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1. ADDITIONAL EXPERIMENTAL DETAILS

We provide additional details on the conducted experiments below.

1.1. Method, evaluation task and baselines

We tested our estimation method with three different setups: an image-based simulation, an experimental text dataset, and a
naturally-simulated experimental genomics dataset. We considered the same evaluation task for all setups:

1. Using a train set, with various “seen” W values, we train a model for phi prediction, and use E[Φ |W,Z] to fit a lasso
regression to predict Y, giving rise to E[Y | Φ̂] predictions.

2. Next, we see a train split from a test set, corresponding to an “unseen” interventionw′, on which we relearn E[Φ |w′, Z]

3. Finally, we test Y predictions on a test set of the unseen w′ test set, using our relearned E[Φ | w′, Z] model, and our
previously trained E[Y | Φ̂] Lasso regression models. Thus, for a test split of the test set, we predict for Y for previously
unseen w′, z pairs, i.e. E[Y | do(w′), Z ′].

For further clarity, we provide a visual description of datasets used in different stages of the method above in Figure 1. We
compared our estimation accuracy, via Mean Squared Error, as Y labels become available in the unseen w′ regime (10-100%
of labels). We record our loss against four baselines estimating the same quantity: 1. linear model, as a Lasso regression
with cross validation to pick the coefficient λ on the regularization term in the range [0.05,1], 2. SVM predictor with default
parameters from (Pedregosa et al., 2011), 3. Random Forest regression with default parameters from (Pedregosa et al., 2011),
aside for specifying 5 minimal samples in split, and 4. Gradient Boosting with default parameters from (Pedregosa et al.,
2011), aside for maximum depth which was set to 5. We provide code to reproduce our results alongside this document. We
also tested a Multi Layered Perceptron baseline, but found it to perform much worse than alternatives without dedicated
tuning, and subsequently did not include it in the results.

Figure 1. Description of dataset splits used in different parts of our experiment, corresponding to items 1-3 in 1.1.

For the prediction task we include two settings: one for a single configuration of the target Y , and one where we present
average performance over 100 different settings of the parameters θ in the structural equation giving rise to Y . Since our
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test set on which we report result is rather small, for the first setting we average results of the baselines over 10 different
shuffles of the dataset on which we train and report result. We do this for the baselines and not for our own method as
the baselines have access to 10 different proportions of the target Y, which involved small number of samples and largely
varying performance based on the ordering of the dataset. Our method makes no use of labels, and thus is not vulnerable
to this variability in performance. However, when we conduct the experiment over 100 different Y configurations, the
existence of ample different examples of data better accounts for this variability in performance based on sample ordering.
Thus, we simply report results for a single data ordering, and report the mean and standard error over 100 different Y
parameters settings instead.

1.2. Dataset construction and models’ training

1.2.1. IMAGE PERTURBATION

The image perturbation is a simulation dataset that was put together to demonstrate the key ideas of the work. We create a
dataset of 10,000 examples, images of size 10X10, equally made up of 5 pixel patterns: cross, square, crossing diagonal,
pyramid and diamond. Patterns were allocated for each index by sampling one of 5 pattern indicators from a multinomial
with equal probability for each shape. Next, the pattern indicator Z also served to select one of 5 set of probabilities that
were used to seed a multinomial from which a perturbation pattern W was picked.

The perturbation was put together via a procedure that used the indicator W as a location to be used in a Multivariate Normal
distribution with a two dimensional identity covariance matrix, I(2). For each example in the dataset, we sampled 1000
tuples (x,y) from the Multivariate Normal described, checked whether they fell within the image size (i.e. ≥ (0, 0) and
< (10, 10)). Each time such tuple fell within the borders of the image, a perturbation of size 0.1 was added to the location
(x,y) in the image.

