
Distribution-free Calibration Guarantees for Histogram Binning

A. Proofs
A.1. Proof of Proposition 1

Define the random variables upXq “ |E rY | hpXqs ´ hpXq|p and vpXq “ 1. Then, by Hölder’s inequality for r “ q{p
and s “ p1´ 1{rq´1,

p`p-ECEphqqp “ E rupXqs
“ E r|upXqvpXq|s

ď E r|upXq|rs1{r E r|vpXq|ss1{s

“ E r|upXq|rs1{r

“ E r|E rY | hpXqs ´ hpXq|qsp{q

“ p`q-ECEphqqp,

which proves (5). If h satisfies (3), then upXq ď εp a.s. Thus `p-ECEphq “ E rupXqs1{p ď ε.

A.2. Proof of Lemma 1

Let F denote the cdf corresponding to f . The structure of the proof is as follows:

• We first compute the conditional density of the order statistics Spl`1q, Spl`2q, . . . , Spu´1q, given Splq and Spuq, in
terms of f and F (the expression for this is (15)). The basic building block for this computation is a result on the
conditional density of order statistics given a single order statistic (equation (12)).

• Next, we compute the conditional density of the order statistics of the independent random variables tS1iuiPru´l´1s,
given Splq, Spuq, and Splq ă S1i ă Spuq for all i P ru´ l ´ 1s (the expression for this is (16)).

• We verify that (15) and (16) are identical, which shows that the conditional density of the order statistics matches.
Finally, we conclude that the unordered random variables must themselves have the same conditional density. This
completes the argument.

Let 0 ď s1 ă . . . ă sl´1 ă a ă sl`1 ă . . . ă sn ď 1. The conditional density of all the order statistics given Splq

fpSp1q “ s1, Sp2q “ s2, . . . , Spl´1q “ sl´1, Spl`1q “ sl`1, . . . , Spnq “ sn | Splq “ aq

is given by
ˆ

pl ´ 1q! Πl´1
i“1

fpsiq

F paq

˙

¨

ˆ

pn´ lq! Πn
i“l

fpsiq

1´ F paq

˙

.

For one derivation, see Ahsanullah et al. (2013, Chapter 5, equation (5.2)). This implies that the order statistics larger than
Splq are independent of the order statistics smaller than Splq given Splq, and

fpSpl`1q “ sl`1, . . . , Spnq “ snq | Splq “ aq “

ˆ

pn´ lq! Πn
i“l`1

fpsiq

1´ F paq

˙

. (12)

Suppose we draw n´ l independent samples T1, T2, . . . , Tn´l from the distribution whose density is given by

gpsq “

#

fpsq
1´F paq if s P ra, 1s ,
0 otherwise.

(This is the conditional density of S given S ą Splq “ a where S is an independent random variable distributed as QS .)
Consider the order statistics Tp1q, Tp2q, . . . , Tpn´lq of these n´ l samples. It is a standard result — for example, see Arnold
et al. (2008, Chapter 2, equation (2.2.3)) — that the density of the order statistics is

gpTp1q “ sl`1, Tp2q “ sl`2, . . . , Tpn´lq “ snq “ pn´ lq! Πn´l
i“1gpsl`1q,
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which is identical to (12). Thus we can see the following fact:

the density of the order statistics larger than Splq, given Splq “ a,

is the same as the density of the order statistics Tp1q, Tp2q, . . . , Tpn´lq.
(13)

Now consider the distribution of the order statistics Tp1q, Tp2q, . . . , Tpu´l´1q given Tpu´lq. Let 0 ă sl`1 ă . . . ă su´1 ă

b ď 1. Using the same series of steps that led to equation (12), we have

gpTp1q “ sl`1, Tp2q “ sl`2, . . . , Tpu´l´1q “ su´1 | Tpu´lq “ bq

“ pu´ l ´ 1q! Πu´l´1
i“1

gpsl`iq

Gpbq
, (14)

where G is the cdf of g:

Gpsq “

$

&

%

F psq´F paq
1´F paq if s P ra, 1s ,

0 if s P p´8, aq ,
1 if s P p1,8q .

Due to fact (13), the density of pTp1q, . . . , Tpu´l´1qq given Tpu´lq “ b is the same as the density of pSpl`1q, . . . , Spu´1qq

given Spuq “ b and Splq “ a. Thus,

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq “ pu´ l ´ 1q! Πu´l´1
i“1

gpsl`iq

Gpbq
.

