
Supplementary for Accelerated Alternating Minimization,

Accelerated Sinkhorn’s Algorithm and Accelerated Iterative

Bregman Projections

A. Omitted proofs in Section 2: Accelerated Alternating Minimization

Proof of Lemma 2. Let us introduce an auxiliary sequence of functions defined as

ψ0(x) =
1

2
‖x− x0‖2, ψk+1(x) = ψk(x) + ak+1{f(yk) + 〈∇f(yk), x− yk〉}.

It is easy to see that vk = argminx∈RN ψk(x).
Now, we prove inequality (1) by induction over k. For k = 0, the inequality holds.

Assume that

Akf(xk) 6 min
x∈RN

ψk(x) = ψk(v
k).

Then

ψk+1(vk+1) = min
x∈RN

{
ψk(x) + ak+1{f(yk) + 〈∇f(yk), x− yk〉}

}
>

> min
x∈RN

{
ψk(v

k) +
1

2
‖x− vk‖22 + ak+1{f(yk) + 〈∇f(yk), x− yk〉}

}
>

> ψk(v
k) + ak+1f(yk)−

a2
k+1

2
‖∇f(yk)‖22 + ak+1〈∇f(yk), vk − yk〉 >

> Akf(xk) + ak+1f(yk)−
a2
k+1

2
‖∇f(yk)‖22 + ak+1〈∇f(yk), vk − yk〉

> Ak+1f(yk)−
a2
k+1

2
‖∇f(yk)‖22 + ak+1〈∇f(yk), vk − yk〉.

Here we used that ψk is a strongly convex function with minimum at vk and that
f(yk) 6 f(xk). By the optimality conditions for the problem min

β∈[0,1]
f
(
xk + β(vk − xk)

)
,

there are three possibilities

(1) βk = 1, 〈∇f(yk), xk − vk〉 > 0, yk = vk;
(2) βk ∈ (0, 1) and 〈∇f(yk), xk − vk〉 = 0, yk = vk + βk(x

k − vk);
(3) βk = 0 and 〈∇f(yk), xk − vk〉 6 0, yk = xk .

In all three cases, 〈∇f(yk), vk − yk〉 > 0.
Using the rule for choosing ak+1 in the method, we finish the proof of the induction



step:

ψk+1(vk+1) > Ak+1f(xk+1).

It remains to show that the equation

f(yk)−
a2
k+1

2Ak+1
‖∇f(yk)‖22 = f(xk+1). (1)

has a solution ak+1 > 0. By the L-smoothness of the objective, we have, for all i > 0,

f(yk)− 1

2L
‖∇if(yk)‖22 > f(xk+1

i ),

where xk+1
i = argminx∈Si f(x). Since Ak+1 = Ak + ak+1, we can rewrite (1) as

a2
k+1

2
‖∇f(yk)‖22 + ak+1(f(xk+1)− f(yk)) +Ak(f(xk+1)− f(yk)) = 0.

Since f(xk+1) − f(yk) < 0 (otherwise ‖∇f(yk)‖ = 0 and yk is a solution to the
problem), there exists solution ak+1 > 0.

Let us estimate the rate of the growth for Ak. Since ik = argmaxi ‖∇if(yk)‖22,

‖∇ikf(yk)‖22 >
1

n
‖∇f(yk)‖22.

As a consequence, we have

f(yk)− 1

2Ln
‖∇f(yk)‖22 > f(yk)− 1

2L
‖∇ikf(yk)‖22 > f(xk+1).

This in combination with our rule for choosing ak+1 implies
a2
k+1

2Ak+1
> 1

2Ln . Since

A1 = a1 > 1
Ln , we prove by induction that ak >

k
2Ln and Ak >

(k+1)2

4nL > k2

4nL . Indeed,

ak+1 >
1 +
√

1 + 4AkLn

2Ln
=

1

2Ln
+

√
1

4L2n2
+
Ak
Ln

>
1

2Ln
+

√
Ak
Ln

>
1

2Ln
+

1√
L

k + 1

2
√
Ln

=
k + 2

2Ln
.

Hence,

Ak+1 = Ak + ak+1 >
(k + 1)2

4Ln
+
k + 2

2Ln
>

(k + 2)2

4Ln
.

B. Omitted proofs in Section 3: Primal-Dual Extension

To prove Theorem 3, we first prove a slightly more general result.
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Theorem B.1. Let the objective φ in the problem (P2) be L-smooth w.r.t. ‖·‖2 and the
solution of this problem be bounded, i.e. ‖λ∗‖2 6 R. Then, for the sequences x̂k+1, ηk+1,
k > 0, generated by Algorithm 2,

‖Ax̂k − b‖2 6
8nLR

k2
, |φ(ηk) + f(x̂k)| 6 8nLR2

k2
, ‖x̂k − x∗‖E 6

4

k

√
2nLR2

γ
.

Proof. Applying Lemma 2 to problem (P2), we obtain

Akφ(ηk) 6 min
λ∈Λ


k−1∑
j=0

{aj+1(φ(λj) + 〈∇φ(λj), λ− λj〉) +
1

2
‖λ‖22

 , (2)

Let us introduce the set ΛR = {λ : ‖λ‖2 6 2R} where R is such that ‖λ∗‖2 6 R.

Then, from (2), we obtain for h(λ) =
∑k−1

j=0 aj+1

(
φ(λj) + 〈∇φ(λj), λ− λj〉

)
+ 1

2‖λ‖
2
2

Akφ(ηk) 6 min
λ∈Λ

h(λ) 6 min
λ∈ΛR

h(λ) 6 2R2+ min
λ∈ΛR


k−1∑
j=0

aj+1(φ(λj) + 〈∇φ(λj), λ− λj〉

 .

(3)
On the other hand, from the definition (P2) of φ(λ), we have

φ(λi) = 〈λi, b〉 + max
x∈Q

(
−f(x)− 〈ATλi, x〉

)
= 〈λi, b〉 − f(x(λi)) − 〈ATλi, x(λi)〉.

Combining this equality with (2), we obtain

φ(λi)− 〈∇φ(λi), λi〉
= 〈λi, b〉 − f(x(λi))− 〈ATλi, x(λi)〉 − 〈b−Ax(λi), λi〉 = −f(x(λi)).

Summing these equalities from i = 0 to i = k − 1 with the weights {ai+1}i=0,...k−1, we
get, using the convexity of f

k−1∑
i=0

ai+1(φ(λi) + 〈∇φ(λi), λ− λi〉) =

= −
k−1∑
i=0

ai+1f(x(λi)) +

k−1∑
i=0

ai+1〈(b−Ax(λi), λ〉 6 −Akf(x̂k) +Ak〈b−Ax̂k, λ〉.

Substituting this inequality into (3), we obtain

Akφ(ηk) 6 −Akf(x̂k) + min
λ∈ΛR

{
Ak〈b−Ax̂k, λ〉

}
+ 2R2

Finally, since max
λ∈ΛR

{
〈−b+Ax̂k, λ〉

}
= 2R‖Ax̂k − b‖2, we obtain

Ak(φ(ηk) + f(x̂k)) + 2RAk‖Ax̂k − b‖2 6 2R2. (4)
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Since λ∗ is an optimal solution of Problem (D1), we have, for any x ∈ Q

Opt[P1] 6 f(x) + 〈λ∗,Ax− b〉.

