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Abstract
Processing point cloud data is an important com-
ponent of many real-world systems. As such, a
wide variety of point-based approaches have been
proposed, reporting steady benchmark improve-
ments over time. We study the key ingredients
of this progress and uncover two critical results.
First, we find that auxiliary factors like differ-
ent evaluation schemes, data augmentation strate-
gies, and loss functions, which are independent
of the model architecture, make a large differ-
ence in performance. The differences are large
enough that they obscure the effect of architec-
ture. When these factors are controlled for, Point-
Net++, a relatively older network, performs com-
petitively with recent methods. Second, a very
simple projection-based method, which we re-
fer to as SimpleView, performs surprisingly well.
It achieves on par or better results than sophis-
ticated state-of-the-art methods on ModelNet40
while being half the size of PointNet++. It also
outperforms state-of-the-art methods on ScanOb-
jectNN, a real-world point cloud benchmark, and
demonstrates better cross-dataset generalization.
Code is available at https://github.com/
princeton-vl/SimpleView.

1. Introduction
Processing 3D point cloud data accurately is crucial in
many applications including autonomous driving (Navarro-
Serment et al., 2010; Kidono et al., 2011), robotics (Rusu
et al., 2009; Correll et al., 2016; Mousavian et al., 2019) and
scene understanding (Aldoma et al., 2012). In these settings,
sensors like LIDAR produce unordered sets of points that
correspond to object surfaces. Correctly classifying objects
from this data is important for 3D scene understanding (Uy
et al., 2019). While classical approaches for this problem
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Figure 1. Performance of different models on ModelNet40. Those
using > 1024 points or normals are marked with star. We re-
evaluate top-performing models across times based on reported
results which include PointNet, PointNet++, DGCNN and RSCNN.
Green points shows performance when the models are evaluated
under the same protocol. Since the code for multi-scale version
of RSCNN (RSCNN-MS) is not released, we are using the single-
scale version (RSCNN-SS) in our evaluation.

have relied on hand-crafted features (Arras et al., 2007),
recent efforts have focused on the design of deep neural
networks (DNNs) to learn features directly from raw point
cloud data (Qi et al., 2017a). Similar to image classifica-
tion (Yalniz et al., 2019; Dosovitskiy et al., 2020; Szegedy
et al., 2016), deep learning-based methods have proven ef-
fective in point cloud classification.

The most widely adopted benchmark for comparing meth-
ods for point cloud classification has been ModelNet40 (Wu
et al., 2015b). The accuracy on ModelNet40 has steadily
improved over the last few years from 89.2% by Point-
Net (Qi et al., 2017a) to 93.6% by RSCNN (Liu et al.,
2019c) (Fig. 1). This progress is commonly perceived to
be a result of better designs of network architectures. How-
ever, after performing a careful analysis of recent works
we find two surprising results. First, we find that auxiliary
factors including differing evaluation schemes, data aug-
mentation strategies, and loss functions affect performance
to such a degree that it can be difficult to disentangle im-
provements due to the network architecture. Second, we
find that a very simple projection-based architecture works

https://github.com/princeton-vl/SimpleView
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Figure 2. The SimpleView Architecture. The depth images are
colored only for illustration. SimpleView takes in single channel
depth images as input.

surprisingly well, outperforming state-of-the-art point-based
architectures.

In deep learning, as results improve on a benchmark, atten-
tion is generally focused on the novel architectures used
to achieve those results. However, there are many factors
beyond architecture design that influence performance in-
cluding data augmentation and evaluation procedure. We
refer to these additional factors as a method’s protocol.
A protocol defines all details orthogonal to the network
architecture that can be controlled to compare differing ar-
chitectures. Note that it is possible for some specific form of
loss or data augmentation to be tied to a specific architecture
and inapplicable to other architectures. In these cases, it
would be inappropriate to treat them as part of the protocol.
However, for all the methods we consider in this paper, their
losses and augmentation schemes are fully compatible with
each other and can be considered independently.

We do experiments to study the effect of protocol and dis-
cover that it accounts for a large difference in performance,
so large as to obscure the contribution of a novel architecture.
For example, the performance of the PointNet++ architec-
ture (Qi et al., 2017b) jumps from 90.0±0.3 to 93.3±0.3,
when switching from its original protocol to RSCNN’s pro-
tocol (Liu et al., 2019c). We further find that the protocols
that lead to the strongest performance rely on feedback
from the test set, which differs from conventional evaluation
setups. We re-evaluate prior architectures using the best aug-
mentation and loss functions, while not using any feedback
from the test set. We find that by taking protocol into ac-
count, the PointNet++ architecture performs competitively
with more recent ones in various settings.