Writing g and G in terms of f and F , we get

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq “ pu´ l ´ 1q! Πu´l´1
i“1

fpsl`iq

F pbq ´ F paq
. (15)

Now consider the independent random variables tZiuu´l´1
i“1 , where the density of each Zi is the same as the conditional

density of S1i, given Splq “ a ă S1i ă b “ Spuq.

Thus the density h of each Zi is given by

hpsq “

#

fpsq
F pbq´F paq if s P ra, bs ,
0 otherwise.

The density of the order statistics Zp1q, . . . , Zpu´l´1q is given by

hpZp1q “ sl`1, . . . , Zpu´l´1q “ su´1q “ pu´ l ´ 1q! Πu´l´1
i“1 hpsl`iq, (16)

which exactly matches the right hand side of (15). Thus,

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq

“ hpZp1q “ sl`1, . . . , Zpu´l´1q “ su´1q

“ fpS1p1q “ sl`1, . . . , S
1
pu´l´1q “ su´1 | Splq “ a, Spuq “ b, for every i P ru´ l ´ 1s, Splq ă S1i ă Spuqq.

Since the conditional densities of the order statistics match, the conditional densities of the unordered random variables
must also match. This gives us the claimed result.

A.3. Proof of Lemma 2

The sequence of order statistics Sp1q, Sp2q, . . . , Spnq form a Markov chain (Arnold et al., 2008, Theorem 2.4.3). Thus
`

Spki´1`1q, . . . , Spki´1qKK Spk0q, . . . , Spki´2q, Spki`1q, . . . , SpkBq
˘

| Spki´1q, Spkiq.
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Consequently, for the unordered set of random variables Stki´1`1u, . . . , Stki´1u, we have:

`

Stki´1`1u, . . . , Stki´1uKK Spk0q, . . . , Spki´2q, Spki`1q, . . . , SpkBq
˘

| Spki´1q, Spkiq.

Thus,

fpStki´1`1u, . . . , Stki´1u | Spk0q, . . . , SpkBqq “ fpStki´1`1u, . . . , Stki´1u | Spki´1q, Spkiqq.

Using Lemma 1, the result follows.

A.4. Proof of Theorem 3

For b P t0, 1, . . . , Bu, define kb “ rbpn ` 1{Bqs. Let Sp0q :“ 0 and Spn`1q :“ 1 be fixed hypothetical ‘order-statistics’.
The rest of this proof is conditional on the observed set S :“ pSpk1q, Spk2q, . . . , SpkB´1qq. (Marginalizing over S gives
the theorem result as stated.) Let B : X Ñ rBs be the binning function: for all x, Bpxq “ b ðñ Spkb´1q ď

gpxq ă Spkbq. Note that given S, the binning function B is deterministic. In particular, this means that for every b P rBs,
E rY | BpXq “ bs is a fixed number that is not random on the calibration data or pX,Y q.

Let us fix some b P rBs and denote l “ kb´1, u “ kb. By Lemma 2, the scores Stl`1u, Stl`2u, . . . , Stu´1u are independent
and identically distributed given S, and the conditional distribution of each of them equals that of gpXq given BpXq “ b.
Thus Ytl`1u, Ytl`2u, . . . , Ytu´1u are independent and identically distributed given S, and the conditional distribution of
each of them is BernoullipE rY | BpXq “ bsq. Thus for any t P p0, 1q, by Hoeffding’s inequality, with probability at least
1´ t, ∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ďd

logp2{tq

2tu´ l ´ 1u
ď

d

logp2{tq

2ptn{Bu´ 1q
. (17)

The second inequality holds since for any b,

u´ l “ kb ´ kb´1

“ tpb` 1qpn` 1q{Bu´ tbpn` 1q{Bu

“ tU ` pn` 1q{Bu´ tU u, where U “ bpn` 1q{B,
ě tpn` 1q{Bu ě tn{Bu.