Using the assumption that ‖λ∗‖2 6 R , we get

f(x̂k) > Opt[P1]−R‖Ax̂k − b‖2. (5)

Hence,

φ(ηk) + f(x̂k) = φ(ηk)−Opt[P2] +Opt[P2] +Opt[P1]−Opt[P1] + f(x̂k) =

= φ(ηk)−Opt[P2]−Opt[P1] + f(x̂k) > −Opt[P1] + f(x̂k)
(5)

> −R‖Ax̂k − b‖2. (6)

This and (4) give R‖Ak(Ax̂k − b)‖2 6 2R2. Hence, from (6) we obtain Ak(φ(ηk) +
f(x̂k)) > −2R2. On the other hand, from (4) we have Ak(φ(ηk) + f(x̂k)) 6 2R2.
Combining all of these results, we conclude

Ak‖Ax̂k − b‖2 6 2R, Ak|φ(ηk) + f(x̂k)| 6 2R2. (7)

From 2, for any k > 0, Ak > k2

4Ln . Combining this and (7), we obtain the first two
inequalities of the statement:

‖Ax̂k − b‖2 6
8nLR

k2
, |φ(ηk) + f(x̂k)| 6 8nLR2

k2
.

It remains to prove the third inequality. By the optimality condition for Problem (P1),
we have

〈∇f(x∗) +ATλ∗, x̂k − x∗〉 > 0, Ax∗ = b.

Then

〈∇f(x∗), x̂k − x∗〉 > −〈ATλ∗, x̂k − x∗〉 = −〈λ∗,Ax̂k − b〉

> −R‖Ax̂k − b‖2 > −8nLR2

k2
, (8)

where we used the same reasoning as while deriving (5). Using this inequality and the
γ-strong convexity of f , we obtain

γ

2
‖x̂k − x∗‖2E 6 f(x̂k)−Opt[P1]− 〈∇f(x∗), x̂k − x∗〉

6 f(x̂k) + φ(ηk) + 〈∇f(x∗), x̂k − x∗〉 6
8nLR2

k2
+

8nLR2

k2
=

16nLR2

k2
,

or

‖x̂k − x∗‖E 6
4

k

√
2nLR2

γ
.
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Proof of Theorem 3

Proof. The result follows from the previous theorem and the bound L 6 ‖A‖2E→H
γ ,

which is shown in [7].

C. Fixed-Step Accelerated Alternating Minimization

In this section we introduce another variant of accelerated alternating minimization
method. Algorithm 2 in the main text uses full relaxation on a segment to find the
next iterate yk. On the contrary, the method which we introduce in this section tries to
adaptively find an approximation for the constant L – Lipschitz constant of the gradient.
Based on this approximation, a fixed stepsize is used to find yk. Thus, compared to
the AAM algorithm presented in Section 2 of the main paper, this algorithm does
not require solving any one-dimensional minimization problems during each iteration,
but instead requires adapting to the smoothness parameter of the problem. This
typically results in repeating each iteration twice. In our experience, which of the
two method turns out to be more efficient significantly depends on the problem being
solved (generally, the more difficult the function is to compute, the more taxing the
line-search becomes) and the implementation of the line-search procedure. We also
point out that we can not guarantee the convergence of Algorithm 1 to a stationary
point for non-convex objectives. In the experiments for the OT problem we use this
algorithm and the result is denoted by AAM-A.

Algorithm 1 Fixed-Step Accelerated Alternating Minimization
Input: starting point x0, initial estimate of the Lipschitz constant L0.
Output: xk

1: x0 = y0 = v0.
2: for k > 0 do
3: Set Lk+1 = Lk/2
4: while True do
5: Set ak+1 = 1

2Lk+1
+
√

1
4L2

k+1
+ a2k

Lk
Lk+1

Find ak+1 s.t. Ak+1 := a2k+1Lk+1 = a2kLk+ak+1.

6: Set τk = 1
ak+1Lk+1

7: Set yk = τkv
k + (1− τk)xk {Extrapolation step}

8: Choose ik = argmax
i∈{1,...,n}

‖∇if(yk)‖22

9: Set xk+1 = argmin
x∈Sik (y

k)

f(x)

10: Set vk+1 = vk − ak+1∇f(yk)

11: if f(xk+1) 6 f(yk)− ‖∇f(yk)‖2
2

2Lk+1
then

12: break
13: end if
14: Set Lk+1 = 2Lk+1.
15: end while
16: k = k + 1
17: end for

The convergence rate of Algorithm 1 is given by the following theorem
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Theorem C.1. Let the objective f be convex and L-smooth. If L0 6 4nL, then after
k steps of Algorithm 1 it holds that

f(xk)− f(x∗) 6
4nL‖x0 − x∗‖22

k2
. (9)

Unlike the AM algorithm, this method requires computing the whole gradient of the
objective, which makes the iterations of this algorithm considerably more expensive.
Also, even when the number of blocks is 2, the convergence rate of Algorithm 1 depends
on the smoothness parameter L of the whole objective, and not on the Lipschitz
constants of each block on its own, which is the case for the AM algorithm [2]. On the
other hand, if we compare the Algorithm 1 algorithm to an adaptive accelerated gradient
method, we will see that the theoretical worst-case time complexity of Algorithm 1
method is only

√
n times worse, while in practice block-wise minimization steps may

perform much better than gradient descent steps simply because they directly use some
specific structure of the objective.

This convergence rate is n times worse than that of an adaptive accelerated gradient
method [4], or, equivalently, this means that in the worst case it may take

√
n times

more iterations to guarantee accuracy ε compared to an adaptive accelerated gradient
method. To prove the convergence rate of the method, we will need a technical result.

Lemma C.2. For any u ∈ RN

ak+1〈∇f(yk), vk−u〉 6 a2
k+1Lk+1

(
f(yk)− f(xk+1)

)
+

1

2
‖vk−u‖22−

1

2
‖vk+1−u‖22.

Proof.

ak+1〈∇f(yk), vk − u〉 = ak+1〈∇f(yk), vk − vk+1〉+ ak+1〈∇f(yk), vk+1 − u〉
= a2

k+1‖∇f(yk)‖22 + 〈vk − vk+1, vk+1 − u〉

= a2
k+1‖∇f(yk)‖22 +

1

2
‖vk − u‖22 −

1

2
‖vk+1 − u‖22 −

1

2
‖vk+1 − vk‖22

6 a2
k+1Lk+1

(
f(yk)− f(xk+1)

)
+

1

2
‖vk − u‖22 −

1

2
‖vk+1 − u‖22.

Here the last inequality follows from line 11 of Algorithm 1.

Lemma C.3. For any u ∈ RN and any k > 0

a2
k+1Lk+1f(xk+1)−

(
a2
k+1Lk+1 − ak+1

)
f(xk)

+
1

2
‖vk − u‖22 −

1

2
‖vk+1 − u‖22 6 ak+1f(u).
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Proof.

ak+1(f(yk)− f(u)) 6 ak+1〈∇f(yk), yk − u〉
= ak+1〈∇f(yk), yk − vk〉+ ak+1〈∇f(yk), vk − u〉

1○
=

(1− τk)ak+1

τk
〈∇f(yk), xk − yk〉+ ak+1〈∇f(yk), vk − u〉

2○
6

(1− τk)ak+1

τk

(
f(xk)− f(yk)

)
+ a2

k+1Lk+1

(
f(yk)− f(xk+1)

)
+

1

2
‖vk − u‖22 −

1

2
‖vk+1 − u‖22

3○
= (a2

k+1Lk+1 − ak+1)f(xk)− a2
k+1Lk+1f(xk+1) + ak+1f(yk)

+
1

2
‖vk − u‖22 −

1

2
‖vk+1 − u‖22. (10)

Here, 1○ uses the fact that our choice of yk satisfies τk(yk− vk) = (1− τk)(xk− yk). 2○
is by convexity of f(·) and Lemma C.2 , while 3○ uses the choice of τk = 1

ak+1Lk+1
.

