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Abstract

We consider the adversarial multi-armed bandit
problem under delayed feedback. We analyze
variants of the Exp3 algorithm that tune their
step size using only information (about the losses
and delays) available at the time of the deci-
sions, and obtain regret guarantees that adapt
to the observed (rather than the worst-case) se-
quences of delays and/or losses. First, through
a remarkably simple proof technique, we show
that with proper tuning of the step size, the al-
gorithm achieves an optimal (up to logarithmic
factors) regret of order

√
log(K)(TK +D) both

in expectation and in high probability, where K
is the number of arms, T is the time horizon, and
D is the cumulative delay. The high-probability
version of the bound, which is the first high-
probability delay-adaptive bound in the literature,
crucially depends on the use of implicit explo-
ration in estimating the losses. Then, following
Zimmert and Seldin (2019), we extend these re-
sults so that the algorithm can “skip” rounds with
large delays, resulting in regret bounds of order√
TK log(K)+ |R|+

√
DR̄ log(K), whereR is

an arbitrary set of rounds (which are skipped) and
DR̄ is the cumulative delay of the feedback for
other rounds. Finally, we present another, data-
adaptive (AdaGrad-style) version of the algorithm
for which the regret adapts to the observed (de-
layed) losses instead of only adapting to the cu-
mulative delay (this algorithm requires an a priori
upper bound on the maximum delay, or the ad-
vance knowledge of the delay for each decision
when it is made). The resulting bound can be
orders of magnitude smaller on benign problems,
and it can be shown that the delay only affects the
regret through the loss of the best arm.
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1. Introduction
The multi-armed bandit problem is a canonical model for
sequential decision making with limited feedback. In this
model a learner makes a sequence of actions. After ev-
ery action, the learner immediately observes the loss corre-
sponding to its action. On the other hand, in many practical
applications of bandit algorithms, the loss feedback to the
algorithm may be severely delayed. For example, in recom-
mender systems, including display advertisement, content
optimization for websites, or content recommendation for
paid services, often several new recommendations need to
be made before a user can even react to the recommenda-
tion they received, not to mention the time often needed to
propagate the feedback (observation) to the decision making
system (Li et al., 2010; Dudik et al., 2011; Chapelle, 2014),
or the performance metrics may be delayed by design (e.g.,
user engagement in a week, see, e.g., Mann et al., 2019;
Vernade et al., 2020). Other types of applications include in-
teractive multi-agent learning systems (Cesa-Bianchi et al.,
2019), where the feedback is not immediately available due
to communication delays, or distributed optimization, where
gradient computations are performed with various delays
(Agarwal and Duchi, 2011), to mention a few.

In this paper we consider the adversarial version of the
bandit problem with delayed feedback and an oblivious ad-
versary. Given a set of K actions and a time horizon T ,
it is well known that the worst-case regret achievable by a
learner in the non-delayed setting is of order

√
KT (Audib-

ert and Bubeck, 2009). The delayed setting was perhaps
first considered by Neu et al. (2010; 2014), who showed
that in case every feedback is delayed by a constant d, the
Exp3 algorithm (Auer et al., 2002) achieves a regret of
O(
√
dKT log(K)). This result was extended to the gen-

eral partial monitoring setting by Joulani et al. (2013). The
next important step was made by Cesa-Bianchi et al. (2019),
who showed that the effect of the delay and the number of
arms is in fact not intertwined: they proved that the worst-
case regret is at least Ω(max{

√
KT,

√
dT log(K)}) (for

d ≤ T/ logK), and that the Exp3 algorithm achieves this
(up to a logarithmic factor). These bounds show that, at
least in the case of fixed delays, it is possible to achieve a
regret that scales with the cumulative delay D = dT . In the
full information case, Quanrud and Khashabi (2015) were
the first to show that it is possible to achieve a regret that
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scales with the cumulative delay (defined as the sum of the
delays) in case of non-uniform delays, that is, when the de-
lay for the different time steps can be different, and showed
an optimal regret of order O(

√
(D + T ) log(K)), where D

is the sum of the (arbitrary, not necessarily equal) delays.
This result was strengthened by Joulani et al. (2016), who
showed that this can be done in a fully adaptive way, without
prior knowledge on the delays, and without resorting to the
doubling trick.

Thinking along similar lines, Cesa-Bianchi et al. (2019)
posed the question whether a regret growing with the cumu-
lative delay is achievable for arbitrary delays in the bandit
setting, more precisely, if a

√
KT +

√
D log(K) regret

is achievable. Recently, Thune et al. (2019) gave a natu-
ral delayed variant of the Exp3 algorithm which achieves
essentially the same bound but with an oracle tuning de-
pending on the cumulative delay D, or with the advance
knowledge of the delays at the time of the action and using
a doubling trick. At the same time, Bistritz et al. (2019)
claimed that a properly tuned version of the delayed Exp3
algorithm combined with a doubling trick can achieve the
desired bound depending on the cumulative delay (albeit
with a sub-optimal dependence on K, i.e., K rather than√
K), but their proof is unfortunately incorrect.1

More recently, Zimmert and Seldin (2019) achieved an op-
timal O(

√
KT +

√
D log(K)) bound (optimal in terms of

the cumulative delay D) with an anytime algorithm that re-
quires no advance knowledge about the delays. On the other
hand, Thune et al. (2019) pointed out that the scaling of the
regret with the cumulative delay D can be quite pessimistic
in certain cases (e.g., if the feedback of the first round is
missing until the very end but no other feedback is delayed,
the resulting cumulative delay is D = T , which seems an
unreasonably large price to pay in the regret bound in this
case), and proposed to “skip” rounds with excessive delays.
This leads to regret bounds where the