Next, we set t “ α{B in (17), and take a union bound over all b P B. Thus, with probability at least 1´ α, the event

E : for every b P rBs,
∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď ε

occurs. To prove the final calibration guarantee, we need to change the conditioning from BpXq to hpXq. Specifically, we
have to be careful about the possibility of multiple bins having the same pΠ values, in which case, conditioning on BpXq
and conditioning on hpXq is not the same. Given that E occurs (which happens with probability at least 1´ α),

|E rY | hpXqs ´ hpXq|
“ |E rE rY | BpXq, hpXqs | hpXqs ´ hpXq| (applying tower rule)
“ |E rE rY | BpXqs | hpXqs ´ hpXq| (E rY | BpXq, hpXqs “ E rY | BpXqs)
“ |E rE rY | BpXqs ´ hpXq | hpXqs|

“

∣∣∣E ”

E rY | BpXqs ´ pΠBpXq | hpXq
ı
∣∣∣ (by definition of h)

ď E
”
∣∣∣E rY | BpXqs ´ pΠBpXq

∣∣∣ | hpXqı (Jensen’s inequality)

ď ε (since E occurs).

This completes the proof of the conditional calibration guarantee. The ECE bound follows by Proposition 1.
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A.5. Proof of Corollary 1

Conditioned on S (defined in the proof of Theorem 3), for some b P rBs, l “ kb´1 and u “ kb, we showed in the proof of
Theorem 3 that with probability at least 1´ α{B,

∣∣E rY | BpXq “ bs ´Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)
∣∣ ďd

logp2B{αq

2ptn{Bu´ 1q
.

Thus for b P rB ´ 1s,∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď ∣∣E rY | BpXq “ bs ´Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)
∣∣

`
∣∣Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)´Mean(Ypl`1q, Ypl`2q, . . . , Ypuq)

∣∣
ď

d

logp2B{αq

2ptn{Bu´ 1q
`

1

tn{Bu
(by fact (9))

ď ε.

The rest of the argument can be completed exactly as in the proof of Theorem (3) after equation (17).

A.6. Proof of Theorem 4

Let tpΠ1bubPrBs denote the the pre-randomization values of pΠb as computed in line 13 of Algorithm 2. Due to the random-
ization in line (15), no two pΠb values are the same. Formally, consider any two indices 1 ď a ‰ b ď B. Then, pΠa “ pΠb if
and only if δpVa ´ Vbq “ pΠ1a ´

pΠ1b, which happens with probability zero. Thus for any 1 ď a ‰ b ď B, pΠa ‰ pΠb (with
probability one).

The rest of the proof is conditional on S, as defined in the proof of Theorem 3. (Marginalizing over S gives the theorem
result as stated.) As noted in that proof, conditioning on S makes the binning function B deterministic, which simplifies
the proof significantly.

First, we prove a per bin concentration bound for pΠb of the form of (17). The δ randomization changes this bound as
follows. For any b P rBs, t P p0, 1q, with probability at least 1´ t,∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď ∣∣∣E rY | BpXq “ bs ´ pΠ1b

∣∣∣` ∣∣∣pΠb ´ pΠ1b

∣∣∣
ď

d

logp2{tq

2ptn{Bu´ 1q
`

∣∣∣p1` δq´1ppΠ1b ` δq ´
pΠ1b

∣∣∣ (Hoeffding’s inequaliity (17))

ď

d

logp2{tq

2ptn{Bu´ 1q
` δ. (18)

Given this concentration bound for every bin, the pε2, αq-conditional calibration bound can be shown following the argu-
ments in the proof of Theorem 3 after inequality (17). We now show the marginal calibration guarantee. Note that since
no two pΠb values are the same, BpXq is known given pΠBpXq, and so E rY | hpXqs “ E rY | BpXqs. Thus,

P p|E rY | hpXqs ´ hpXq| ď ε1q

“

B
ÿ

b“1

P p|E rY | hpXqs ´ hpXq| ď ε1 | BpXq “ bq P pBpXq “ bq (law of total probability)

“

B
ÿ

b“1

P p|E rY | BpXqs ´ hpXq| ď ε1 | BpXq “ bq P pBpXq “ bq (E rY | hpXqs “ E rY | BpXqs)

“

B
ÿ

b“1

P p
∣∣∣E rY | BpXqs ´ pΠBpXq

∣∣∣ ď ε1 | BpXq “ bq P pBpXq “ bq (by definition of h)
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ě

B
ÿ

b“1

p1´ αq P pBpXq “ bq (t “ α in (18))

“ 1´ α.

This proves pε1, αq-marginal calibration.