Proof of Theorem C.1. Note that

ak+1 =
1

2Lk+1
+

√
1

4L2
k+1

+ a2
k

Lk
Lk+1

satisfies the equation a2
k+1Lk+1 = a2

kLk + ak+1. We also have a1 = 1
Lk+1

. With that in

mind, we sum up the inequality in the statement of Lemma C.3 for k = 0, . . . , T − 1
and set u = x∗:

LTa
2
T f(xT ) +

1

2
‖v0 − x∗‖22 −

1

2
‖vT − x∗‖22 6

T−1∑
k=0

akf(x∗) = LTa
2
T f(x∗).

Denote Ak = a2
kLk. Since v0 = x0, we now have that for any T > 1

f(xT )− f(x∗) 6
‖x0 − x∗‖22

2AT
.

It remains to estimate AT from below. We will now show by induction that Ak >
nk2

8L .
From the L-smoothness of the objective we have

f(xk+1) = argmin
x∈Sik (yk)

f(x) 6 f(yk − 1

L
∇ikf(yk)) 6 f(yk)− 1

2L
‖∇ikf(yk)‖22.

Also, since ik is chosen by the Gauss–Southwell rule, it is true that

‖∇ikf(yk)‖22 >
1

n
‖∇f(yk)‖22.
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As a result,

f(xk+1) 6 f(yk)− 1

2nL
‖∇f(yk)‖22.

This implies that the condition in line 11 of Algorithm 1 is automatically satisfied if
Lk+1 > nL. Combined with the fact that we multiply Lk+1 by 2 if this condition is not
met, this means that if Lk+1 6 2Ln at the beginning of the while loop during iteration
k, then it is sure to hold at the end of the iteration too. This is guaranteed by our
assumption that L0 6 4Ln.

We have just shown that Lk 6 2Ln for k > 1.The base case k = 0 is trivial. Now
assume that Ak > k2

8nL for some k. Note that Ak+1 = Lka
2
k + ak+1 = Ak + ak+1 and

Lk+1 = Ak+1

a2
k+1

.

ak+1 =
1

2Lk+1
+

√
1

4L2
k+1

+ a2
k

Lk
Lk+1

>
1

4nL
+

√
1

16n2L2
+ a2

k

Lk
2nL

>

>
1

4nL

(
1 +

√
1 + 8AknL

)
>
k + 1

4nL
.

Finally,

Ak+1 = Ak + ak+1 >
k2 + 2(k + 1)

8nL
>

(k + 1)2

8nL
.

By induction, we have ∀k > 1

Ak >
k2

8nL
(11)

and

f(xk)− f(x∗) 6
4nL‖x0 − x∗‖22

k2
.

We also note that the assumption L0 6 4nL is not really crucial. In fact, if L0 > 4nL,
then after O(log2

L0

4L) iterations Lk is surely lesser than 4L, so overestimating L only

results in a logarithmic in L0

L amount of additional iterations needed to converge.

C.1. Primal-Dual Extension for Fixed Step Accelerated Alternating
Minimization

Our primal-dual algorithm based on Algorithm 1 for Problem (P1) is listed below as
Algorithm 2.
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Algorithm 2 Primal-Dual Accelerated Alternating Minimization

Input: initial estimate of the Lipschitz constant L0.
1: A0 = a0 = 0, η0 = ζ0 = λ0 = 0.
2: for k > 0 do
3: Set Lk+1 = Lk/2
4: while True do
5: Set ak+1 = 1

2Lk+1
+
√

1
4L2

k+1
+ a2

k
Lk
Lk+1

6: Set τk = 1
ak+1Lk+1

7: Set λk = τkζ
k + (1− τk)ηk

8: Choose ik = argmax
i∈{1,...,n}

‖∇iϕ(λk)‖22

9: Set ηk+1 = argmin
η∈Sik (λk)

ϕ(η)

10: Set ζk+1 = ζk − ak+1∇f(λk)

11: if ϕ(ηk+1) 6 ϕ(λk)− ‖∇ϕ(λk)‖22
2Lk+1

then

12: x̂k+1 = ak+1x(λk)+Lka2
kx̂
k

Lk+1a2
k+1

.

13: break
14: end if
15: Set Lk+1 = 2Lk+1.
16: end while
17: end for
Output: The points x̂k+1, ηk+1.

The key result for this method is that it guarantees convergence in terms of the
constraints and the duality gap for the primal problem, provided that it is strongly
convex.

Theorem C.4. Let the objective ϕ in the problem (P2) be L-smooth and the solution
of this problem be bounded, i.e. ‖λ∗‖2 6 R. Then, for the sequences x̂k+1, ηk+1, k > 0,
generated by Algorithm 2,

‖Ax̂k − b‖2 6
16nLR

k2
, |ϕ(ηk) + f(x̂k)| 6 16nLR2

k2
.

Proof. Once again, denote Ak = a2
kLk and note that Ak+1 = Ak + ak+1. From the

proof of Lemma C.3 we have for all λ ∈ H

aj+1〈∇ϕ(λj), λj − λ〉

6 Ajϕ(ηj)−Aj+1ϕ(ηj+1) + aj+1ϕ(λj) +
1

2
‖ζj − λ‖22 −

1

2
‖ζj+1 − λ‖22.

We take a sum of these inequalities for j = 0, . . . , k − 1 and rearrange the terms:

Akϕ(ηk) 6
k−1∑
j=0

{
aj+1

(
ϕ(λj) + 〈∇ϕ(λj), λ− λj〉

)}
+

1

2
‖ζ0 − λ‖22 −

1

2
‖ζk − λ‖22.

If we drop the last negative term and notice that this inequality holds for all λ ∈ H,
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we arrive at

Akϕ(ηk) 6 min
λ∈Λ


k−1∑
j=0

{aj+1(ϕ(λj) + 〈∇ϕ(λj), λ− λj〉) +
1

2
‖λ‖22

 ,

From this point onwards, the proof mimics the proof of Theorem B.1 word-for-
word. The only difference is the different bound on Ak, which is Ak > k2

8Ln as in
Theorem C.1.