√
D log(K) term is

replaced with |R|+
√
DR̄ log(K), where R is an arbitrary

set of rounds (which are skipped) and DR̄ is the cumulative
delay of the feedback for other rounds. While they achieved
this bound using the advance knowledge of the delay for
every prediction made, the method of Zimmert and Seldin

1From a technical perspective, the difficulties in the works of
Cesa-Bianchi et al. (2019), Thune et al. (2019), and Bistritz et al.
(2019) arise because the analysis technique they adopt requires
bounding a hard-to-control “drift” term. Thune et al. (2019) control
this through a bound that requires the step-size to be diminished
using the knowledge of the total or upcoming delay (this is also
used by Cesa-Bianchi et al., 2019 as they consider the case of fixed,
known delays), while Bistritz et al. (2019) also need to bound a
similar term (however, in their derivation, namely in their Eq. 36,
they incorrectly drop a hard-to-bound term corresponding to the
ratio of the true action selection probability and the action selection
probability computed right before the arrival of the corresponding
feedback, which may depend on additional, delayed, loss values).

(2019) achieves this goal under the natural assumption that
the delays become known when the feedback arrives.

The analysis of Zimmert and Seldin (2019) (like ours) uses
a follow-the-regularized-leader (FTRL) approach, but like
the other papers mentioned above, requires specializing
the FTRL analysis (respectively, the analysis of Exp3 in
the works of Cesa-Bianchi et al., 2019; Thune et al., 2019)
to handle the effect of delays on the updates, and hence
repeating the main analysis steps from scratch. In addition,
their modified FTRL analysis is specialized to a relatively
complicated regularizer to avoid the

√
log(K) term in the

Exp3 bound (hence their update cannot be computed in
closed form), leaving the simple Exp3 case unattended.

1.1. Contributions

In this paper we are concerned with similar, fully delay-
adaptive methods, based on different versions of the Exp3
algorithm, and derive several novel results for the adversarial
bandit problem with delayed feedback:

(i) Using a remarkably simple proof technique, we derive the
first proper step-size tuning of the delayed Exp3 algorithm,
called the Delay-Adaptive Exp3 (DAda-Exp3) algorithm,
which only uses information available to the algorithm at
the time of each decision, and achieves the optimal (up to
a logarithmic factor) regret rate

√
log(K)(KT +D) (Sec-

tion 3). Compared to the results of Zimmert and Seldin
(2019), our bounds are a logarithmic factor worse, which
is due to the fact that our method is based on the simpler
Exp3 algorithm. In return, our analysis is much simpler.

(ii) Combined with the implicit exploration technique of
Neu (2015b) in estimating the losses, we also derive a ver-
sion of Exp3 that achieves the first fully delay-adaptive
high-probability regret bound in the literature (Section 4).
While the latter bound also depends on the maximum delay
d? = maxt∈[T ] dt, this can be avoided by using the skipping
technique (Zimmert and Seldin, 2019): for any set of time
steps R to be skipped, the resulting variants of the above
Exp3 algorithms achieve the optimal (up to a logarithmic
factor) regret of order

√
KT log(K)+ |R|+

√
DR̄ log(K)

in expectation and with high probability, respectively (Sec-
tion 5).

(iii) The performance of a learning algorithm can be sig-
nificantly better than the minimax regret for nice prob-
lem instances. To take advantage of such situations
in the delayed case, we develop a new version of the
DAda-Exp3 algorithm, called Delay- and Data-Adaptive
Exp3 (DeDa-Exp3), which is the first algorithm for the
delayed setting whose expected regret scales with the actual
(rather than the worst-case possible) losses, also improv-
ing our bound for DAda-Exp3 (Section 6). DeDa-Exp3
is based on a combination of our analysis technique intro-
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duced for DAda-Exp3 and the data- and delay-adaptive
full-information algorithm of Joulani et al. (2016). As a sim-
ple example of the resulting bounds, the algorithm achieves

a regret of order d? +

√
log(K)

(
d?LT,A∗ +

∑K
i=1 LT,i

)
,

where LT,i denotes the cumulative loss of action i and A∗

denotes the optimal arm in T time steps. This bound is
essentially the same as the best data-dependent bound for

Exp3 (of order
√

log(K)
∑K
i=1 LT,i, as follows from Neu,

2015a) and some extra delay term, where the effect of the
delay depends only on the loss of the best arm but not of the
other arms.

On the technical side, the novelty in our analysis can be
summarized as follows:

(i) We provide a direct reduction from the regret of the
delayed-feedback bandit problem to that of a non-delayed
(full-information) problem. As such, in contrast to previous
work, our analysis does not need to modify the proof of the
basic non-delayed exponential-weights algorithm; instead,
we only need to bound the “drift term” arising from the
reduction. Such a reduction has proved beneficial in the
full-information setting (Joulani et al., 2016), but so far has
not been found in the bandit setting (Zimmert and Seldin,
2019, Section 1), partially because the delays change the
order in which the losses are observed (Thune et al., 2019,
Appendix A). In addition to considerably simplifying the
analysis of DAda-Exp3 (e.g., compared to what could be
obtained for Exp3 following the proof technique of Zim-
mert and Seldin, 2019), this reduction is crucial for adopting
the technique of Joulani et al. (2016) to the bandit setting
and obtaining the data-adaptive bound for DeDa-Exp3.

(ii) In addition, the drift term arising from this reduction
is considerably easier to control than previous work, side-
stepping the difficulties in the works of Cesa-Bianchi et al.
(2019); Thune et al. (2019); Bistritz et al. (2019) as men-
tioned above and in Footnote 1. Interestingly, a very recent
follow-up work of Bistritz et al. (2021) (published on arXiv
after the ICML submission deadline) shows that using skip-
ping directly (in a valid way, based on only the observed
delays) in the analysis of the delayed Exp3 algorithm al-
lows a simple control of the drift term, and hence leads to the
desired adaptive regret bound of order

√
log(K)(TK +D)

using a doubling trick in tuning the step size.