In addition to the surprising importance of protocol, in re-
viewing past approaches, another surprising discovery is that
a very simple projection based baseline works very well.

One needs to simply project the points to depth maps along
the orthogonal views, pass them through a light-weight
CNN and fuse the features. We refer to this baseline as
SimpleView.

Compared to previous projection-based method (Roveri
et al., 2018; Sarkar et al., 2018) for point-cloud classifi-
cation, SimpleView is very simple. Prior methods have
developed special modules for view selection, rendering,
and feature merging, as well as use larger CNN backbones
that are pretrained on ImageNet (refer to Sec. 2 for more
details). In contrast, SimpleView has no such special oper-
ations, and only requires simple point projections, a much
smaller CNN backbone, and no ImageNet pretraining.

The discovery of SimpleView is surprising because recent
state-of-the-art results have all been achieved by point-based
architectures of increasing sophistication. In recent litera-
ture, it is often assumed that point-based methods are the
superior choice for point-cloud processing as they “do not
introduce explicit information loss” (Guo et al., 2020). Prior
work has stated that “convolution operation of these meth-
ods lacks the ability to capture nonlocally geometric fea-
tures” (Yan et al., 2020), that a projection-base method
“often demands a huge number of views for decent per-
formance” (Liu et al., 2019c), and that projection-based
methods often “fine-tune a pre-trained image-based archi-
tecture for accurate recognition” (Liu et al., 2019c). It is
thus surprising that a projection-based method could achieve
state-of-the-art results with a simple architecture, only a few
views, and no pretraining.

On ModelNet40, SimpleView performs on par or better than
more sophisticated state-of-the-art networks across various
protocols, which includes the ones used by prior methods
(Table. 2) as well as our protocol (Table. 4). At the same
time, SimpleView outperforms state-of-the-art architectures
on ScanObjectNN (Uy et al., 2019), a real-world dataset
where point clouds are noisy (background points, occlusions,
holes in objects) and are not axis-aligned. SimpleView also
demonstrates better cross-dataset generalization than prior
works. Furthermore, SimpleView uses less parameters than
state-of-the-art networks (Table. 4).

Note that we are not proposing a new architecture or method,
but simply evaluating a simple and strong projection-based
baseline for point-cloud classification that is largely ignored
in the literature. We do not claim any novelty in the design
of SimpleView because all of its components have appeared
in the literature. Our contribution is showing that such a
simple baseline works surprisingly well, which is a result
absent in existing literature.

It is worth noting that one might think that projection-based
methods are not directly comparable with point-based meth-
ods because projection-based methods may have the full
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mesh as input, as opposed to just a point cloud. While this
is true for existing results in the literature, it is not the case
with SimpleView, whose input is the exact same point cloud
given to a point-based method. In other words, SimpleView
is directly comparable to a point-based method because they
solve the exact same task.

In summary, our contributions are:

• We show that training and evaluation factors independent
of network architecture have a large impact on point-
cloud classification performance. With these factors con-
trolled for, PointNet++ performs as well as more recent
architectures.

• We demonstrate how SimpleView, a very simple projec-
tion based baseline performs surprisingly well on point-
cloud classification. It performs on par with or better
than prior networks on ModelNet40 while using fewer pa-
rameters. It also outperforms state-of-the-art methods on
real-world point-cloud classification and achieves better
cross-dataset generalization.

2. Related Work
Point-Based Methods for Point-Cloud Analysis: A broad
class of DNNs have emerged to process 3D points di-
rectly (Simonovsky & Komodakis, 2017; Zaheer et al., 2017;
Klokov & Lempitsky, 2017; Xu et al., 2018; Atzmon et al.,
2018; Wang et al., 2018a; Li et al., 2018a; Groh et al., 2018;
Ben-Shabat et al., 2018; Xie et al., 2018; Li et al., 2018b; Liu
et al., 2019a; Thomas et al., 2019; Komarichev et al., 2019;
Liu et al., 2019b; Yan et al., 2020; Su et al., 2018; Zhang
et al., 2019; Liu et al., 2019a; Atzmon et al., 2018). Point-
Net (Qi et al., 2017a) proposed one of the first strategies,
where features are updated for each point with MLP layers,
and aggregated with global max pooling. However, no local
comparisons are performed in PointNet, which motivates
PointNet++(Qi et al., 2017b). PointNet++ breaks subsets
of points into local regions that are processed first. More
explicit modeling of the spatial relations between points
is performed with more recent methods (Li et al., 2018b;
Liu et al., 2019c; Wu et al., 2019). For example, Point-
Conv learns functions to define continuous 3D convolutions
that can be applied to arbitrary sets of points in a neighbor-
hood (Wu et al., 2019). RSCNN uses MLPs conditioned on
the spatial relationship of two points to update and aggre-
gate features around an individual sampled point (Liu et al.,
2019c). There exist many variations to these methods, but
the emerging trend is an increase in sophistication.