D. Details for Section 5: Application to Optimal Transport and
Wasserstein Barycenter

D.1. Derivation of the dual entropy-regularized OT problem

The dual problem is constructed as follows.

min
X∈Q∩U(r,c)

〈C,X〉+ γ〈X, lnX〉

= min
X∈Q

max
y,z∈RN

{
〈C,X〉+ γ〈X, lnX〉+ 〈y,X1− r〉+

〈
z,XT1− c

〉}
= max

y,z∈RN

{
− 〈y, r〉 − 〈z, c〉+ min

X∈Q

N∑
i,j=1

Xij
(
Cij + γ lnXij + yi + zj

)}
Since the derivative of the entropy grows exponentially as Xij → 0, the objective under
minX∈Q grows as Xij → 0. This means that at the minimum point all the components
Xij > 0. Our next goal is to find minX∈Q. Using Lagrange multipliers for the constraint
1TX1 = 1, we obtain the problem

min
Xij>0

max
ν

{
N∑

i,j=1

[
Xij

(
Cij + γ lnXij + yi + zj

)]
− ν
[ N∑
i,j=1

Xij − 1

]}
,

we obtain that the solution to this problem is

Xij =
exp

(
− 1
γ

(
yi + zj + Cij

))
∑n

i,j=1 exp
(
− 1
γ (yi + zj + Cij)

)
This allows us to write the dual problem as

min
y,z∈RN

φ(y, z) = γ ln

 N∑
i,j=1

exp
(
−(yi + zj + Cij)/γ

)+ 〈y, r〉+ 〈z, c〉. (12)

By performing a change of variables u = −y/γ, v = −z/γ in (10) we arrive at an
equivalent, but possibly more well-known formulation

min
u,v∈RN

ϕ(u, v) = γ(ln
(
1TB(u, v)1

)
− 〈u, r〉 − 〈v, c〉), (13)
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[B(u, v)]ij = exp

(
ui + vj − Cij

γ

)
. (14)

Note that to distinguish between the dual problem in terms of variables (y, z) and its
reformulation in terms of variables (u, v) we use φ(y, z) in the first case and ϕ(u, v) in
the second. This also means that φ(y, z) = ϕ(−y/γ,−z/γ) by definition.

D.2. Deriving Sinkhorn’s algorithm as AM for the dual problem

Lemma D.1. The iterations

uk+1 ∈ argmin
u∈RN

ϕ(u, vk), vk+1 ∈ argmin
v∈RN

ϕ(uk+1, v),

can be written explicitly as

uk+1 = uk + ln r − ln
(
B
(
uk, vk

)
1
)
,

vk+1 = vk + ln c− ln

(
B
(
uk+1, vk

)T
1

)
.

Proof. From optimality conditions, for u to be optimal, it is sufficient to have
∇uϕ(u, v) = 0, or

r − (1TB(u, vk)1)−1B(u, vk)1 = 0. (15)

Now we check that it is, indeed, the case for u = uk+1 from the statement of this
lemma. We manually check that

B(uk+1, vk)1 = diag(e(uk+1−uk))B(uk, vk)1 = diag(eln r−ln(B(uk,vk)1))B(uk, vk)1 =

= diag(r) diag(B(uk, vk)1)−1B(uk, vk)1 = diag(r)1 = r

and the conclusion then follows from the fact that

1TB(uk+1, vk)1 = 1T r = 1.

The optimality of vk+1 can be proven in the same way.

D.3. Complexity bound for the non-regularized optimal transport

Next we describe how to apply our Algorithm 2 and Theorem 3 to find the non-
regularized OT distance with accuracy ε, i.e. find X̂ ∈ U(r, c) s.t. 〈C, X̂〉− 〈C,X∗〉 6 ε.
Algorithm 3 is the pseudocode of our new algorithm for approximating the non-
regularized OT distance.

Taking the bounds in (6) instead of bounds in [4][Theorem 3] and repeating the
proof steps in [4][Theorem 4] together with [4][Theorem 2], we obtain the final bound
of the complexity to find an ε-approximation for the non-regularized OT problem to

11



Algorithm 3 Accelerated Sinkhorn for OT

Input: Accuracy ε.
1: Set γ = ε

3 lnN , ε′ = ε
8‖C‖∞ .

2: Set (r̃, c̃) =
(
1− ε′

8

) (
(r, c) + ε′

8N (1,1)
)

3: for k = 1, 2, ... do
4: Perform an iteration of Algorithm 2 for the OT problem with marginals r̃, c̃ and

calculate X̂k and ηk.
5: Find X̂ as the projection of X̂k on U(r, c) by Algorithm 2 of [1].

6: if 〈C, X̂ − X̂k〉 6 ε
6 and f(x̂k) + φ(ηk) 6

ε
6

7: then Return X̂.
8: end for

be O
(
N5/2

√
lnN‖C‖∞
ε

)
. To show this, we equip the primal space E with 1-norm and

the dual space H with 2-norm. We define A : RN×N → R2N as the linear operator
defining the linear constraints of the problem (8), which is in this case defined as
A vecX = ((X1)T , (XT1))T . Then, ‖A‖21→2 = 2. Besides the Lipschitz constant, we
need to bound the norm of the solution to the dual problem (10) since that norm
enters the convergence rate in Theorem 3. To obtain the bound we need two following
lemmas.

Lemma D.2. Denote ν = min
i,j

Kij = e
−‖C‖∞

γ . Any solution (u∗, v∗) of the dual prob-

lem (13) satisfies

maxu∗i −minu∗i 6 − ln νmin
i
ri, max v∗i −min v∗i 6 − ln νmin

i
ci.

Proof. Taking the derivative of the dual objective with respect to u and denoting
Σ = 1TB(u∗, v∗)1, we obtain that

∇uϕ(u∗, v∗) = r − Σ−1B(u∗, v∗)1.

From the first order optimality conditions we have ∇uϕ(u∗, v∗) = 0. Then we have

1 > ri = Σ−1[B(u∗, v∗)1]i > Σ−1eu
∗
i ν〈1, ev∗〉.

From this for all i we get an upper bound

u∗i 6 ln Σ− ln ν〈1, ev∗〉.

On the other hand, since Cij > 0, we have Kij 6 1 and

ri = Σ−1[B(u∗, v∗)1]i 6 Σ−1eu
∗
i 〈1, ev∗〉, u∗i > ln Σ + ln ri − ln〈1, ev∗〉.

Combining the two above results, we obtain

maxu∗i −minu∗i 6 − ln νmin
i
ri.

The result for v∗i holds by the same exact argument.

12



Lemma D.3. There exists a solution (y∗, z∗) of (10) such that

‖(y∗, z∗)‖2 6 R :=
√
N/2

(
‖C‖∞ −

γ

2
ln min

i,j
{ri, cj}

)
.

Proof. We begin by deriving an upper bound on ‖(u∗, v∗)‖2. Using the results of
the previous lemma, it remains to notice that the objective ϕ(u, v) is invariant under
transformations u→ u+ tu1, u→ u+ tv1, with tu, tv ∈ R, so there must exist some
solution with maxi u

∗
i = −mini u

∗
i = ‖u∗‖∞, maxi vi = −mini vi = ‖v∗‖∞, so

‖u∗‖∞ 6 −1

2
ln νmin

i
ri, ‖v∗‖∞ 6 −1

2
ln νmin

i
ci.

As a consequence,

‖(u∗, v∗)‖2 6
√

2N‖(u∗, v∗)‖∞ 6 −
√
N/2 ln νmin

i,j
{ri, cj}

6
√
N/2

(
‖C‖∞
γ
− 1

2
ln min

i,j
{ri, cj}

)
.