1.2. Notation

We denote the set {1, 2, . . . , n} of the first n natural num-
bers by [n]. The indicator of an event E is denoted by
I [E ], taking the value 1 if the event E happens and 0 oth-
erwise. For a sequence of functions, vectors, or scalars
as, as+1, . . . , at, we use as:t to denote the sum

∑t
n=s an,

with as:t = 0 if s > t.

2. Problem formulation
The multi-armed bandit problem is a sequential decision
problem. Given a finite set of K actions, denoted by
[K] = {1, . . . ,K}, and the time horizon of the problem
T , in every time step t ∈ [T ], the learner chooses an action
At ∈ [K] and suffers a loss `t,At , where `t ∈ [0, 1]K is a
loss vector such that `t,i is the loss associated with choosing
action i in time step t. We assume that the loss sequence
(`t)t is selected in advance and is not affected by the actions
chosen by the learner (a.k.a. the oblivious setting). As usual,
we allow the learner to randomize, that is, at time step t
the learner determines a distribution pt in the K − 1 dimen-
sional probability simplex, and samples action At from pt
(conditionally independently of previous random choices,
given pt). With a slight abuse of terminology, sometimes
we will refer to both pt and At as the decision of the learner
at time t.

The learner’s performance relative to any fixed action A? is
measured by the (expected) regret against A?, defined as

RT (A?) =

T∑
t=1

E [`t,At ]−
T∑
t=1

`t,A∗ ,

and the learner aims to minimize its regret RT =
minA∗∈[K]RT (A?) against the best action in hindsight.

In the standard multi-armed bandit setting, after taking an ac-
tion At, the learner immediately observes `t,At , which can
be used to improve its decisions in future time steps; how-
ever, the learner does not observe any loss `t,i for i 6= At.
In the delayed-feedback setting we consider, the situation is
somewhat different: after taking an action At in time step t,
the learner observes the loss `t,At only after a delay of dt
time steps, after making a decision in time step t+ dt. This
means that the decision At in time step t can only depend
on the feedback which arrives before that time step, that
is, on the losses {`s,As : s + ds < t}. Note that delay
dt = 0 means that the corresponding feedback becomes
available immediately after a decision is made. Without loss
of generality2, we assume that all feedback arrives at the
end of time step T , that is, t+ dt ≤ T for all t ∈ [T ]. We
assume that the sequence of delays (dt)t is selected before
the process starts, obliviously to the actions of the learner.
Note, however, that the losses and delays can be selected
jointly with an arbitrary dependence among them.

Definitions. The following definitions will be useful in
analyzing the regret of delayed algorithms. We use It,i =
I [At = i] to indicate whether action i ∈ [K] is played at
time t. The set of time steps with feedback missing when

2This is because the actions A1, . . . , AT that determine the
regret RT only depend on the feedback that arrives before time
step T ; any remaining feedback can thus be assumed to arrive at
the end of time T without affecting RT .
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computing pt is denoted by Ot = {s ∈ [t−1] : s+ds ≥ t}
(with O1 = ∅). The number of missing feedbacks at time
step t is τt = |Ot| =

∑t−1
s=1 I [s+ ds ≥ t]. The set of

time steps where the feedback for time step t is missing is
denoted by Dt = {s : t ∈ Os} = {s : t < s ≤ t + dt}.
Note that the size of this set is |Dt| = dt. We denote the
maximum delay by d? = maxt∈[T ] dt and the cumulative
delay by D =

∑T
t=1 dt. Note that D =

∑T
t=1 τt, since

D =
∑T
t=1

∑T
s=1 I [t ∈ Os] =

∑T
s=1

∑T
t=1 I [t ∈ Os] =∑T

s=1 τs.

Loss estimates. Standard bandit algorithms form some
estimate ˆ̀

t of the loss vector `t when the feedback `t,At is
received. A standard estimate is the importance-weighted
estimator (Auer et al., 2002), defined as

ˆ̀
t,i =

`t,iI [At = i]

pt,i
=
`t,AtIt,i
pt,i

, i ∈ [K] (1)

Note that ˆ̀
t,i is computable when feedback `t,At has arrived

as it does not depend on any other component of `t. Let
Ht = {(s,As, ˆ̀

s) : s ∈ [t− 1] \Ot} denote the history of
the actual observations when computing pt. The estimator
(1) is unbiased as E

[
ˆ̀
t|pt
]

= `t. We consider learning
algorithms whose decision pt depends onHt, that is, pt is
σ(Ht)-measurable (where σ(Ht) denotes the σ-field gen-
erated by Ht).3 Therefore, for the estimate ˆ̀

t in (1) we
have E

[
ˆ̀
t|Ht

]
= `t. In addition, we also consider loss

estimates with the so-called implicit exploration (see, e.g.,
Neu, 2015b):

ˆ̀
t,i =

`t,iIt,i
pt,i + γt

, (2)

where γt ∈ σ(Ht), t ∈ [T ] is a non-negative sequence
of reals. The σ(Ht)-measurability of γt ensures that
E
[
ˆ̀
t|Ht

]
≤ `t, thus encouraging exploration by reducing

the observed expected loss.

3. The Delay-Adaptive Exp3 Algorithm
Probably the simplest way to extend an algorithm designed
for the non-delayed case to the delayed-feedback setting is to
apply the same algorithm to the available losses. Such algo-
rithms have been used extensively in the literature (see, e.g.,
Joulani et al., 2013; Cesa-Bianchi et al., 2019). In this sec-
tion we analyze a similar extension of the Exp3 algorithm,
which we call the delay-adaptive Exp3 (DAda-Exp3) al-
gorithm. While at time t, in the non-delayed case, Exp3
selects action i with probability proportional to e−ηtL̂t,i

3Note, however, that this is a restriction, as the computation
of pt could also depends on past decisions with missing feedback,
that is, on {(ps, As) : s ∈ Ot}.