Projection-Based Methods for Point-Cloud Classifica-
tion: Projection-based methods for point cloud classifica-
tion have been proposed in the literature. Notably, (Roveri
et al., 2018) learn to predict viewing angles and classify
images in an end-to-end differentiable way. They use the
ResNet50 model, pretrained on ImageNet as their backbone

and a depth-image generation pipeline. (Sarkar et al., 2018)
propose a special multi-height rendering and feature merg-
ing scheme, and use a larger backbone network pretrained
on ImageNet. (Ahmed et al., 2019) manually define impor-
tant views for each object category, create binary edge maps,
and train an ensemble of PointNet++ and CNN. However,
numbers in (Ahmed et al., 2019) are not directly compara-
ble to other approaches as there is a manual alignment of
objects in the test set which is different from the standard
ModelNet40 test set. This was confirmed with the authors.
It is worth noting that even though prior work has shown
sophisticated operations to be useful for achieving good
results, we find that when controlling for method protocols,
strong performance can be achieved with fixed orthogonal
views, a smaller network, no ImageNet pretraining, and
simpler rendering of points.

Projection-Based Methods for Other Point-Cloud Anal-
ysis Tasks: There is a rich literature for using projection-
based methods on various point-cloud analysis problems
like segmentation (Ladickỳ et al., 2010; Tighe & Lazeb-
nik, 2010; Riemenschneider et al., 2014; Qin et al., 2018;
Dai & Nießner, 2018; Kalogerakis et al., 2017; Tatarchenko
et al., 2018), reconstruction (Pittaluga et al., 2019) and ren-
dering (Aliev et al., 2019). Notably, (Boulch et al., 2017)
use point cloud density to create scene meshes, which are
then put into a mesh renderer to generate many image views
at different scales. (Lawin et al., 2017) render a scene
point cloud from 120 views for different modalities like
color, depth, and surface normal. Information from multi-
ple modalities is then fused to generate point-wise predic-
tions. For a detailed survey of various projection approaches
on different point-cloud processing tasks, we encourage
readers to check the recent survey paper by (Guo et al.,
2020). In this work, SimpleView serves as a stripped-down
projection-based baseline for point-cloud classification that
uses a few orthogonal views and simple point projections.
3D shape Analysis using Rendered Images and Voxels:
Many works use images rendered from object meshes for
3D shape analysis (Maturana & Scherer, 2015; Wu et al.,
2015b; Yu et al., 2018; Guo et al., 2016; Shi et al., 2015;
Hackel et al., 2017; Song & Xiao, 2016; 2014; Huang &
You, 2016; Tchapmi et al., 2017). MVCNN exemplifies
this strategy by applying a shared CNN to many rendered
views and max-pooling to aggregate features (Su et al.,
2015). Subsequent approaches include RotationNet which
trains the network to also predict the viewpoint for each im-
age (Kanezaki et al., 2018), GVCNN which groups features
from subsets of views together before aggregating into a
final prediction (Feng et al., 2018), and hypergraph methods
that consider the correlation across training samples (Zhang
et al., 2018; Feng et al., 2019). One notable exception is (Qi
et al., 2016), who use a multi-resolution variant of MVCNN,
but instead of object meshes, use a voxelized version of the
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Table 1. Summary of various protocols.

Protocol Data Augmentation Model Selection Loss Ensemble Training Points

PointNet++ jitter, random rotation, final model cross-entropy Rotation Vote fixed
random scaling and trans.