This perturbation regime was added as a mask to the original image reflected by Z, to create the post-perturbation X . For
the construction of φs, we created five different 1-d convolution transformations, with randomly initialized weights, which
will be indexed by Z and applied to X . There will be 4 resulting φs for each image, each corresponding to the 4 quadrants
of the image. φ1 most clearly varies with W , with potential little effect on φ2 and φ3, but φ4 should see close to no effect in
response to W , based on perturbation locations. Finally, Y was constructed as a linear combination of φs, with the weights
[0.7, 0, 0, -0.5] applied to them, and added Gaussian noise N(0, 0.1).

Finally, for the test set with an unseen perturbation pattern w′, 2,000 examples that were featured in the training set of size
10,000, were used with a different perturbation, with location w′ = 5. Previous perturbations ranged from 0-3. For specific
structural equations corresponding to this description, see Figure 5 in the manuscript.

For the g model, estimating E[Φ | w′, Z], we train a Multi-task MLP with 3 hidden layers, 512 hidden dimensions, and the
ReLU activation function. We use 100 epochs and 50 epochs to train the first-stage model g for seen w, and for the unseen
w’ train split respectively. We use the Adam optimizer, with learning rates of 0.002 and 0.001 used for optimization of each
stage respectively. We use a train batch size of 400, and test batch size of 100. We set the seed at 42. We also include the
code to reproduce the results, see code files for any additional hyperparameter setting.

Finally, for the robustness to settings of θ experiment (Figure 8), we had to sample the weights from a distribution such that
we can repeat the process 1500 times. We chose a uniform distribution θ ∼ Unif(−0.3, 0.3), and added noise to Y from a
N(0, 0.01). We chose those such that similar stats of Y can be achieved, compared to the single Y setting experiment. See
generation code in Python Img Humor/data generation notebooks/ImgPertSim.ipynb.

1.2.2. HUMOR MICRO EDITS

The construction of the humor micro edits dataset closely followed the analysis and description in (Hossain et al., 2019).
The original datasets provided there already contained original headlines (which we used as Z for our purposes), edit words
(W for us) and humorous post-edit headlines (X)1. Following the analysis in the paper, we chose to represent each of these
sentences and words using their pre-trained 6 Billion-token GloVe word-embedding vector representations, trained originally
on 2014 English Wikipedia and Gigaword 52 (Pennington et al., 2014). We only included examples in which all words were
correctly identified in the pre-trained word embedding, following a standard cleaning procedure (see code for exact details).

1Access to original dataset at https://www.cs.rochester.edu/u/nhossain/humicroedit.html.
2Available for download at https://nlp.stanford.edu/projects/glove/.

https://www.cs.rochester.edu/u/nhossain/humicroedit.html .
https://nlp.stanford.edu/projects/glove/
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Z, W and X where does based on vector representation of the original dataset. There are three additional steps we have
taken to compose the final dataset. First, we clustered the edit words using K-means clustering with K=20 (implemented via
Scikit-learn), following the same procedure carried out in (Hossain et al., 2019). We used the labels of these clusters to
create the training and test split, such that the test set included edit words from one cluster we left out to function as an
unseen intervention W ′. The unseen intervention was chosen to be one of the larger 5 clusters, to ensure enough training
examples for estimation exist. The cluster that was randomly chosen for the results shown in the paper is cluster 11.

Next, we constructed high-level descriptions of the intervention and its implications on X as φ. Φ = {φ}30i=1, and each one
was inspired by analysis and hypotheses from (Hossain et al., 2019):

1. φ1: Length of resulting edited sentence (does not vary with w)

2. φ2: Mean cosine distance between GloVe vector of edit word and the rest of words in sentence (varies with w)

3. φ3: Location index of replaced word (does not vary with w)

4. φ4: Sentiment polarity of edit word, using the pre-trained sentiment processor from (Qi et al., 2020)3 (varies with w)

5. φ5: Sentiment polarity of resulting sentence, using the pre-trained sentiment processor from (Qi et al., 2020) (does not
vary with w)