Algorithm 1: Delay-Adaptive Exp3 (DAda-Exp3).
Input: Number of actions K.
Initialization:
L̃1,i ← 0 for all i ∈ [K], τ1 ← 0.

for t = 1, 2, . . . , T do
ηt ←

√
log(K)

tK+
∑t
s=1 τs

.

pt,i ← e−ηtL̃t,i∑K
j=1 e

−ηtL̃t,j
for all i ∈ [K].

Play action At ∈ [K] selected randomly according
to distribution pt.

Store pt,At and At in the memory.
for s : s+ ds = t do

Observe `s,As and retrieve (s,As, ps,As) from
the memory.

Let ˆ̀
s,i =

`s,As I[As=i]
ps,As

for all i ∈ [K].
end
L̃t+1,i ← L̃t,i +

∑
s:s+ds=t

ˆ̀
s,i, for all i ∈ [K].

τt+1 ← τt + 1− |{s : s+ ds = t}|.

end

for some step-size ηt > 0, where L̂t =
∑t−1
s=1

ˆ̀
s,4 in the

delayed case the set of available loss estimates is poten-
tially smaller, and the decision is made based on L̂t − ∆̂t,
where ∆̂t =

∑
s∈Ot

ˆ̀
s is the sum of the missing loss esti-

mates, which have not arrived, but would have arrived in the
non-delayed setting.

Thus, at time t, DAda-Exp3 samples action i with proba-
bility

pt,i =
e−ηt(L̂t,i−∆̂t,i)∑

j∈[K] e
−ηt(L̂t,j−∆̂t,i)

, (3)

where ηt > 0 is σ(Ht)-measurable (i.e., ηt may depend
on any feedback information available at the beginning of
time step t). DAda-Exp3 adapts to the delays by prop-
erly tuning the step-size ηt. In fact, this step-size tuning is
the key contribution in the algorithm design. The method,
including the step-size tuning is presented in Algorithm 1.
It uses the notation L̃t,i = L̂t,i − ∆t,i for the sum of the
estimated losses for arm i ∈ [K] available before time step
t. Note that although the algorithm only stores pt,At for all
t (not the whole distribution pt), the loss estimates ˆ̀

s,i can
be calculated for all i ∈ [K], because by definition ˆ̀

s,i = 0
for all i 6= As (because the indicator function is 0).

The next result gives an upper bound on the expected regret
of DAda-Exp3.

4Note that, perhaps unusually, L̂t is the sum of losses up to
time step t− 1, not t.
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Theorem 3.1. Suppose that η1, η2, . . . , ηT is a positive,
non-increasing sequence of step sizes. Then, for all A? ∈
[K], DAda-Exp3 satisfies

RT (A?) ≤ E
[
η−1
T

]
log(K) +

T∑
t=1

min{1,E [ηt(τt +K)]} .

Proof. Let p? be the probability distribution with all mass
on A?. From the definition of regret and the loss-estimates,
for any sequence of probability distributions p̃t+1, t ∈ [T ],
we have

RT (A?) = E

[
T∑
t=1

ˆ̀>
t (pt − p?)

]

= E

[
T∑
t=1

ˆ̀>
t (p̃t+1 − p?)

]
+ E

[
T∑
t=1

ˆ̀>
t (pt − p̃t+1)

]

= E

[
T∑
t=1

ˆ̀>
t (p̃t+1 − p?)

]

+ E

[
T∑
t=1

K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)]
, (4)

where in the first equality we used the fact that `t,At =

(`t,At/pt,At)pt,At = ˆ̀>
t pt, and `t,A? = `>t p

? =

E
[
ˆ̀
t|Ht

]>
p?. Now, let p̃t be the (full-information) adap-

tive exponential-weights updates for the sequence of linear
losses ˆ̀

t, with non-increasing step-sizes ηt−1, that is, p̃1 is
the uniform distribution over [K], and for all t ∈ [T ],

p̃t+1,i =
e−ηtL̂t+1,i∑K
j=1 e

−ηtL̂t+1,j

.

Note that the index of η is shifted by one, that is, p̃t+1 uses
the same step-size ηt that is used by pt (rather than ηt+1,
which is used by pt+1). This is not problematic: we only as-
sume the imaginary iterate p̃t uses slightly outdated informa-
tion for tuning the step-size, and is still σ(Ht)-measurable.

Thus, (4) decomposes the regret into two terms: the first one
is the “cheating” (or look-ahead) regret for the ideal (imagi-
nary) exponential-weights iterate p̃t+1 (which depends on
ˆ̀
t at time step t), while the second term is a “drift” term

which measures the effect of using pt instead of p̃t+1.

The first, cheating regret term can be directly bounded by
Theorem 3 of Joulani et al. (2020)5 as

T∑
t=1

ˆ̀>
t (p̃t+1 − p?) ≤ η−1

T log(K) . (5)

5We have invoked Theorem 3 of Joulani et al. (2020) with
pt ≡ 0, t ∈ [T ], r0 = (1/η0)

∑
i pi log(pi) and rt(p) = (1/ηt−

1/ηt−1)
∑

i pi log(pi), t ∈ [T ], and dropped the Bregman-
divergence terms due to the convexity of rt.

To control the “drift term”, that is, the second term on
the right hand side of (4), we bound E

[
p̃t+1,i

pt,i

]
from below.