DGCNN random scaling and trans. best test model smooth-loss No vote fixed
RSCNN random scaling and trans. best test model cross-entropy Repeated Scaling Vote resampled
SimpleView random scaling and trans. final model smooth-loss No vote fixed

object for rendering. In contrast to the prior view-based
methods that use object meshes with point connectivity in-
formation, and render images using basic shading and/or
depth; SimpleView takes as input raw point clouds.

Another class of methods is voxel-based methods that con-
vert points to a fixed 3D grid instead, and use 3D CNNs (Qi
et al., 2016; Wu et al., 2015a; Maturana & Scherer, 2015).
Given the added dimension, such methods are usually re-
stricted to a much lower resolution to represent objects.
Though some strategies such as octrees have been used to
address those limitations (Wang et al., 2017), the advan-
tages to processing 3D data directly in this manner do not
yet appear to outweigh the additional overhead introduced.

3. Method Overview
3.1. Variations in Existing Protocols

We analyze the key ingredients in the progress in point-cloud
classification. Critical to our study is controlling for factors
which are independent of network architecture. We refer to
the factors as a method’s protocol. A protocol used by
one method can be transferred to another. For our study, we
analyze a subset of the highest performing methods over the
past few years. This choice was further based on availabil-
ity and usability of official source-code. Specifically, we
choose PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,
2017b), DGCNN (Wang et al., 2018b) and RSCNN (Liu
et al., 2019c). Note that we also do direct comparisons to
networks apart from the ones mentioned here (Table 8).

For our purposes, we do not consider any variations in input,
namely the use of surface normals or more than 1024 points.
Using normals or more points have been shown to improve
performance in the literature. Our objective is to study
factors that are not commonly perceived as a major source
of performance increase. So we scope our analysis to the
most widely adopted input scheme which uses 1024 points
with only x, y, z coordinates.

Data Augmentation: Various data augmentation
strategies like jittering, random rotation
along y-axis, random scaling and random
translation. Different methods use different combi-
nations of these augmentations. PointNet and PointNet++

use all the above augmentations. However, as objects in
ModelNet40 are aligned, random rotation along
y-axis adversely affects the performance of a model.
Hence recent methods, including RSCNN and DGCNN, do
not use it. They use only random translation and
random scaling. Some methods including PointCNN
make a distinction between whether or not random
rotation along y-axis is used, but it is not a
common practice.

Input Points: PointNet and PointNet++ use a fixed set of
1024 points per object to train the network. We refer to it
as the fixed points strategy. RSCNN and PointCNN
randomly sample points during each epoch, effectively ex-
posing the model to more than 1024 points per object during
the training process. We refer to this as the resampled
points strategy.

Loss Function: cross-entropy (CE) is used by most
of the methods. However, DGCNN uses smooth-loss,
where the ground-truth labels are smoothed out before cal-
culating cross-entropy. We observe that smooth-loss
improves the performance of all network architectures.

Selecting Model for Testing: PointNet and PointNet++ use
the final converged model to evaluate on the test set. Since
the number of epochs is a hyper-parameter that depends on
factors like data, model, optimizer, and loss, in our exper-
iments, we create a validation set from the training set to
tune the number of epochs. We then retrain the model with
the complete training set to the tuned number of epochs.
We refer to this strategy as final model selection.
We find that some methods including DGCNN and RSCNN
evaluate the model on the test set after every epoch and use
the best test performance as the final performance. We refer
to this strategy as best test model selection.

Ensemble Scheme: Some methods use an ensemble to fur-
ther improve the performance. PointNet and PointNet++
apply the final network to multiple rotated and shuffled
versions of the point cloud, and average the predictions
to make the final prediction. We refer to this strategy as
Rotation Vote. The shuffling operation induces ran-
domness in prediction for PointNet++ and RSCNN as they
are not strictly invariant to the order of the points (Sec. 3.3
in (Qi et al., 2017b)). Hence, while evaluating Rotation
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Table 2. Performance of various architectures on ModelNet40. Protocol affects performance by a large amount. SimpleView performs on
par or better than prior architectures across protocols.

