Decentralized Single-Timescale Actor Critic on Zero-Sum Two-Player Stochastic Games

A. Proofs of propositions and lemmas

In this section, we give the proofs of propositions and lemmas in §4. To simplify the notation, we write KL(7! || 72) =
KL(7! (| s) || #2(-| s)), where KL computes the Kullback—Leibler divergence.

A.1. Proof of Lemma 3.1

The maximization problem that we are supposed to solve is formulated as

max Ey, [(Q7(s,), (-] 5)) = B-KL(x' (- ) | mh(-|9))] (A1)
subject to Z l(a'|s) =1, VseS. (A.2)
ac Al

The Lagrangian of the above problem is given by
| (@Hsmcl) -8 KUE ) mbe ) )Jamr [ (3 wlalls-1)are), a3
seS sES ale Al
where A(-) is the introduced dual parameter. Plugging in (3.1), we obtain the following optimality condition,
exp {87 Qi(s,a’) + 7 - ¢! (s,a") TO}
exp{l + D wea exp(Tk_1 cpl(s,a)TOL) + B flj\k((?)}

Hence, we have 7t (a! | s) oc exp{87! - QL(s,a') + 7, ' - ¢'(s,a') T0L}. By plugging in the definition of Q} in (3.3), it
follows that

ml(al|s) =

(A4)

Ohpr = Torr - (B wi + 7, 60), (A5)
which concludes the proof of Lemma 3.1.
A.2. Proof of Proposition 4.4
Proof. Let
. 1 1
B = (Y 6 (su0,ak0)0 (si0ab)) (A6)
i=1
-1
@ = (Bp., [0' (5.0 (5,a)T]) (A7)
1 & 1
VU= N ((1 -7) '7“1'1,1 +- Q7 (81,27 azl,z)) : ¢1(Si,1, a},l)’ (A.8)
i=1
v=E,,, [T”’lcﬂ”r’z“@“i (s,a',a?) - ' (s, a,l)]. (A.9)

Then, we can write
T T QT = ¢! (s,0") @1 = ¢! (s,a") T (Do),
@ﬂ’}wl = ¢1(S,GI)TWk+1 = (bl(saal)THR(@a)'

Here, recall that w1 is the solution to the critic update problem in (3.8). The closed form of w1 is given in (3.7). By
Assumption 4.2, it holds that $v = Iz (Pv). Then, we have

|Tﬂ—i+17%%+1@ﬂ—}c — @'“'liJrl‘
= |¢'(s,a") TR (Pv — OD)|
< ll¢*(s,a")]2 - [Hr(Pv — D)
< ||ov — &5,
<1 = @l2 - [Jollz + [[ @] - [[7 = vl|2,
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where the second inequality follows from the fact that ||¢! || < 1 uniformly, and T is a contraction, and the last inequality
follows from the triangle inequality. Since |r!| < Tyax, [|w]l2 < R, and ||¢t |2 < 1, it follows that ||v]|2 < 7max + R. The
following lemmas provide upper bound for | — v|| and high-probability upper bounds for ||® — ®||and || D||.

Lemma A.1. For v and v defined in (A.8) and (A.9), it holds with probability at least 1 — ¢ that

~ 4me+R 2d
7= oy < 2 £ (2,

N 5

where the uncertainty comes from .

Proof. See §B.2 for a detailed proof. O

Lemma A.2. For ® and ® defined in (A.7) and (A.6), it holds with probability at least 1 — § that

VN
VN, — 4log(2d/5)’

1
(VNA./4) -log (2d/3) — 1

1® — | < and ||y <

where the uncertainty comes from 3.
Proof. See §B.3 for a detailed proof. O

Then, it holds with probability at least 1 — 24 that

Ep[|’1[‘7"1£+17%i+1 @7711 _ @77114-1 |]
SEy (|2 — 22 [[oll2 + [[@]l2 - |0 — vll2]

- Tmax + R 4(rmax + 1) log(2d/4)
T (VNX/J4) log™t(2d/6) =1 VN, — 4log(2d/6)
2(71maux + R)

= (VN /4) -log~*(2d/6) — 1
16(7max + R) 2d
< (%)

Here, the expectation IE is taken with respect to (s, a', a?) ~ p, the uncertainty comes from ® and v, and the last inequality

holds whenever v/ N\, /(4log(2d/8)) > 2, which is satisfied by our choose of N. Thus, we conclude the proof of
Proposition 4.4. O

A.3. Proof of Lemma 5.1

Proof. We first give the following lemma which holds for 7} 11 mj and @’T; that comes from Algorithm 3.