For the ECE bound, note that for every bin b P rBs, pΠ1b is the average of at least tn{Bu ´ 1 Bernoulli random variables
with bias E rY | BpXq “ bs. We know the exact form of the variance of averages of Bernoulli random variables with a
given bias, giving the following:

VarppΠ1bq ď
E rY | BpXq “ bs p1´ E rY | BpXq “ bsq

tn{Bu´ 1
ď

1

4ptn{Bu´ 1q
. (19)

We now rewrite the expectation of the square of the `2-ECE in terms of VarppΠ1bq. Recall that all expectations and proba-
bilities in the entire proof are conditional on S , so that B is known; the same is true for all expectations in the forthcoming
panel of equations. To aid readability, when we apply the tower law, we are explicit about the remaining randomness in
Dn.

EDn

“

p`2-ECEphqq2
‰

“ EDn

“

EpX,Y q
“

pE rY | hpXqs ´ hpXqq2 | Dn
‰‰

“ EDn

«

B
ÿ

b“1

pE rY | BpXq “ bs ´ pΠbq
2P pBpXq “ bq

ff

“

B
ÿ

b“1

EDn

”

pE rY | BpXq “ bs ´ pΠbq
2P pBpXq “ bq

ı

“

B
ÿ

b“1

EDn

”

pE rY | BpXq “ bs ´ pΠbq
2
ı

P pBpXq “ bq.

The first equality is by the tower rule. The second equality uses the same simplifications as the panel of equations used to
prove the marginal calibration guarantee (law of total probability, using E rY | hpXqs “ E rY | BpXqs, and the definition
of h). The third equality uses linearity of expectation. The fourth equality follows since B is deterministic given S. Now
note that

EDnpE rY | BpXq “ bs ´ pΠbq
2 “ EDnpE rY | BpXq “ bs ´ pΠ1b `

pΠ1b ´
pΠbq

2 ď VarppΠ1bq ` δ
2,

since E rY | BpXq “ bs “ EDn
ppΠ1bq and

∣∣∣pΠ1b ´ pΠb

∣∣∣ ď δ deterministically. Thus by bound (19),

EDn

“

p`2-ECEphqq2
‰

ď

B
ÿ

b“1

ˆ

1

4ptn{Bu´ 1q
` δ2

˙

P pBpXq “ bq “
1

4ptn{Bu´ 1q
` δ2 ď

B

2n
` δ2.

The last inequality holds since n ě 2B implies that tn{Bu´ 1 ě n{2B. Jensen’s inequality now gives the final result:

EDn
r`2-ECEphqs ď

a

EDn
rp`2-ECEphqq2s (Jensen’s inequality)

ď

c

B

2n
` δ2 ď

c

B

2n
` δ.

The bound on EDn
r`p-ECEphqs for p P r1, 2q follows by Proposition 1.

B. Assessing the Theoretical Guarantee of UMS
We compute the number of calibration points n required to guarantee pε, αq “ p0.1, 0.1q-marginal calibration withB “ 10
bins using UMS, based on Theorem 5 of Gupta et al. (2020). Following their notation, if the minimum number of calibration
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Algorithm 2 Randomized UMD

1: Input: Scoring function g : X Ñ r0, 1s, #bins B, calibration data pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq,
randomization parameter δ ą 0 (arbitrarily small)

2: Output: Approximately calibrated function h
3: pU1, U2, . . . , Unq „ Unifr0, 1sn

4: pS1, S2, . . . , Snq Ð p1` δq´1pgpX1q ` δU1, gpX2q ` δU2, . . . , gpXnq ` δUnq
5: pSp1q, Sp2q, . . . , Spnqq Ð order-statspS1, S2, . . . , Snq

6: pYp1q, Yp2q, . . . , Ypnqq Ð pY1, Y2, . . . , Ynq ordered as per the ordering of pSp1q, Sp2q, . . . , Spnqq
7: ∆ Ð pn` 1q{B

8: pΠ Ð empty array of size B
9: AÐ 0-indexed arraypr0, r∆s, r2∆s, . . . , n` 1sq

10: for bÐ 1 to B do
11: lÐ Ab´1

12: uÐ Ab
13: pΠb ÐMean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)
14: Vb „ Unifr0, 1s
15: pΠb Ð p1` δq´1ppΠb ` δVbq
16: end for
17: pSp0q, Spn`1qq Ð p0, 1q