Protocol→ PointNet++ RSCNN DGCNN

Architecture ↓ no Vote Vote no Vote Vote CE Smooth Smooth
(Best Run)

PointNet 89.0 ± 0.2 89.1 ± 0.2 90.0 ± 0.3 90.1 ± 0.2 90.1 ± 0.2 90.5 ± 0.1 90.7
PointNet++ 89.8 ± 0.2 90.0 ± 0.3 92.7 ± 0.1 93.3 ± 0.3 92.6 ± 0.2 93.1 ± 0.2 93.3
DGCNN 90.0 ± 0.4 90.5 ± 0.4 92.2 ± 0.1 92.8 ± 0.5 91.9 ± 0.2 92.7 ± 0.1 92.9
RSCNN 89.4 ± 0.1 90.2 ± 0.2 92.1 ± 0.1 92.5 ± 0.2 91.9 ± 0.2 92.5 ± 0.1 92.6
SimpleView 90.7 ± 0.3 91.0 ± 0.2 92.9 ± 0.2 93.2 ± 0.1 93.1 ± 0.1 93.6 ± 0.3 93.9

Table 3. DGCNN augmentation, best test model-selection and smooth loss improve the performance of all architectures.

Data Augmentation Model Selection Loss Architecture

PN++ DGCNN Final Best Test C.E. Smooth PointNet PN++ DGCNN RSCNN

X X X 89.7±0.3 91.0±0.3 90.5±0.2 90.4±0.3
X X X 89.0±0.2 89.8±0.2 90.0±0.4 89.4±0.1

X X X 89.1±0.2 92.1±0.1 91.1±0.3 91.1±0.3
X X X 89.2±0.9 92.7±0.1 91.9±0.3 91.7±0.3

Vote, we do the inference 10 times per run for PointNet++
and RSCNN, and report mean and standard deviation. Sim-
pleView and PointNet are invariant to the order of the points
and hence are not affected by shuffling. Some methods, in-
cluding RSCNN and DensePoint, create multiple randomly
scaled and randomly sampled versions of a test object. They
then evaluate the final network on these multiple versions
of the object and average the prediction. Since the scaling is
random, it makes the test set performance random as well.
RSCNN and DensePoint repeat this procedure 300 times on
the test set and report the best accuracy. We refer to it as
Repeated Scaling Vote. DGCNN does not use any
ensemble.

Table 1 summarizes the PointNet++, DGCNN and RSCNN
protocols. Besides these three protocols, we also in-
clude variants of these protocols in table 2 and ta-
ble 8, such as PointNet++ no Vote (i.e. PointNet++
but without the Rotation Vote), DGCNN CE (i.e.
DGCNN but with CE loss intead of smooth loss),
DGCNN CE Final (i.e. DGCNN CE but with final
model selection instead of best test model
selection) and RSCNN no Vote (i.e. RSCNN but without
the Rotation Vote). These protocols represent proto-
typical settings and have been used with slight modifications
in many other prior works.

For example, DeepSets (Zaheer et al., 2017) used the Point-
Net++ no Vote protocol without jittering and translation;
SO-Net (Li et al., 2018a) used the DGCNN CE protocol
with jittering and random scaling instead of random scaling
and translation; 3DmFV (Ben-Shabat et al., 2018) used the
DGCNN CE protocol with additional jittering; PCNN (Atz-

mon et al., 2018) used the DGCNN CE Final protcol1;
PointCNN (Li et al., 2018b) used the DGCNN CE protocol
with randomly sampled points and small (10◦) rotation aug-
mentation; DensePoint (Liu et al., 2019b) used the RSCNN
protocol; PointASL (Yan et al., 2020) used the DGCNN CE
protocol but with additional point jittering augmentation
and voting.

Our Protocol: Based on our findings, we define our
SimpleView protocol, which uses the best augmentation
and loss functions while not using any information from
the test set. Table 3 shows that DGCNN’s augmenta-
tion (i.e random translation and scaling) and
smooth-loss improve performance of all prior networks,
so we use them in the SimpleView protocol. Further, sim-
ilar to PointNet, PointNet++ and DGCNN, we use the
fixed dataset of 1024 points instead of re-sampling different
points at each epoch. Re-sampling points for each epoch
changes (increases) the training dataset. Hence to keep
the training dataset same as very initial works (PointNet
and PointNet++) that established the point cloud classifi-
cation, we used fixed set of 1024 points. We avoid any
feedback from the test set and use the final model
selection, where we first tune the number of epochs
on the validation set then retrain the model on the entire
train set. Lastly, similar to DGCNN, we do not use ensem-
ble as it is more standard in Machine Learning to compare
models without ensemble.

1It is unclear from code if the best test or final model selection
is used. We assume final model selection to err on the side of
caution.
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Table 4. Performance of various architectures on ModelNet40
when using the best data-augmentation and loss function; and
not using any feedback from test set. SimpleView outperforms
prior architectures, while having fewest parameters and compara-
ble inference time.