Observe that since the losses are non-negative, for all t ∈ [T ]
and i ∈ [K], L̂t,i, ∆̂t,i and ηt are positive. Hence, we have

e−ηt(L̂t,i−∆̂t,i) = e−ηt(L̂t+1,i−ˆ̀
t,i−∆̂t,i) ≥ e−ηtL̂t+1,i

for all t ∈ [T ] and i ∈ [K], which implies

p̃t+1,i

pt,i
=

e−ηtL̂t+1,i

e−ηt(L̂t,i−∆̂t,i)
·
∑
j∈[K] e

−ηt(L̂t,j−∆̂t,j)∑
j∈[K] e

−ηtL̂t+1,j

≥ e−ηt∆̂t,i−ηt ˆ̀t,i ≥ 1− ηt∆̂t,i − ηt ˆ̀t,i , (6)

using in the last step the fact that ex ≥ 1 + x for all x ∈ R.
Thus, we can use (6) to upper-bound the second expectation
on the right-hand-side of (4) as

E

[
K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)]

≤ E

[
K∑
i=1

ˆ̀
t,ipt,iηt∆̂t,i + ηt ˆ̀

2
t,ipt,i

]
(7)

= E

[
K∑
i=1

`t,iIt,iηt
∑
s∈Ot

`s,iIs,i
ps,i

]
+ E

[
K∑
i=1

ηt`
2
t,iIt,i/pt,i

]

= E

[
K∑
i=1

∑
s∈Ot

`t,i`s,iE
[
ηt
It,iIs,i
ps,i

∣∣∣∣Ht]
]

+ E

[
K∑
i=1

`2t,iE
[
ηtIt,i
pt,i

∣∣∣Ht]]

= E

[
K∑
i=1

∑
s∈Ot

`t,iηt`s,ipt,i

]
+ E

[
K∑
i=1

ηt`
2
t,i

]

≤ E

[
K∑
i=1

pt,iηtτt

]
+ E [ηtK] = E [ηt(τt +K)] , (8)

where in the second line we have used the definitions of ∆̂t,i

and ˆ̀
t,i for t = 1, 2, . . . , T , and in the third line we have

used the tower rule. The fourth step follows since ps,i and
pt,i are determined by the feedback that is received by time
t, and since the feedback for Is,i is missing, Is,i and It,i are
conditionally independent givenHt with distributions ps,i
and pt,i, respectively. The last inequality uses the assump-
tion that the losses are upper-bounded by 1. Combining (8)
with

K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)
≤

K∑
i=1

`t,iI [At = i] = `t,At ≤ 1,

summing up for all t and putting back the resulting bound
into (4), together with (5), gives the desired bound on the
regret.
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Using the non-increasing step-size sequence ηt =√
log(K)

tK+
∑t
s=1 τs

, we obtain the first fully delay-adaptive
bound for the Exp3-family of algorithms:

Corollary 3.2. With ηt =
√

log(K)

tK+
∑t
s=1 τs

, the regret of the
DAda-Exp3 algorithm can be bounded as

RT ≤ 3
√

log(K) (TK +D).

Proof. The result is a direct corollary of Theorem 3.1:
We can bound the second term in the regret bound in the
theorem by the standard inequality that for any at > 0,∑T
t=1 at/

√∑t
s=1 as ≤ 2

√∑T
t=1 at (see, e.g., Lemma 4

of McMahan, 2017). Applying this inequality for at =
K + τt, we obtain

T∑
t=1

(E [`t,At ]− `t,A?) ≤ 3

√√√√log(K)

(
TK +

T∑
t=1

τt

)
.

The statement of the corollary then follows by the fact that
D =

∑T
t=1 τt.

Remark 3.3. The decomposition in (4) in the proof of The-
orem 3.1 involves the cheating regret, which is a well-known
technique in online learning (see, e.g., Joulani et al., 2020).
In fact, the non-delayed case can be thought of as the cheat-
ing case with a delay of 1, where ˆ̀

t is not available at the
time of computing p̃t, but is available at time t+ 1. In this
sense, our decomposition follows naturally by collecting all
such delayed losses only in the drift term; the cheating regret
term can then be bounded in a black-box manner. This also
has a further benefit in the bandit setting: had we used the
standard regret (with p̃t in place of p̃t+1), the products ˆ̀>

t p̃t
that would show up in the standard regret decomposition
would include a ratio p̃t,i/pt,i (due to the importance weight
pt,i used in ˆ̀

t,i), and bounding this ratio from above has
been the source of much difficulty in previous work, pre-
venting the application of the simple analysis techniques we
use (Cesa-Bianchi et al., 2019; Thune et al., 2019; Bistritz
et al., 2019).

4. High-probability bounds
In this section, we show that using the loss estimate with im-
plicit exploration (cf. equation 2) enables us to prove a regret
bound that hold with high probability instead of holding only
in expectation. We present a bound for DAda-Exp3. The
derivation of a bound for DeDa-Exp3 is more involved,
and we leave it for an extended version of the paper.

Theorem 4.1. Suppose DAda-Exp3 is run with a non-
increasing step-size sequence (ηt) and using the loss esti-
mate (2) with γt = ηt. Let δ ∈ (0, 1) and A? ∈ [K] be an

arbitrary action. Then, with probability at least 1− δ, the
regret of the algorithm against A? can be bounded as

T∑
t=1

(`t,At− `t,A?) ≤ 3 log(K)

2ηT
+

T∑
t=1

ηt (τt + 2K)

+

(
η−1
T + d? + 2

2

)
log

(
2

δ

)
. (9)

This implies the following corollary, which is proved exactly
as Corollary 3.2.

Corollary 4.2. With ηt = 1
2

√
3 log(K)

2tK+
∑t
s=1 τs

, under the con-
ditions of Theorem 4.1,

T∑
t=1

(`t,At− `t,A?) ≤ 2
√

3 log(K) (2KT +D)

+

(√
2TK +D

3 log(K)
+
d?

2
+1

)
log

(
2

δ

)
.