18: hp¨q Ð
řB
b“1 1

 

SpAb´1q ď p1` δq
´1pgp¨q ` δUq ă SpAbq

(

pΠb, for U „ Unifr0, 1s

points in a bin is denoted as Nb‹ , then the Hoeffding-based bound on ε, with probablity of failure δ, is
a

logp2B{δq{2Nb‹ .
(The original bound is based on empirical-Berstein which is often tighter in practice, but Hoeffding is tighter in the worst
case.) Let us set δ “ α{2 “ 0.05 since the remaining failure budget α{2 is for the bin estimation to ensure that Nb‹ is
lower bounded. Thus, the requirement

a

logp2 ¨ 10{0.05q{2Nb‹ ď ε “ 0.1 translates roughly to Nb‹ ě 300.

To ensure Nb‹ ě 300, we define the bins to each have roughly 1{B fraction of the calibration points in the first split of the
data. Lemma 4.3 (Kumar et al., 2019) shows that w.p. ě 1 ´ δ, the true mass of the estimated bins is at least 1{2B, as
long as the first split of the data has at least cB logp10B{δq points, for a universal constant c. The original proof is for a
c ě 2000, but let us suppose that with a tighter analysis it can be improved to (say) c “ 100. Then for δ “ α{4 “ 0.025,
the first split of the data must have at least 100 ¨ 10 ¨ logp100{0.025q ě 8000 calibration points. Finally, we use Theorem
5 (Gupta et al., 2020) to bound Nb‹ . If n1 is the cardinality of the second split (denoted as

∣∣D2
cal

∣∣ in the original result), then
they show that for δ “ 0.025, Nb‹ ě n1{2B ´

a

n1{ logp2B{δq{2 « n1{20 ´ 1.8
?
n1. Since we require Nb‹ ě 300, we

must have approximately n1 ě 9500. Overall, the theoretical guarantee for UMS requires n ě 17500 points to guarantee
p0.1, 0.1q-marginal calibration with 10 bins.

C. Randomized UMD
We now describe the randomized version of UMD (Algorithm 2) that is nearly identical to the non-randomized version
in practice, but for which we are able to show better theoretical properties. In this sense, we view randomized UMD as a
theoretical tool rather than a novel algorithm (nevertheless, all experimental results in this paper use randomized UMD).
Algorithm 2 takes as input a randomization parameter δ ą 0 which can be arbitrarily small, such as 10´20. The specific
lines that induce randomization, in comparison to Algorithm 1, are lines 3, 4, 14, 15 and 18. This δ perturbation leads to
a better theoretical result than the non-randomized version — in comparison to Theorem 3, Theorem 4 does not require
absolute continuity of gpXq and provides an improved marginal calibration guarantee.

C.1. Absolute Continuity of gpXq

In Theorem 3, we assumed that gpXq is absolutely continuous with respect to the Lebesgue measure, or equivalently, it
has a pdf. This may not always be the case. For example, X may contain atoms, or g may have discrete outputs in r0, 1s.
If gpXq does not have a pdf, a simple randomization trick can be used to ensure that the results hold in full generality (we
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performed this randomization in our experiments as well).

First, we append the features X with Unifr0, 1s random variables U so that pX,Uq „ PX ˆ Unifr0, 1s. Next, for an
arbitrarily small value δ ą 0, such as 10´20, we define rg : X ˆ r0, 1s Ñ r0, 1s as rgpx, uq “ p1 ` δq´1pgpxq ` δuq.
Thus for every x, rgpx, ¨q is arbitrarily close to gpxq, and we do not lose the informativeness of g. However, now rgpX,Uq
is guaranteed to be absolutely continuous with respect to the Lebesgue measure. The precise implementation details are
as follows: (a) to train, draw pUiqiPrns „ Unifr0, 1sn and call Algorithm 1 with rg, tppXi, Uiq, YiquiPrns; (b) to test, draw
a new Unifr0, 1s random variable for each test point. Algorithm 2 packages this randomization into the pseudocode; see
lines 3, 4 and 18.

The above process is a technical way of describing the following intuitive methodology: “break ties among the scores
arbitrarily but consistently”. Lemmas 1 and 2 fail if two data points have Si “ Sj and one of them is the order statistics
we are conditioning on. However, if we fix an arbitrary secondary order through which ties can be broken even if Si “ Sj
or S “ Si, the lemmas can be made to go through. The noise term δU in rg implicitly provides a strict secondary order.