Acc. Class Para. Time
Architecture ↓ Acc. (M) (ms)

PointNet 89.2 ± 0.9 85.1 ± 0.6 3.5 3.0
PointNet++ 92.7 ± 0.1 90.0 ± 0.3 1.7 20.7
DGCNN 91.9 ± 0.3 89.1 ± 0.3 1.8 7.3
RSCNN 91.7 ± 0.3 88.5 ± 0.4 1.3 4.3
SimpleView 93.0 ± 0.4 90.5 ± 0.8 0.8 5.0

Table 5. Performance of various architectures on ScanObjectNN,
and cross-dataset generalization. SimpleView achieves state-of-
the-art results and shows better cross dataset generalization. Num-
bers for prior works are from (Uy et al., 2019).

TR: SONN TR: MN40 TR: SONN
Architecture ↓ TE: SONN TE: SONN TE: MN40

3DmFV (Shabat et al.) 63.0 24.9 51.5
PointNet (Qi et al.) 68.2 31.1 50.9
SpiderCNN (Xu et al.) 73.7 30.9 46.6
PointNet++ (Qi et al.) 77.9 32.0 47.4
DGCNN (Wang et al.) 78.1 36.8 54.7
PointCNN (Li et al.) 78.5 24.6 49.2
SimpleView 79.5±0.5 40.5±1.4 57.9±2.1

3.2. SimpleView

Given a set of points SimpleView, projects them onto the
six orthogonal planes to create sparse depth images. It
then extracts features from the depth images using a CNN
and fuses, which is then used to classify the point-cloud as
shown in Fig. 2.

Generating Depth Images from Point Cloud: Let
(x, y, z) be the coordinates of a point in the point cloud
with respect to the camera. We apply perspective projec-
tion to get the 2D coordinate (x̃ = x/z, ỹ = y/z) of p
at depth z. We also do ablations with orthographic projec-
tion and found perspective projection to work slightly better
(Table. 6). Since coordinates on image plane have to be
discrete, we use (dx̃e, dỹe) to be the final coordinate of p
on the image plane. Multiple points may be projected to the
same discrete location on the image plane. To produce depth
value at an image location, we do ablations on two choices,
one the minimum depth of all points, and other weighted
average depth with more weight ( 1z ) given to closer points
(Table. 6). Empirically, we find both perform similar with
the later performing slightly better. This could be because
of reduction in noise due to the averaging of nearby pixels
on the surface. The depth images are of resolution 128 X
128.

SimpleView Architecture: To make the number of param-

eters comparable to point-based methods, we use ResNet18
with one-fourth filters (ResNet18/4) as the backbone. For
fusing features, we do ablation with two choices, pooling
and concatenation. Empirically, we find concatenation to
work better than pooling them (Table. 6). This could be
because pooling features throws away the view information
like which views are adjacent to one another. One concern
could be that concatenation could make features sensitive
to viewpoint, and hence the network could fail on rotated
objects. However, empirically, we observe that this issue is
largely mitigated by rotation augmentation and SimpleView
is able to achieve state-of-the-art performance on ScanOb-
jectNN where objects are rotated. The point-clouds are
scaled to be in [1,−1]3, we keep the cameras at a distance
of 1.4 units from the center with 90◦ fov. We also do abla-
tions with different number of views, comparing only front
views, three orthogonal views and six orthogonal views. We
find that using all six views performs the best (Table 6).
We do not use ImageNet pretraining, thus making the com-
parison with point-based methods strictly fair, without any
additional data.

4. Experiments
ModelNet40: ModelNet40 is a the most widely adopted
benchmark for point-cloud classification. It contains objects
from 40 common categories. There are 9840 objects in the
training set and 2468 in the test set. Objects are aligned to a
common up and front direction.

ScanObjectNN: ScanObjectNN is a recent real-world point
cloud classification dataset. It consists of 15 classes, 11
of which are also in ModelNet40. There are a total of
15k objects in the dataset. Unlike ModelNet40, the ob-
jects in ScanObjectNN are obtained from real-world 3D
scans. Hence, point clouds are noisy (occlusions, back-
ground points) and have geometric distortions such as holes.
Also, unlike ModelNet40, the objects are not axis-aligned.

