing surrogate optimization
tasks. Experiments on high-dimensional GOF tests and ICA
training showed the active slice method performed the best
across a number of competitive baselines in terms of both
test performance and run-time. Future research directions in-
clude better score difference estimation methods, non-linear
generalizations of slice projections, and the application of
the active slice method to other discrepancies.
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