C.2. Improved Marginal Calibration Guarantee

The marginal calibration guarantee of Theorem 4 hinges on the bin biases pΠb being unique. Lines 14 and 15 in Algorithm 2
ensure that this is satisfied almost surely by adding an infinitesimal random perturbation to each pΠb. This is identical to the
technique described in Section C.1. Due to the perturbation, the ε required to satisfy calibration as per equation (11) has
an additional δ term. However the δ can be chosen to be arbitrarily small, and this term is inconsequential.

We make an informal remark that may be relevant to practitioners. In practice, we expect that the bin biases computed using
Algorithm 1 are unique with high probability without the need for randomization. As long as the bin biases are unique,
the marginal calibration and ECE guarantees of Theorem 4 apply to Algorithm 1 as well. Thus, the pΠ-randomization can
be skipped if ‘simplicity’ or ‘interpretability’ is desired. Note that the gpXq randomization (Section C.1) is still crucial
since we envision many practical scenarios where gpXq is not absolutely continuous. In summary, randomized UMD uses
a small random perturbation to ensure that (a) the score values and (b) the bin bias estimates, are unique. The particular
randomization strategy we proposed is not special; any other strategy that achieves the aforementioned goals is sufficient
(for example, using a (truncated) Gaussian random variable instead of uniform).

D. Additional Experiments
We present additional experiments to supplement those presented in the main paper.

In Section 4, we compared UMD to other binning methods on the CREDIT dataset, for n “ 3K and n “ 7K. Here, we
present plots for n “ 1K and n “ 5K (for easier comparison, we also show the plots for n “ 3K and n “ 7K). The
marginal validity plots are in Figure 4, and the conditional validity plots are in Figure 5. Apart from additional evidence for
the same observations made in Section 4, we also see some interesting behavior in the low sample case (n “ 1K). First, the
Theorem 4 curve does not explain performance as well as the other plots. We tried the Clopper Pearson exact confidence
interval (Clopper and Pearson, 1934) instead of Hoeffding and obtained nearly identical results (plots not presented). It
would be interesting to explore if a tighter guarantee can be shown for small sample sizes. Second, for n “ 1K, scaling-
binning performs better than UMD in both the marginal and conditional validity plots, and is competitive with isotonic
regression in the marginal validity plot. This behavior occurs since in the small sample regime, while all other binning
methods attempt to re-estimate the biases of the bins using very little data, scaling-binning relies on the statistical efficiency
of the learnt g which was trained on 15K training points. A similar phenomenon was observed by Niculescu-Mizil and
Caruana (2005) when comparing Platt scaling and isotonic regression: Platt scaling performs better at small sample sizes
since it relies more on the underlying efficiency of g, compared to isotonic regression.

While the experiments considered so far use 10K points for training logistic regression, 5K points for Platt scaling, and
between 0.5-10K points for binning, a practically common setting is where most points are used for training the base
model, and a small fraction of points are used for recalibration. On recommendation of one of the ICML reviewers, we ran
experiments with 14K points for training logistic regression, 1K for Platt scaling, and 1K for binning. The marginal and
conditional validity plots for this experiment are displayed in Figure 6. We observe that these plots are very similar to the
marginal and conditional validity plots in Figures 4 and 5 for n “ 1K, and the same conclusions described in the previous
paragraph can be drawn.
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Figure 4. Marginal validity plots comparing UMD to other binning methods. The performance of UMD improves at higher values of
n and ε, and the performance of UMD is closely explained by its theoretical guarantee. Isotonic regression and fixed-width binning
perform well at small values of ε.
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Figure 5. Conditional validity plots comparing UMD to other binning methods. UMD and scaling-binning are the best methods for
conditional calibration at nearly all values of n, ε. Scaling-binning performs slightly better for small n whereas UMD performs slightly
better for large n. The performance of UMD is closely explained by its theoretical guarantee.

(a) Marginal validity plot. (b) Conditional validity plot.

Figure 6. Validity plots comparing UMD to other binning methods with fewer points used for recalibration. Namely, 14K points are used
for training logistic regression, 1K for Platt scaling, and 1K for binning. Overall, scaling-binning performs quite well, since it relies on
the underlying efficiency of logistic regression more than the other methods.