Note that the dependence on δ can be improved if the step
size ηt also depends on δ. In the corollary we chose to tune
the algorithm to be oblivious to the error parameter δ.

In the proof of the theorem (given in Appendix A),we apply
similar ideas as in the proof of Theorem 3.1, but instead of
taking expectations to control the loss estimate terms, we
use a lemma of Neu (2015b) to replace the loss estimates
by the true losses at the expense of an additive logarithmic
penalty, with high probability.

5. Skipping time steps
Looking at the form of the bound in Theorem 3.1, one can
observe that the terms in the second summation are a min-
imum of 1 and ηt(τt + K), where the latter comes from
bounding the drift terms. As such, whenever 1 is smaller
than ηt(τt +K), our analysis in (8) is too pessimistic. The
effect of this could be avoided by keeping the minimum
term when we define the step size ηt, but this is not straight-
forward if we want to keep the simple sum structure of
1/η2

t , which is used in the proof of Corollary 3.2. A sim-
pler approach is to ensure that τt never becomes too large
(compared to ηt), which can be done by limiting individual
delays dt by pretending that their corresponding loss arrives
(and has value 0) when dt is too large, and bound the regret
in the corresponding time step separately by 1. This essen-
tially means that the algorithm eventually skips time steps
with excessive delays. This also addresses another problem:
namely that the cumulative delay D can be dominated by a
few large delay values, which–intuitively–should not cause
such a large penalty in the regret.

The idea of skipping, originally coined by Thune et al.
(2019), was perfected by Zimmert and Seldin (2019), who
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provided a proper way to skip some time steps and tune
the step size accordingly. In what follows, we adopt their
way of tuning the step size, and closely follow their analysis
(which they do in the context of their more complicated
follow-the-regularized-leader algorithm).

Next we describe how the tuning method of Zimmert and
Seldin (2019) can be adapted to our DAda-Exp3 algorithm:
The advanced tuning method of skipping procedure works
as follows: For every time step t and time steps s ≤ t, we
keep a binary indicator ats ∈ {0, 1} such that for any round
t we include the loss from time s to the set of missing losses
if ats = 1, and not if ats = 0. That is, the number of counted
missing losses is

τ̃t =

t∑
s=1

atsI [s+ ds ≥ t] .

Let D̃t =
∑t
s=1 τ̃t denote the cumulative number of

counted missing feedbacks. ats is originally set to 1 for all

t ≥ s, but if s ∈ Ot and min{ds, t− s} >
√
D̃t/ log(K),

we set at
′

s = 0 for all t′ > t (by Lemma 7 of Zimmert and
Seldin, 2019, this happens for at most one s value in any
time step t).

Tuning the step size of DAda-Exp3 with τ̃ instead of τ ,
the regret of the DeDa-Exp3 algorithm can be bounded
as follows (the proof, given in Appendix B, combines our
earlier bounds with some simple results from Zimmert and
Seldin, 2019):
Theorem 5.1. (i) Bound in expectation: The expected regret
of the DAda-Exp3 algorithm with loss estimates (1) and
step sizes ηt =

√
log(K)

tK+
∑t
s=1 τ̃t

can be bounded as

T∑
t=1

(E [`t,At ]− `t,A?) ≤ 3
√
TK log(K)

+ 10 max

{
2 logK, min

R⊂[T ]

(
|R|+

√
DR̄ log(K)

)}
,

where for any R ⊂ [T ], R̄ = [T ] \R, and DR̄ =
∑
t∈R̄ dt.

(ii) High-probability bound: Let δ ∈ (0, 1). The regret of
the DAda-Exp3 algorithm with loss estimates (2) and step
sizes ηt = γt = 1

2

√
3 log(K)

2tK+
∑t
s=1 τs

can be bounded, with
probability at least 1− δ, as

T∑
t=1

(`t,At − `t,A?) ≤ C1,δ

√
KT log(K)

+ C2,δ max

{
2 logK, min

R⊂[T ]

(
|R|+

√
DR̄ log(K)

)}
where C1,δ = 2

√
6 +

√
2
3

log(2/δ)
log(K) and C2,δ = 4(

√
3 + 1) +(

1 + 2√
3

)
log(2/δ)
log(K) .

The above theorem shows that the regret of the algorithm is
essentially of the same order as if a set of time steps R was
to be skipped, and the algorithm was only run on its comple-
ment R̄. Note that while our original high-probability regret
bound (cf. Corollary 4.2) depended on the maximum delay
d?, this dependence is eliminated from the high-probability
bound of the theorem, as the maximum delay is effectively

bounded by
√
D̃T / log(K).

6. Adapting to delay and data at the same
time

In this section, we consider a different step-size sequence
that yields AdaGrad-style bounds. Recall that from (7) in
the proof of Theorem 3.1, we have

T∑
t=1

K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)
≤

T∑
t=1

ηt

K∑
i=1

`fwd
t,i ,

where `fwd
t,i = ˆ̀

t,ipt,i∆̂t,i + ˆ̀2
t,ipt,i. Therefore, ideally, we

want to set the step-size ηt as

ηt =

√
log(K)∑K
i=1 `

fwd
1:t,i

, (10)

to optimize the regret bound and obtain a data-adaptive
bound of the form

RT ≤ 3E
[√

log(K)
∑K
i=1 `

fwd
1:T,i

]
. (11)

However, we do not have access to the missing observations
ˆ̀
s, s ∈ Ot ∪ {t}, when calculating ηt. Therefore, we ap-

proximate the step-size of (10) with another sequence that
can be computed at each time step. Algorithm 2 provides
the details of this approximation.