By definition, u = − 1
γ y −

1
21, v = − 1

γ z −
1
21, so we have the inverse transformation

y = −γu− γ
21, z = −γv − γ

21. Finally,

R = ‖(y∗, z∗)− (y0, z0)‖2 =
∥∥∥(−γu∗ − γ

2
1,−γv∗ − γ

2
1)− (−γ

2
1,−γ

2
1)
∥∥∥

2
=

= ‖ − γ(u∗, v∗)‖2 = γ‖(u∗, v∗)‖2 6
√
N/2

(
‖C‖∞ −

γ

2
ln min

i,j
{ri, cj}

)

Next, consider the non-regularized OT problem

min
X∈Q∩U(r,c)

〈C,X〉. (16)

Let X∗ be the solution of the problem (16) and X∗γ be the solution of the regularized
problem

min
X∈Q∩U(r,c)

〈C,X〉+ γ〈X, lnX〉. (17)

Then, we have

〈C, X̂〉 = 〈C,X∗〉+ 〈C,X∗γ −X∗〉+ 〈C, X̂k −X∗γ〉+ 〈C, X̂ − X̂k〉. (18)

Now we estimate the second and third term in the r.h.s.
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〈C,X∗γ −X∗〉 = 〈C,X∗γ〉 − γH(X∗γ) + γH(X∗γ)− min
X∈U(r,c)

〈C,X〉

= min
X∈U(r,c)

{〈C,X〉 − γH(X)}+ γH(X∗γ)− min
X∈U(r,c)

〈C,X〉 (19)

Furthermore, since our algorithm solves problem (P1) with f(x) = 〈C,X〉 − γH(X)
and X∗γ is the solution, we have

〈C, X̂k −X∗γ〉 = 〈C, X̂k〉 − γH(X̂k))− (〈C,X∗γ〉 − γH(X∗γ)) + γ(H(X̂k)−H(X∗γ)

1○
6 f(x̂k) + ϕ(ηk) + γ(H(X̂k)−H(X∗γ)), (20)

where 1○ follows from the duality gap bound f(x̂k)− f∗ 6 f(x̂k) + ϕ(ηk).
Then by (20) and (19) we have

〈C,X∗γ −X∗〉+ 〈C, X̂k −X∗γ〉
6 min

X∈U(r,c)
{〈C,X〉 − γH(X)}+ γH(X∗γ)− min

X∈U(r,c)
〈C,X〉

+ f(x̂k) + ϕ(ηk) + γ(H(X̂k)−H(X∗γ)).

Next we use that −H(X) ∈ [−2 lnn, 0] for any X ∈ U(r, c), which implies

min
X∈U(r,c)

{〈C,X〉 − γH(X)} − min
X∈U(r,c)

〈C,X〉 6 0. (21)

and finally implies

〈C,X∗γ −X∗〉+ 〈C, X̂k −X∗γ〉 6 f(x̂k) + ϕ(ηk) + 2γ lnn. (22)

Combining (18) and (22), we obtain

〈C, X̂〉 6 〈C,X∗〉+ 〈C, X̂ − X̂k〉+ f(x̂k) + ϕ(ηk) + 2γ lnn. (23)

We immediately see that, when the stopping criterion in step 6 of Algorithm 3 is
fulfilled, the output X̂ ∈ U(r, c) satisfies 〈C, X̂〉 − 〈C,X∗〉 6 ε.

It remains to obtain the complexity bound. First, we estimate the number of
iterations in Algorithm 3 to guarantee 〈C, X̂ − X̂k〉 6 ε

6 and, after that, estimate the
number of iterations to guarantee f(x̂k) + ϕ(ηk) 6

ε
6 . By Hölder’s inequality, we have

〈C, X̂ − X̂k〉 6 ‖C‖∞‖X̂ − X̂k‖1. By Lemma 7 in [1],

‖X̂ − X̂k‖1 6 2
(
‖X̂k1− r‖1 + ‖X̂T

k 1− c‖1
)
. (24)

Next, we obtain two estimates for the r.h.s of this inequality. First, by the definition of
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the operator A and the vector b,

‖X̂k1− r‖1 + ‖X̂T
k 1− c‖1 6

√
2N‖Avec(X̂k)− b‖2

6
16R‖A‖2E→H

√
2N

γk2
6

32R
√

2N

γk2
. (25)

Where we used Theorem 3 and the bound for R defined in Lemma D.3. Note that the
statement of Theorem 3 involves n, the number of blocks, which in this case is simply
equal to 2. Here we used the choice of the norm ‖ · ‖1 in E = Rn2

and the norm ‖ · ‖2
in H = R2n. Indeed, in this setting ‖A‖E→H is equal to the maximum Euclidean norm
of a column of A. By definition, each column of A contains only two non-zero elements,
which are equal to one. Hence, ‖A‖E→H =

√
2.

Combining (24) and (25) we obtain

〈C, X̂ − X̂k〉 6 2‖C‖∞
32R
√

2N

γk2
.

Setting γ = ε
3 lnN , we have that, to obtain 〈C, X̂ − X̂k〉 6 ε

6 , it is sufficient to choose

k = O

(
N1/4

√
R‖C‖∞ lnN

ε

)
. (26)

At the same time, since ‖A‖E→H =
√

2, by Theorem 3,

f(x̂k) + ϕ(ηk) 6
32R2

γk2
.

Since we set γ = ε
3 lnN , we conclude that in order to obtain f(x̂k) + ϕ(ηk) 6

ε
6 , it is

sufficient to choose

k = O

(
R
√

lnN

ε

)
. (27)

To estimate the number of iterations required to reach the desired accuracy, we should
take maximum of (26) and (27). We return to the bound established in Lemma D.3:

R 6
√
N/2

(
‖C‖∞ −

γ

2
ln min

i,j
{ri, cj}

)
.

In Algorithm 3 of the main part of the paper we modify the marginals r, c to have
min
i,j
{ri, cj} > ε

64N‖C‖∞ . As it was shown in the proof of Theorem 1 of [1], the optimal

value of this problem differs from the optimal value of the original problem by no more
than 2 lnNγ + ε

2 = 7
6ε. For the modified problem we hence have the bound

R 6
√
N/2

(
‖C‖∞ −

ε

2 lnN
ln

ε

64N‖C‖∞

)
= O

(√
N‖C‖∞

)
.
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The ratio of the bounds (26) and (27) is equal to
√
R

N1/4
√
‖C‖∞

, so from our estimate of

R we can see that these bounds are of the same order. Hence, we finally obtain the
estimate on the number of iterations

O

(
N1/2

√
lnN‖C‖∞
ε

)
.

Since each iteration requires O(N2) arithmetic operations, which is the same as in
the Sinkhorn’s algorithm, we get the total complexity

O

(
N5/2

√
lnN‖C‖∞
ε

)
.

We would also like to note that the additional factor N1/2 compared to the complexity
of the Sinkhorn’s algorithm seems to be the result of the very rough estimate of
‖Avec(X̂k)− b‖2 in (25), and in our experiments our method scales approximately in
the same way as the Sinkhorn’s algorithm when increasing the size of the problem N .
Figure 1 should illustrate it.

Figure 1. Experiments for OT with ε = 0.04 and varying dimension N

We also add to comparison the rate of decay of the dual objective in Figure 2.
Numerical experiments in [5] were performed with an instance of Mirror-prox algo-

rithm. Authors shared their code, and now the python implementation of the method
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Figure 2. Decrease of the dual objective for ε = 0.004, N = 1568

is available at https://github.com/kumarak93/numpy_ot. We compared the rate of
decay of primal non-regularized function from a transportation plan, which is projected
on the feasible set with Algorithm 2 from [1]. The results is presented in Figure 3. For
AAM-LS algorithm ε = 4e− 4.