4.1. Experiments on ModelNet40

Implementation Details: We use PyTorch (Paszke et al.,
2019) to implement all models and protocols while reusing
the official code wherever possible. We use the official ver-
sion of DGCNN and RSCNN. We confirm with the authors
that the code for RSCNN-Multi, another version of RSCNN,
is yet to be released. Hence we use the reported numbers
of RSCNN-Multi in Table 8. PointNet and PointNet++ are
officially released in TensorFlow (Abadi et al., 2015). For
PointNet, we adapt our code from PointNet.pytorch (Xia,
accessed June, 2020) as recommended in the official reposi-
tory. For PointNet++, we adapt the model code from Point-
net2 PyTorch (Wijmans, accessed June, 2020). We further
make sure that the third party PyTorch code closely matches
the official TensorFlow code.
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Table 6. Ablation of various choices for SimpleView on ModelNet40. The performance is evaluatated on the validation set.
Number of Views Image Projection Feature Fusion Image Depth

1 3 6 Orthographic Perspective Pool Concat Minimum Weighted Avg.

Accuracy 90.7 ± 0.1 92.1 ± 0.2 92.9 ± 0.3 92.7 ± 0.3 92.9 ± 0.3 91.8 ± 0.3 92.9 ± 0.3 92.8 ± 0.4 92.9 ± 0.3
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Figure 3. Failure Cases for SimpleView and PointNet++. The first row shows cases where both SimpleView and PointNet++ fail; the
second row shows cases where SimpleView succeeds but PointNet++ fails; the third row shows cases where SimpleView fails but
PointNet++ succeeds.

We use Adam (Kingma & Ba, 2014) with an initial learning
rate of 1e-3 and a decay-on-plateau learning rate scheduler.
The batch size and weight decay for each model are kept
the same as the official version in Table 2. We use a batch
size of 18 and no weight decay for SimpleView. To give
the prior models the best chance on our protocol (Table 4),
we additionally tune their hyper-parameters on the valida-
tion set. We find that the official hyper-parameters already
perform close to optimal. We train each model for 1000
epochs. Since there are small variations in final performance
across different runs, we do 4 runs and report the mean and
standard deviation.

Performance under Prior Protocols: Table 2 shows the
performance different architectures under various protocols.
The mean performance of PointNet++ improves from 89.8%
to 93.3% when we switch from the PointNet++ no Vote
to the RSCNN Vote protocol. Similarly the performance
of SimpleView improves from 90.7% to 93.6% when we
switch from PointNet++ no Vote to DGCNN Smooth. Since
there is variance in performance across runs, we refrain
from making any claims about absolute ordering between

prior works. However, we do observe that in terms of mean
performance, SimpleView performs on par or better than
other methods under all protocols. Note that in RSCNN
Vote, voting on the test set is done 300 times with reshuffled
and randomly augmented points, from which the highest
accuracy is selected. Hence models that have the largest
variance in prediction, i.e. PointNet++ and RSCNN gain the
most from it, as they are not strictly invariant to the order of
points (Sec. 3.3 in (Qi et al., 2017b)).

Performance under the SimpleView Protocol: Table 4
shows that SimpleView outperforms prior architectures on
our controlled protocol in terms of mean performance. Sim-
pleView has the fewest number of parameters and a com-
petitive inference speed. Inference speed is measured on an
NVIDIA 2080Ti averaged across 100 runs.

Fig. 3 show examples where both SimpleView and Point-
Net++ fail, as well as examples where one of them fails
and the other succeeds. Qualitatively, we find that the fail-
ure modes of SimpleView and PointNet++ are similar. We
also find that a major failure mode in both SimpleView and
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Table 7. Performance of various architectures on ModelNet40 when using different amount of training data.

% of Training Data RSCNN DGCNN PointNet PointNet++ SimpleView

25 % 88.2 ± 0.4 89.1 ± 0.2 86.3 ± 0.4 89.6 ± 0.4 89.7 ± 0.3
50 % 90.4 ± 0.4 91.0 ± 0.3 88.2 ± 0.3 91.5 ± 0.2 92.1 ± 0.3
100 % 91.7 ± 0.3 91.9 ± 0.3 89.2 ± 0.9 92.7 ± 0.1 93.0 ± 0.4

Table 8. Performance of various architectures on ModelNet40. Includes prior works not in Table 2. * indicates small differences in
protocol as identified in Sec. 3.1

Architecture # Points Closest Protocol Acc. PN++ Acc. SimpleView Acc.