Lemma A.3. Let 7,7, and Q™+ be given by Algorithm 3, and 7! be any policy of player 1. Then we have

(log(mhq/mh),mt —mh) = B~ (@, b — x}).

Proof. See §B.1 for a detailed proof. O
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Then, it holds that

fi = [V(PT - ]P’T’i“)@”’l“]
= [7P<@ﬂ’i,77i - 7"1%4—1)]
= vB[P(log(mhy 1 /m3), Tk — Thy1)]
= vﬂ[ (log(mhy o /mh) +log(my/mh), mh) — P<log(ﬂi+1/7fi)mi>]
= 78[P(KL(x! | i) — KL(x || mhy1) = KL(rhy, [ 7})
SVB[ (KL(m} || mp,) — KL(} Hﬁk+1)):|

where the third equality follows from Lemma A.3. Upon telescoping with respect to k, it holds that

K K
S he< 6 [P ) - KL(e! | nhy))]
k=0 k=0

=5 [P(KL(! 1 md) — KL(rE | hep)]

< 8- [PKL(m; || m5)].

By the initialization of policies in (3.2), 7§ is a uniform policy. Thus, it holds for any state s € S that

KL(r! ) = 3 mh(at|s)log T2l = $™ (et )10 U1 —1og(1at) - pu(ed).

T( .1 1
= malls) e, 1/1AT
Here, H(7!) is the Shannon entropy of 7}, and thus is always positive. Then, we obtain that
K
> fu < Blog(|AY)),

k=0

which concludes the proof of Lemma 5.1.
A 4. Proof of Lemma 5.2
Proof. 1t holds that
hk — Tﬂllc+17%i+l @‘n—llc _ Qﬂi+l7%i+l

— (1 _ 'Y) -4 ry[P""i+1ﬁ1%+1 Q\”llg _ Q”i+1v%i+1
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Here, the second equality follows from the definition of Q™ ™ in (2.1), and we define
er = QT — T o QT
_ Ot TR 4 (PR prhec ) O
= Q™ — TR Q™% + 4 (P™* — PT3)Q

(A.10)

(A.11)

(A.12)

(A.13)
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Since

(]Pﬂrk _ ]P""k)Q“l« — ]P)[<7Ti — 71-11-&-1’ Q“k)]
= B-P|(log(mh 1 /7), k= mh 1)
=B P[~KL(m || T 41) — KL(mppy || 7))
<0,
where the second equality follows from Lemma A.3. We then have
er = @”i —_ ’]I"“'tlc+1ﬁi+1 @\Wllc < Q\Trllc _ ’]I‘Trliﬁiéjﬂi.

Then, it holds that

~ 1 1 a2 A1
Ty ™ ,T0 us
epr1 < QR+ — TTht1Tht1 QMh+1

1 1 =2 A1 1 =2 A1 1 =2 1
= @”k+1 — T7™k+1Tk+1 Q"% + T7k+1Tk+1 Q”k _ (Tﬂk+17ﬂk+1)2@ﬂk

=—ep 1 =2
:rwak+1’7rk+lek

+ (Tﬂ-llc-f—l’%i-f—l)zéﬂ-llc _ ’]I‘”llc+1>7~fi+1 @7711+1

1 x2
=P k41" Tk+1¢y

1 =2 1 ~2
= APkt Tkt 1ey — ([ — 4P e+ Th+1)ey (A.14)
By applying (A.14) k times, we obtain that

k k—1 k

er < ’yk(H ]P)ﬂ—"l’ﬂ?)eo - Z’}/i( H ]P)ﬂ—fl’ﬂ?)([ — ’YPW’IC%’%%”)EIC,Z‘,L (A.15)

i=1 i=0  j=k—it+1
Plugging (A.15) into (A.12), we obtain that

k—1

] k k
<Y (PR (TP e = DA [ P = AP T e ). (A.16)
=1 i— =0  j=k—itl

<.

Since 1| < rmaxs |w]l2 < R, and ||¢[]2 < 1, it holds that

|60‘ = |©ﬂ—é - Tﬂimf@ﬂél = ‘@ﬂé - (1 - ’Y)T - Vpﬂiﬂf@ﬂ'é‘ S Tmax T R.