The algorithm keeps track of the largest delay (d?t ) and,
similarly to Thune et al. (2019), to do so it needs to observe
the delay for action At in advance. This can be avoided
if the algorithm has access to an a priori upper bound dB

on the maximum delay: setting d?0 to this upper bound
results in d?t = dB for all t ∈ [T ]. As usual in AdaGrad-
style algorithms, the algorithm maintains additional vectors
mt, zt and Lbck

t to compute the step size. In addition, the
algorithm uses a memory to store values of ms, zs, and ps
for past steps s with missing feedback. In particular, after
coming up with the action distribution ps for time step s, we
store the current values of ms and zs, as well as the action
distribution ps and the action taken, As. When the feedback
for time step s arrives at the end of time step t = s+ ds, we
retrieve these values, and use them to compute L̃t+1, mt+1,
and Lbck

t+1.

Memory requirement. Clearly, Algorithm 2 requires
Θ (d?T ) memory, which can be explicitly implemented using
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Algorithm 2: Delay- and Data-Adaptive Exp3
(DeDa-Exp3).
Input: Number of actions K.
Initialization:
L̃1,i ← 0,m1,i ← 0 for all i ∈ [K].

d?0 ← 0, Lbck
1 ← 0.

for t = 1, 2, . . . , T do
d?t ← max{dt, d?t−1} .

ηt = γt ←
[

4(d?t )2+6d?t+2
log(K) +

√
Lbck
t

log(K)

]−1

.

pt,i ← e−ηtL̃t,i∑K
j=1 e

−ηtL̃t,j
.

Play action At ∈ [K] selected randomly according
to distribution pt.

Store γt,mt, L̃t, pt, and At in memory.
for s : s+ ds = t do

Observe `s,As and retrieve As, ps,ms, zs and
γs from memory.

Let ˆ̀
s,i =

`s,AsIs,i
ps,i+γs

for all i ∈ [K].
end
L̃t+1,i ← L̃t,i +

∑
s:s+ds=t

ˆ̀
s,i, for all i ∈ [K].

mt+1,i ← mt,i +
∑

s:s+ds=t

ˆ̀
s,ips,i, for all i ∈ [K].

Lbck
t+1 ← Lbck

t +

K∑
i=1

∑
s:s+ds=t

(
ˆ̀
s,i(mt+1,i−ms,i)

+ ˆ̀
s,ips,i

(
L̃t+1,i−L̃s,i

))
.

end

a hash table with an amortized computation cost of Θ(1)
per storage and retrieval.

Step size. It is easy to verify that for all t ∈ [T+1] and i ∈
[K], L̃t,i =

∑
j:j+dj<t

ˆ̀
j,i and mt,i =

∑
j:j+dj<t

ˆ̀
j,ipj,i.

In addition, if we define

`bck
s,i =

∑
j:s≤j+dj≤s+ds

ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i) ,

then it is easy to see that `bck
s,i = ˆ̀

s,i (ms+ds+1,i −ms,i) +

ˆ̀
s,ips,i

(
L̃s+ds+1,i − L̃s,i

)
. Therefore, Lbck

t =∑K
i=1

∑
s:s+ds<t

`bck
s,i , and the algorithm uses the

step-size schedule

η−1
t =

4(d?t )
2+ 6d?t +2

log(K)
+

√∑K
i=1

∑
s:s+ds<t

`bck
s,i

log(K)
. (12)

We start the analysis by showing that the backward loss

estimates `bck
t,i are not far away from the forward losses

`fwd
t,i . Hence, the step-size sequence given by (12) will result

in a regret not far away from what could be achieved by
the ideal step-size (10). This is captured by the following
lemma, proved in Appendix C.1:
Lemma 6.1 (Step-size control). For all t ∈ [T ],

∑
s:s+ds<t

`bck
s,i ≤2

t∑
j=1

∑
s∈Oj∪{j}∪Dj

ˆ̀
s,i

ˆ̀
j,ipj,i , (13)

where for every t ∈ [T ],Dt = {s : t ∈ Os} is the set of time
steps at which the feedback `t,At is delayed. In addition, if
ˆ̀
t, t ∈ [T ], is given by Algorithm 2 using a non-increasing

sequence of γt values, then for all t ∈ [T ],

K∑
i=1

`fwd
1:t,i ≤

K∑
i=1

∑
s:s+ds<t

`bck
s,i +

4d?t
2 + 6d?t + 2

γt
. (14)

Based on this lemma, we can show that using the step size
in (12) results in at most a lower-order penalty in the regret
compared to regret bound (11) for the ideal step size. This
is captured by the next theorem, proved in Appendix C.
Theorem 6.2 (Adapting to delay and data). The expected
regret of DeDa-Exp3 can be bounded as
T∑
t=1

(E [`t,At ]− `t,A?)

≤ CT +c

√√√√log(K)

T∑
t=1

( ∑
s∈Ot∪Dt

E [`s,As`t,As ]+

K∑
i=1

`t,i

)
,

where CT = 4(d?T )2 + 6d?T + 2, c = 2 +
√

2, and for all
t ∈ [T ], Dt is defined in Lemma 6.1.

Remark 6.3. A bound that depends on LT,A∗ instead of∑
i LT,i would be preferable, but to our knowledge such

bounds are not available for Exp3 even in the non-delayed
case and require other techniques (such as using the log-
barrier regularizer, Neu, 2015a). Nevertheless, the above
bound still preserves the separation of the cumulative delay
and K. Using that

∑T
t=1 |Dt| =

∑T
t=1 |Ot| = D and that

the losses are in [0, 1], we obtain

RT ≤ CT + c
√

log(K) (KT + 2D).