E. Accelerating IBP

E.1. Derivation of the dual entropy-regularized WB problem

The Iterative Bregman Projections algorithm for solving the regularized Wasserstein
Barycenter problem is also an instance of an alternating minimizations procedure [3, 6].
Hence, our accelerated alternating minimizations method may also be used for this
problem. Denote by ∆N the N -dimensional probability simplex. Given two probability
measures p, q and a cost matrix C ∈ RN×N+ we define optimal transportation distance
between them as

WC(p, q) = min
π∈Π(p,q)

〈π,C〉.

For a given set of probability measures pi and cost matrices Ci we define their weighted
barycenter with weights w ∈ ∆m as a solution of the following convex optimization

17
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Figure 3. Decrease of the primal non-regularized objective for ε = 0.00004, N = 1568

problem:

min
q∈∆N

m∑
i=1

wiWCi(pi, q).

We use c to denote max
i=1,...,m

‖Ci‖∞. We will also be using the notation p = [p1, . . . , pm].

Using the entropic regularization we define the regularized OT-distance for γ > 0:

WC,γ(p, q) = min
π∈Π(p,q)

〈π,C〉+ γH(π),

where H(π) :=
∑N

i,j=1 πij lnπij = 〈π, lnπ〉. One may also consider the regularized
barycenter which is the solution to the following problem:

min
q∈∆N

m∑
l=1

wlWCl,γ (pl, q) (28)

The following lemma is referring to Lemma 1 from [6].

Lemma E.1. The dual (minimization) problem of (28) is

min∑
l wlvl=0

ϕ(u, v), (29)
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where

min
u,v∑m

l=1 wlvl=0

γ

m∑
l=1

wl
{

ln
(
1TBl (ul, vl)1

)
− 〈ul, pl〉

}
(30)

u = [u1, . . . , um], v = [v1, . . . , vm], ul, vl ∈ RN , and

Bl(ul, vl) := diag(eul)Kl diag(evl)

Kl = exp

(
−Cl
γ

)
Moreover, the solution π∗γ to (28) is given by the formula[

π∗γ
]
l

= Bl (u
∗
l , v
∗
l ) /

(
1TBl(u

∗
l , v
∗
l )1
)
,

where (u∗, v∗) is a solution to the problem (29).

Proof. Set Q = {X ∈ RN×N+ : 1TX1 = 1}. In its expanded form, the primal problem
takes the following form:

min
πl∈Q
πl1=pl

1Tπ1=...=1Tπm=q

m∑
l=1

wl {〈πl, Cl〉+ γ〈πl, lnπl〉} (31)

The above problem is equivalent to the problem

min
πl∈Q

max
λl,µl

m∑
l=1

(wl {〈πl, Cl〉+ γ〈πl, lnπl〉}+ 〈λl, πl1− pl〉)+
m−1∑
l=1

〈µl,1Tπl−1Tπm〉, (32)

min
πl∈Q

max
λl,µl

m∑
l=1

wl {〈πl, Cl〉+ γ〈πl, lnπl〉}+ 〈λl, πl1− pl〉+ 〈µl,1Tπl〉

where µm = −
∑m−1

l=1 µl.

We introduce new variables ul = − λl
γwl

, vl = − µl
γwl

, l = 1, ...,m. We can now
manipulate each term in the sum above exactly as we did for the optimal transportation
problem. This way we arrive at the following problem.

min
u,v

vm=− 1

wm

∑m−1
l=1 wlvl

γ

m∑
l=1

wl
{

ln
(
1TBl (ul, vl)1

)
− 〈ul, pl〉

}
. (33)

The constraints vm = − 1
wm

∑m−1
l=1 wlvl is equivalent to

∑m
l=1wlvl = 0, that leads to

final dual minimization problem:
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min
u,v∑m

l=1 wlvl=0

γ

m∑
l=1

wl
{

ln
(
1TBl (ul, vl)1

)
− 〈ul, pl〉

}
. (34)

E.2. Deriving IBP algorithm as AM for the dual problem

The next result is well-known, but we include its proof in here for the sake of complete-
ness: the objective can also be minimized exactly over the variables u, v.

Lemma E.2. Iterations

uk+1 = argmin
u

ϕ(u, vk), vk+1 = argmin
v

ϕ(uk, v),

may be written explicitly as

uk+1
l = ukl + ln pl − ln (Bl (ul, vl)1) ,

vk+1
l = vkl +

m∑
j=1

wj ln(Bj(u
k
j , v

k
j )T 1)− lnBl(ul, vl)

T1.

Proof. Since each term in the sum in the objective only depends on one pair of vectors
(ul, vl), minimizing over u equivalent to minimizing over each ul. We now have to find
a solution of

min
ul

ln (1Bl(ul, v
k
l )1)− 〈ul, pl〉.

This is the same problem as in Lemma D.1 with pl instead of r, so the solution has
the same form.

To minimize over v we will use Lagrange multipliers:

L(u, v, τ) = γ

m∑
l=1

wl
{

ln
(
1TBl (ul, vl)1

)
− 〈ul, pl〉

}
+ 〈τ,

m∑
l=1

wlvl〉

= γ

m∑
l=1

wl

{
ln
(
1TBl (ul, vl)1

)
− 〈ul, pl〉 − 〈vl,

1

γ
τ〉
}
.

Again, we can minimize this Lagrangian independently over each vl. By the results
from Lemma D.1, we have

vk+1
l = vkl + ln

1

γ
τ − lnBl(ul, vl)

T1.

This iterate needs to satisfy the constraint
m∑
l=1

wlv
k+1
l = 0. Assuming that the previous
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iterate satisfies this constraint, we have an equation for τ :

m∑
l=1

wl ln
1

γ
τ =

m∑
l=1

wl lnBl(ul, vl)
T1.

Since
∑m

l=1wl = 1, we have

ln
1

γ
τ =

m∑
l=1

wl lnBl(ul, vl)
T1.

By plugging this into the formula for vk+1
l we obtain the explicit form of the alternating

minimization iteration from the statement of the lemma.

This result allows us to immediately apply our acceleration scheme to this problem.
The resulting method is presented as Algorithm 4. We also adopt problem-specific
notation: here ϕ(·) denotes the dual objective (30), the first mN coordinates of the dual
points ηk, ζk, λk correspond to the coordinate block u, the other coordinates – to the
block v. For example, ηk1 denotes the vector of variables u1 corresponding to the point
ηk, ηkm+2 denotes the vector of variables v2 corresponding to the point ηk. The map

x(λ) defined previously also takes the explicit form xl(u, v) = (1TBl(u, v)1)−1Bl(u, v)
for l = 1, . . . ,m.
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Algorithm 4 Accelerated Iterative Bregman Projection (Line Search)

1: A0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: for k > 0 do
3: Set βk = argmin

β∈[0,1]
ϕ
(
ηk + β(ζk − ηk)

)
4: Set λk = βkζ

k + (1− βk)ηk
5: Choose ik = argmax

i∈{1,2}
‖∇iϕ(λk)‖2

6: if ik = 1 then
7: for l = 1, . . . ,m do
8: ηk+1

l = λkl + ln pl − ln
(
Bl
(
λk1, λ

k
2

)
1
)

9: ηk+1
m+l = λkm+l

10: end for
11: else
12: for l = 1, . . . ,m do
13: ηk+1

l = λkl
14: ηk+1

m+l = λkm+l +
∑m

j=1wj ln(Bj(u
k
j , v

k
j )T 1)− lnBl(ul, vl)

T1
15: end for
16: end if
17: Find ak+1, Ak+1 = Ak + ak+1 from

ϕ(λk)−
a2
k+1

2(Ak + ak+1)
‖∇ϕ(λk)‖22 = ϕ(ηk+1)

18: Set ζk+1 = ζk − ak+1∇ϕ(λk)

19: Set x̂k+1 = ak+1x(λk)+Akx̂k

Ak+1
.