Upon telescoping with respect to k£ and taking expectation with respect to p, it holds that

ShS k SR k Tmax"‘R
EP[ZZ 'yPﬂ'kJrlv"rkJr] t HPW 2 60 < ZZ’Y +t(rmax+R> < max 7 = (A17)

k=0 t=1 i=1 k=0 t=1 (1=7)
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and
K oo k-1 k
B[N N (i Tyl T P (I — AR TR ]
k=0 t=1 i=0 j=k+1—i
K oo k-1 k
<SS AR [T [T P i)
k=1 t=1 i=0 j=k4+1—i
K oo k-1
ZZZW (t+DEp [ler—i-]
k=1t=11

(A.18)

Here, the second and the last inequality follows from Assumption 4.1, where ¢(-) and C|, are defined, and the second equality
follows from the definition of €g in (4.2). Combining (A.16), (A.17), and (A.18) together, we obtain that

K
Tmax + R+ KCjeq
<
D1l (1—7)? ’

which concludes the proof of Lemma 5.2. O

B. Proof of Auxiliary Lemmas

In this section, we give proofs of the lemmas in §A.

B.1. Proof of Lemma A.3
Proof. Letm},m} 41-and Q\’Ti be generated by Algorithm 3. Then it follows that

(log(rh o /mh),mt =) = 3 [log(nhis(s,0)/mh(s,0))| (' (a] 5) — mh(a] )

ac Al
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which concludes the proof of Lemma A.3. O

B.2. Proof of Lemma A.1
Proof. We denote

1

A= (A=) rhy +7- Q7 (51,0l 0)) - 0 (sisal 1) = By [T 00 Q7 (5,0 2) - 6 (5,01)] ).

By the fact that (s;1,a] 1,07 ) ~ prt1, iz ~ P(-]s,ai,,a7 ), and aj, ~ 7, (-|si2), we have E[A;] = 0. Since
7 < Pmaxs |w|| < R, and [|¢! |2 < 1, it holds that ||A;]|2 < 2(rmax + R)/N. Also, the following matrix variance statistic
of the sum > A; is upper bounded,

VéAj) - E[Hém)(gwu - E[Héw

Here, the second equality follows from E[A;] = 0 and the fact that A;,¢ = 1,2, ..., N are independent. Thus, following
from the matrix Bernstein inequality, it holds with probability at least 1 — § that

|t
2| — N

4(rm\a/xﬁ+ R) log(%)

[0 —vfl2 < 5
which concludes the proof of Lemma A.1. O

B.3. Proof of Lemma A.2
Proof. We denote

A= 1 (8 (500, ak0)0" (0, 8%0) T~ By, [6' (5,016 (5,01) 7)),

By the fact that (s;,0,a; ;a7 ) ~ pr+1 and [[¢' |2 < 1, we have E[A;] = 0 and ||A;2 < 2/N. Note that the following
matrix variance statistic of the sum »  A; is upper bounded,

V(iAi) _E{H(éAi)(éAi)TM _]EU(éAiA,T 2] < %

Here, the expectation is taken with respect to (s; o, a%’o, af’o) ~ pg+1 and the second equality follows from E[A;] = 0 and
the fact that A;,4 = 1,2,..., N are independent. Following from the matrix Bernstein inequality, it holds with probability
at least 1 — ¢ that

oot o) () ) < ()

where ® and ® are defined in (A.6) and (A.7), respectively. Following from Assumption 4.3, it holds that ||<I>_1 l2 > A

Thus, we have ||®||2 < 1/A,. In what follows, we upper bound ||®||2, which is the last part of upper bounding ||® — ®||s. It
holds that

122 =[[(@7" + 7" — ™) |, < [[@ff2 + [[@[l2 - |27 = 27|z [ @]l

Here, the first inequality follows from the fact that (A + B)~! = A=! — A= B(A + B)~! for non-singular matrices A and
A + B (Henderson & Searle, 1981), and the triangle inequality. Thus, it follows that

B> < M
L—[[®f2-[|[@7 — 12
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Then, we obtain that

| — D> = |21 D — 2D
=@~ -2,

Dl - @7 = 7|2 - @]
K3

o= — @13 — @]

IN

N

Hence, it holds with probability at least 1 — ¢ that

~ 1/ 1
[ /A _

(VN/4) -log '(24/0) — /A, (VNA/4)-log '(24/0) — 1’

and

~ VN
[P ,
VN, —4log(2d/9)

which concludes the proof of Lemam A.2.