DeepSets (Zaheer et al.) 5000 PointNet++ no Vote* 90.0 ± 0.3 89.8 ± 0.2 90.7 ± 0.3
SO-Net (Li et al.) 2048 DGCNN CE* 90.9 92.6 ± 0.2 93.1 ± 0.1
3DmFV (Ben-Shabat et al.) 1024 DGCNN CE* 91.4 92.6 ± 0.2 93.1 ± 0.1
PCNN (Atzmon et al.) 1024 DCNN CE Final* 92.3 92.1 ± 0.1 92.5 ± 0.3
PointCNN (Li et al.) 1024 DGCNN CE* 92.5 92.6 ± 0.2 93.1 ± 0.1
DensePoint (Liu et al.) 1024 RSCNN no Vote 92.8 92.7 ± 0.1 92.9 ± 0.2
RSCNN-Multi (Liu et al.) 1024 RSCNN no Vote 92.9 92.7 ± 0.1 92.9 ± 0.2
PointANSL (Yan et al.) 1024 DGCNN CE* 92.9 92.6 ± 0.2 93.1 ± 0.1

PointNet++ is the confusion between the ‘flower pot’ and
‘plant’ category (see Appendix Fig.1 and Fig.2). This could
be because of the lack of color information. In Table 7,
we show how the models perform using varying amount
of training data. We find the SimpleView outperforms the
state-of-the-art methods across different dataset sizes.

Comparison with More Methods: In Table 8, we do one-
on-one comparison between SimpleView and recent state-of-
the-art methods, other than PointNet, PointNet++, RSCNN
and DGCNN. We identify the closest protocol to the one
used in the paper from the ones we evaluate. Table 8 shows
the competitiveness of PointNet++ and SimpleView with
other recent state-of-the-art methods.

4.2. Experiments on ScanObjectNN

Implementation Details: ScanObjectNN’s official reposi-
tory trains and evaluates the state-of-the-art models under
the same protocol. We implement SimpleView in Tensor-
Flow and use the official ScanObjectNN protocol for fair-
ness. This protocol is different from the SimpleView proto-
col as it normalizes the point clouds and randomly samples
points. We optimize our model with Adam. We use a batch
size of 20 and no weight decay to train SimpleView for 300
epochs with an initial learning rate 0.001, and use the final
model for testing. We use standard image-based cropping
and scaling augmentation to prevent over-fitting. The hyper-
parameter for cropping and scaling is found on a validation
set made from ScanObjecNN’s train set. We conduct 4 runs
for SimpleView. ScanObjectNN does not use a fixed set of
points during test time. It instead randomly samples points
from the point cloud, which adds randomness to test set
performance. Hence, we evaluate each run 10 times. We

report the final performance as the mean and variance of the
40 evaluations (4 runs × 10 evaluations per run).

Performance on ScanObjectNN: As shown in Table 5,
SimpleView outperforms prior networks on ScanObjectNN.
This shows the SimpleView is effective in real world set-
tings, with noisy and misaligned point clouds. For future
reference, SimpleView gets an accuracy of 80.5± 0.3 while
using the best test model selection scheme. We also perform
transfer experiments to test generalizability of SimpleView.
We train on ScanObjectNN and test on ModelNet40 and
vice versa. Table 5 shows that SimpleView transfers across
datasets better than prior methods.

5. Discussion
In this work, we demonstrate how auxiliary factors orthogo-
nal to the network architecture have a large effect on perfor-
mance for point-cloud classification. When controlling for
these factors, we find that a relatively older method, Point-
Net++ (Qi et al., 2017b), performs competitively with more
recent ones. Furthermore, we show that a simple baseline
performs on par or better than state-of-the-art architectures.

Our results show that for future progress we should control
for protocols while comparing network architectures. Our
code base could serve as a useful resource for developing
new models and comparing them with prior works. Our
results show that the evidence for point-based methods is not
very strong when auxiliary factors are properly controlled
for, and that SimpleView is a strong baseline. But our results
are not meant to discourage future research on point-based
methods. It is still entirely possible that point-based methods
come out ahead with additional innovations. We believe it
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is beneficial to explore competing approaches, including the
ones that are underperforming at a particular time, as long
as the results are compared in a controlled manner.

Our analysis in this work was limited to point cloud clas-
sification, which is an important problem in 3D scene un-
derstanding and forms a critical part of object detection and
retrieval systems. An exciting future direction would be to
expand this analysis to other problems that involve point
cloud data such as scene and part segmentation.
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