20: end for
Output: Transportation matrices xk+1

l , dual point ηk+1.

Note that on each iteration of this method we take a block-wise minimization step
over mN variables out of the whole 2mN variables, i.e. we are applying our accelerated
Alternating Minimization scheme with the number of blocks n = 2. Since in this case
our method has the exact same primal-dual properties as the accelerated method used
in [6], while the complexity of our method only differs by a value dependent only on n,
which in this case is simply equal to 2, the same complexity analysis applies and our

method has the same complexity O
(
mN5/2

√
lnN maxl ‖Cl‖∞

ε

)
as the PDAGD method in

[6].

E.3. Complexity bound for the non-regularized WB problem

Next we describe how to apply our Algorithm 2 and Theorem 3 to find the non-
regularized WB distance with accuracy ε, i.e. find X̂ ∈ U(r, c) s.t. 〈C, X̂〉−〈C,X∗〉 6 ε.
Algorithm 5 is the pseudocode of our new algorithm for approximating the non-
regularized WB distance.

Taking the bounds in (6) instead of bounds in [4][Theorem 3] and repeating the
proof steps in [4][Theorem 4] together with [4][Theorem 2], we obtain the final bound
of the complexity to find an ε-approximation for the non-regularized WB problem to

be O
(
N5/2

√
lnN‖C‖∞
ε

)
. We need to bound the norm of the solution to the dual problem
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Algorithm 5 Accelerated IBP

Input: Accuracy ε.
1: Set γ = ε

2 lnN , ε′ = ε
8 maxl ‖Cl‖∞ .

2: Set p̃l =
(
1− ε′

4

) (
pl + ε′

4N 1
)

3: for k = 1, 2, ... do
4: Perform an iteration of Algorithm 2 for the WB problem with marginals p̃ and

calculate X̂k
l , l = 1, · · · ,m and ηk.

5: Find q̄ =
∑m

l=1wl(X̂
k
l )T1

6: Calculate X̂l as the projection of X̂k
l on U(p̃, q̄) by Algorithm 2 of [1].

7: if
∑m

l=1wl

{
〈C, X̂l〉 − 〈C,X∗l 〉

}
6 ε

4 and f(x̂k) + φ(ηk) 6
ε
4

8: then Return X̂.
9: end for

(32) since that norm enters the convergence rate in Theorem 3. The bound is given by
the two following lemmas.

Lemma E.3. Any solution (u∗, v∗) of the problem (30) satisfies

max[u∗l ]i −min[u∗l ]i 6
‖Cl‖∞
γ

− ln min
i

[pl]i,

max[v∗l ]i −min[v∗l ]i 6
‖Cl‖∞
γ

+

m∑
k=1

wk
‖Ck‖∞
γ

.

Proof. The proof of the first inequality is the same as in Lemma D.2, since the
derivatives of the objective in the problem (30) with respect to ul have the same for as
in the problem (10).

For the dual iterates vk+1 we have the formula

vk+1
l = vkl +

m∑
j=1

wj ln(Bj(u
k
j , v

k
j )T 1)− lnBl(ul, vl)

T1 =

= vkl +

m∑
j=1

wj ln ev
k
j +

m∑
j=1

wj ln(KT
j e

uk)− ln ev
k
l − lnKT

l e
ukl =

=

m∑
j=1

wj ln(KT
j e

ukj )− lnKT
l e

ukl .

Since this was derived from the equality of the gradient to zero and holds for any
uk, which from now on we will denote as simply u, it must also hold for v∗l . Denote

νj = e−
‖Cj‖∞

γ . We then have

ln νj〈1, euj 〉 6 [ln(KT
j e

uj )]i 6 ln〈1, euj 〉.
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Then

m∑
j=1

wj ln νj〈1, euj 〉 − ln〈1, eul〉 6 [v∗l ]i 6
m∑
j=1

wj ln〈1, euj 〉 − ln νl〈1, eul〉.

Finally,

max[v∗l ]i −min[v∗l ]i 6 −
m∑
j=1

wj ln νj − ln νl =
‖Cl‖∞
γ

+

m∑
j=1

wj
‖Cj‖∞
γ

.

Set (u0, v0). Once again, we know the exact value of the smoothness parameter of
the dual problem in terms of variables λi, µl, where i ∈ {1, . . . ,m}, l ∈ {1, . . . ,m− 1}.
Using the above Lemma we will now derive the bound on the distance to the dual
solution in these variables.

Lemma E.4. With (λ0, µ0) = (0, 0) there exists a solution of the dual problem (32)in
the coordinate space (λ, µ) such that

R2 = ‖(λ∗, µ∗)‖22 6 N

((
max
l
‖Cl‖∞ −

γ

2
min
l,i

[pl]i

)2

+ max
l
‖Cl‖2∞

)
.

Proof. The coordinates (λ, µ) and (u, v) are connected by the transformation λl =
−γwlul, l 6 m, µi = −γwivi, i < m.

As a function of (u, v) the dual objective φ(u, v) is invariant under transformations
of the form ul → ul + tl1 with arbitrary tl ∈ R, and vl → vl + sl1 with sl such that∑m

l=1wlsl = 0. Hence, there exists a solution (u∗, v∗) such that for l ∈ 1, . . . ,m

max[u∗l ]i = −min[u∗l ]i = ‖u∗l ‖∞,

and for j ∈ 1, . . . ,m− 1

max[v∗j ]i = −min[v∗j ]i = ‖v∗j ‖∞.

Using the result of the previous Lemma, we have now guaranteed the existence of a
solution (u∗, v∗) such that

‖u∗l ‖∞ 6
‖Cl‖∞

2γ
− 1

2
ln min

i
[pl]i,

‖v∗l ‖∞ 6
‖Cl‖∞

2γ
+

m∑
k=1

wk
‖Ck‖∞

2γ
.
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‖λ∗l ‖∞ = γwl‖u∗l ‖∞ 6 wl

(
‖Cl‖∞

2
− γ

2
ln min

i
[pl]i

)
6

6 wl

(
max
l
‖Cl‖∞ −

γ

2
min
l,i

[pl]i

)
,

‖µ∗l ‖∞ = γwl‖v∗l ‖∞ 6 wl max
l
‖Cl‖∞, l ∈ {1, . . . ,m− 1}

Finally,

‖(λ∗, µ∗)‖22 =

m∑
l=1

‖λl‖22 +

m−1∑
j=1

‖µ∗j‖22 6 N

 m∑
l=1

‖λl‖2∞ +

m−1∑
j=1

‖µ∗j‖2∞


6 N

((
max
l
‖Cl‖∞ −

γ

2
min
l,i

[pl]i

)2

+ max
l
‖Cl‖2∞

)

Next, consider the non-regularized WB problem

min
X∈Q

Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉, (35)

where A vec(X) = (X11, · · · , Xm1, (X
T
1 1 − XT

m1), (XT
2 1 − XT

m1), · · · , (XT
m−11 −

XT
m1))T and b = (p1, · · · , pm, 0, · · · , 0)T

Let X∗ be the solution of the problem (35) and X∗γ be the solution of the regularized
problem

min
X∈Q

Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉+ γ〈Xl, lnXl〉. (36)