6. φ6: Cosine distance between GloVe vector of edited word and GloVe vector of original word (varies with w)

7. φ7-φ10: Cosine distance of GloVe vector of edit word from neighboring words (2 preceding, 2 succeeding) (does not
vary with w)

8. φ11-φ30: Distance of mean GloVe embedding of final sentence from clusters’ centroids (does not vary with w)

The set of φs, which all correspond to different data types, were all scaled to have 0 mean and unit variance, to make them
more comparable. Finally, following Φ as defined above we constructed an outcome variable Y as a linear combination of
Φ, with added noise sampled from N(0, .5). We sampled weights for each φ, θ ∼ U(−1, 1), while keeping a random third
of the weights at 0. Additionally, we ensured at least one of the φs varying with W is also zeroed out, to have diversity of all
possible cases present.

For the g model, estimating E[Φ | w′, Z], we train a Multi-task MLP with 3 hidden layers, 512 hidden dimensions, and the
ReLU activation function. We use 700 epochs and 100 epochs to train the first-stage model g for seen w, and for the unseen
w’ train split respectively. We use the Adam optimizer, with learning rates of 0.002 and 0.001 used for optimization of each
stage respectively. We use a train batch size of 400, and test batch size of 100. We set the seed at 42. We also include the
code to reproduce the results, see code files for any additional hyperparameter setting.

1.2.3. GENE KNOCKOUTS

Our GENIE3 model follows the instructions of Huynh-Thu et al. (2010), who scale all genes prior to analysis and fit a
series of random forest regressions predicting the expression of each ”downstream” gene as a function of the 334 candidate
transcription factors (TFs). Each forest contains 1000 trees, with mtry =

√
334. The adjacency matrix is computed using

the impurity importance measure originally proposed by Breiman (2001).

We simulate TF data from a multivariate Gaussian distribution with parameters estimated via maximum likelihood. This
matrix is then propagated through our GENIE3 model to simulate expression values for downstream genes, with random
Gaussian noiseN (0, σ2), where σ is the RMSE of the corresponding random forest on out-of-bag data. This data – TFs and
downstream genes – together comprise the matrix Z of simulated baseline E. Coli gene expression.

We sort TFs by outdegree and simulate a knockout experiment on the top ten by replacing their values with a scalar 1
unit less than the observed minimum for each (how much less is irrelevant, as random forests are invariant to monotone
transformations). We record the outdegreee of these TFs as W and the resulting expression matrix as X .

To compute Φ, we filter out all TFs with outdegree less than 100 and treat each of the remaining 168 TFs as the hub of
a module. For downstream genes, module membership is determined by whether the given TF was assigned importance

3Full usage details available at https://stanfordnlp.github.io/stanza/sentiment.html.

https://stanfordnlp.github.io/stanza/sentiment.html .
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of at least 10 in the GENIE3 adjacency matrix. For each module, we compute the first kernel principal component on a
subsample of n = 1000 using a radial basis function with default bandwidth given by the median Euclidean distance. These
weights are then used to project the remaining data Z and X into the latent space. We define Φ as the difference between
pre- and post-intervention expression values for the kernel eigengene. We proceed to estimate a series of E[φj | Z,W ]
regressions on a training set comprising 8 of 10 w values using random forests with 500 trees and mtry = p/3, where p is
the number of genes in a given module.

Each φj is sorted by its association with W using Spearman correlation. Y is then simulated as a linear function of the
top and bottom 25 φ’s, with nonzero weights drawn from N (±4, 1), where ±4 denotes that the amplitude is multiplied by
−1 with probability 0.5. A lasso regression E[Y | Φ̂] is fit to the aforementioned training set, with L1 penalty λ selected
via 10-fold cross-validation. Since, by construction Z ⊥⊥W in this experiment, the conditional independence tests can be
replaced by a marginal independence test. We use the Spearman correlation to measure the association between W and each
φj using the training set.
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