Then, we have

m∑
l=1

wl〈Cl, X̂l〉

=

m∑
l=1

wl

{
〈Cl, X∗l 〉+ 〈Cl, Xl

∗
γ −X∗l 〉+ 〈Cl, X̂k

l −Xl
∗
γ〉+ 〈Cl, X̂l − X̂k

l 〉
}
. (37)

Now we estimate the second and third term in the r.h.s.
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m∑
l=1

wl〈Cl, Xl
∗
γ −X∗l 〉

=

m∑
l=1

wl
{
〈Cl, Xl

∗
γ〉 − γH(Xl

∗
γ) + γH(Xl

∗
γ)
}
− min

X∈Q
Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉

= min
X∈Q

Avec(X)=b

m∑
l=1

wl {〈Cl, Xl〉 − γH(Xl)} − min
X∈Q

Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉+ γ

m∑
l=1

wlH(Xl
∗
γ)

(38)

Furthermore, since our algorithm solves problem (P1) with f(x) =∑m
l=1wl {〈Cl, Xl〉 − γH(Xl)} and Xl

∗
γ is the solution, we have

m∑
l=1

wl〈Cl, X̂k
l −Xl

∗
γ〉 =

m∑
l=1

wl

{
〈Cl, X̂k

l 〉 − γH(X̂k
l )
}

−
m∑
l=1

wl
{
〈Cl, Xl

∗
γ〉 − γH(Xl

∗
γ)
}

+ γ

m∑
l=1

wl

{
H(X̂k

l )−H(Xl
∗
γ)
}

1○
6 f(x̂k) + ϕ(ηk) + γ

m∑
l=1

wl

{
H(X̂k

l )−H(Xl
∗
γ)
}
, (39)

where 1○ follows from the duality gap bound f(x̂k)− f∗ 6 f(x̂k) + ϕ(ηk).
Then by (39) and (38) we have

m∑
l=1

wl

{
〈Cl, Xl

∗
γ −X∗l 〉+ 〈Cl, X̂k

l −Xl
∗
γ〉
}

6 min
X∈Q

Avec(X)=b

m∑
l=1

wl {〈Cl, Xl〉 − γH(Xl)}+ γ

m∑
l=1

wlH(Xl
∗
γ)− min

X∈Q
Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉

+ f(x̂k) + ϕ(ηk) + γ

m∑
l=1

wl

{
H(X̂k

l )−H(Xl
∗
γ)
}
.

Next we use that −H(Xl) ∈ [−2 lnn, 0] for any Xl ∈ Q, which implies

min
X∈Q

Avec(X)=b

m∑
l=1

wl {〈Cl, Xl〉 − γH(Xl)} − min
X∈Q

Avec(X)=b

m∑
l=1

wl〈Cl, Xl〉 6 0. (40)

and finally implies

m∑
l=1

wl

{
〈Cl, Xl

∗
γ −X∗l 〉+ 〈Cl, X̂k

l −Xl
∗
γ〉
}
6 f(x̂k) + ϕ(ηk) + 2γ lnn. (41)
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Combining (37) and (41), we obtain

m∑
l=1

wl〈Cl, X̂l〉 6
m∑
l=1

wl〈Cl, X∗l 〉 +

m∑
l=1

wl〈Cl, X̂l − X̂k
l 〉 + f(x̂k) + ϕ(ηk) + 2γ lnn.

(42)

We immediately see that, when the stopping criterion in step 6 of Algorithm 5 is fulfilled,
the output X̂l ∈ {X ∈ Q|Avec(X) = b} satisfies

∑m
l=1wl〈C, X̂l〉−

∑m
l=1wl〈C,X∗l 〉 6 ε.

It remains to obtain the complexity bound. First, we estimate the number of iterations
in Algorithm 5 to guarantee

∑m
l=1wl〈Cl, X̂l − X̂k

l 〉 6
ε
4 and, after that, estimate the

number of iterations to guarantee f(x̂k) + ϕ(ηk) 6
ε
4 .

Denote ql = (X̂k
l )T1. From the scheme of [6] and since ‖A vec(X)−b‖1 =

∑m
l=1 ‖ql−

ql+1‖1 after an update of u variables we have

m∑
l=1

wl〈Cl, X̂l − X̂k
l 〉 6 max

l
‖Cl‖∞

m∑
l=1

wl‖X̂l − X̂k
l ‖1

6 2 max
l
‖Cl‖∞

m∑
l=1

wl

(
‖(p̃l − pl‖1 + ‖(X̂k

l )T1− q̄‖1
)

6 2 max
l
‖Cl‖∞ε′ + 2 max

l
‖Cl‖∞max

l
wl‖A vec(X)− b‖1. (43)

It remains to show that 2 maxl ‖Cl‖∞maxl wl‖A vec(X)− b‖1 6 ε/4.
By Theorem 3

‖A vec(X)− b‖1 6
16R‖A‖2E→H

√
2N

γk2
.

Setting

16RL
√

2N

k2
=

16R‖A‖2E→H
√

2N

γk2
6

ε

8 maxl ‖Cl‖∞maxl wl
, (44)

together with the choice of γ = ε
2 lnN and since ‖A‖E→H =

√
2, we have that, to

obtain 〈C, X̂l − X̂k
l 〉 6 ε

4 , it is sufficient to choose

k = O

(
N1/4

√
‖Cl‖∞maxl wlR‖C‖∞ lnN

ε

)
. (45)

At the same time, by Theorem 3,

f(x̂k) + ϕ(ηk) 6
32R2

γk2
.

Since we set γ = ε
2 lnN , we conclude that in order to obtain f(x̂k) + ϕ(ηk) 6

ε
4 , it is
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sufficient to choose

k = O

(
R
√

lnN

ε

)
. (46)

To estimate the number of iterations required to reach the desired accuracy, we should
take maximum of (45) and (46). We return to the bound established in Lemma D.3:

R2 = ‖(λ∗, µ∗)‖22 6 N

((
max
l
‖Cl‖∞ −

γ

2
min
l,i

[p̃l]i

)2

+ max
l
‖Cl‖2∞

)

or one can write

R = O
(√

N‖C‖∞
)
.

The ratio of the bounds (45) and (46) is equal to
√
R

N1/4
√

maxl wl‖C‖∞
, so from our estimate

of R we can see that these bounds are of the same order. Hence, we finally obtain the
estimate on the number of iterations

O

(
N1/2

√
lnN‖C‖∞
ε

)
.

Since each iteration requires O(mN2) arithmetic operations, which is the same as in
the IBP algorithm, we get the total complexity

O

(
mN5/2

√
lnN‖C‖∞
ε

)
.

F. Implementation Details

Looking through the proof of convergence for Algorithm 1 one can notice that line search
subroutine need to fulfill two conditions: 〈∇f(yk), vk − yk〉 > 0 and f(yk) 6 f(xk). We
got significant increase of performance, when were using these condition as a stopping
criteria for line search subroutine. Another increase of performance came from the
observation that the value of β satisfying the condition is often close to k−1

k+2 , the value
appearing in Nesterov’s type accelerated methods [8]. The other observation is that
the value of β satisfying the conditions frequently does not change from iteration to
iteration with the same parity. So we use the value βt−2 as a starting point for the line
search subroutine to find βt on t-th iteration. These and other implementation details
are available on https://github.com/nazya/AAM
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