On the other hand,
∑
i LT,i can be much smaller than KT ,

for example, when most arms have a small loss or when the
actual loss range is [0, B] for some unknown B � 1 (i.e.,
the algorithm adapts to the unknown B, and the final bound
depends only on B and dt, not on the algorithms’ choices).
Finally, defining c′ = c

√
log(K) and C ′T = CT + c′2d?T ,

easy calculations (presented in Appendix D) give

RT ≤ 2C ′T + 2c′
√

2d?TLT,A∗ + 2c′
√∑K

i=1 LT,i , (15)
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showing that the effect of the delay on the regret scales
only with the loss of the optimal arm. Finally, it is worth
mentioning that the constant termCT in the theorem andC ′T
above are quadratic in the maximum delay d?T , and hence the
bound is only meaningful when d?T is sufficiently small (i.e.,
o(
√
T )), which includes, for example, the important case of

large but bounded delays. For delays of order Ω(
√
T ), even

the skipping technique of Section 5 (or the simpler skipping
method of Thune et al., 2019 which utilizes the a priori
knowledge of dt) may not completely resolve the issue, as
skipping ensures the maximum delay faced by the algorithm
grows with the same rate as the regret, which is not enough
to keep the term CT sublinear. Extending DeDa-Exp3 to
arbitrarily large delays in a meaningful way remains an open
problem.

7. Conclusions
In this paper we presented delay- and data-adaptive algo-
rithms for the multi-armed bandit problem with delayed
feedback. First, through a remarkably simple proof tech-
nique, we showed that the expected regret of our sim-
pler algorithm, DAda-Exp3, scales optimally with the
sum of the delays, up to logarithmic factors (without
any advance knowledge of the delays). We also showed
that using the implicit-exploration loss estimate of Neu
(2015b), DAda-Exp3 achieves the same near-optimal re-
gret guarantees with high probability, providing the first
high-probability regret bound in the literature for a fully
delay-adaptive bandit algorithm.

One problem with the regret bounds that scale with the sum
of the delays is that they become too large when individual
delays are large, for example, a single delay of T has a sig-
nificant impact on the regret bound. Recently, Thune et al.
(2019) addressed this question by “skipping” rounds with
large delays, significantly reducing the regret. However, to
achieve this, they needed to know the delays at action-time.
Zimmert and Seldin (2019) provided a delay-adaptive solu-
tion for this problem. Based on the latter result, we proved
similar “skipping” regret bounds for modified versions of
DAda-Exp3, both in expectation and with high probability.

Finally, we presented the DeDa-Exp3 algorithm, the first
method for delayed bandits that, besides the delays, also
adapts to the losses, achieving a potentially large improve-
ment on easy problems. While for DAda-Exp3, a bound
on the expected regret was possible with the standard
importance-weighting loss estimator, and the estimator
based on implicit exploration was only needed for the high
probability bound, employing the latter in DeDa-Exp3 is
crucial for being able to to control ηt properly, and hence
for obtaining a meaningful regret bound even in expectation.
Deriving high-probability regret bounds and extending the
skipping technique to DeDa-Exp3 is left for future work.

Solving these problems require some innovations: For the
first one, new results concerning the concentration of prod-
ucts of certain loss estimates are needed. The issue with
the second problem is that the natural data-dependent vari-
ant of the skipping decision (rather than the version used
together with DAda-Exp3, which only depends on the de-
lays, but not on the observed losses) induces a complicated
dependence on past actions, significantly complicating the
simple deterministic skipping mechanism which we used
and analyzed for DAda-Exp3.
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A. Proof of Theorem 4.1
To prove the theorem, we use the following lemma of Neu (2015b).6

Lemma A.1 (Lemma 1 of Neu, 2015b). For t ∈ [T ], i ∈ [K], let γt, αt,i be non-negativeHt-measurable random variables
satisfying αt,i ≤ 2γt, and let ˆ̀

t,i be given by (2). Then, with probability at least 1− δ,

T∑
t=1

K∑
i=1

αt,i

(
ˆ̀
t,i − `t,i

)
≤ log(1/δ) .

Proof of Theorem 4.1. We apply similar ideas as in the proof of Theorem 3.1, but instead of taking expectations to control
the loss estimate terms, we use Lemma A.1 to replace the loss estimates by the true losses at the expense of an additive
logarithmic penalty, with high probability.

To start, we define p̃t as in the proof of Theorem 3.1, which implies that we have (5) and (6). Therefore, on the one hand,

T∑
t=1

ˆ̀>
t (pt − p̃t+1) =

T∑
t=1

K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)

≤
T∑
t=1

K∑
i=1

ˆ̀
t,ipt,iηt∆̂t,i +

T∑
t=1

ηt ˆ̀
2
t,ipt,i

≤
T∑
t=1

K∑
i=1

`t,iIt,iηt
∑
s∈Ot

ˆ̀
s,i +

T∑
t=1

K∑
i=1

ηt ˆ̀t,i

=

T∑
s=1

K∑
i=1

ˆ̀
s,i

( ∑
t:s∈Ot

`t,iIt,iηt

)
+

T∑
t=1

K∑
i=1

ηt ˆ̀t,i

≤
T∑
s=1

K∑
i=1

ˆ̀
s,i

( ∑
t:s∈Ot

ηtIt,i

)
+

T∑
t=1

K∑
i=1

ηt ˆ̀t,i , (16)

where the second line follows from (6), the third line follows by the fact that ˆ̀
t,ipt,i ≤ `t,iIt,i ≤ 1, and the last line follows

since `t,i ∈ [0, 1].

On the other hand, we can derive a deterministic counterpart of (4) as follows:

T∑
t=1

(`t,At − `t,A?) =

T∑
t=1

ˆ̀>
t (p̃t+1 − p?) +

T∑
t=1

ˆ̀>
t (pt − p̃t+1) + ε?1:T +

T∑
t=1

(
`t,At − ˆ̀>

t pt

)
, (17)

where ε?t = ˆ̀
t,A? − `t,A? . Following the proof of Theorem 1 of Neu (2015b), it is easy to show that

T∑
t=1

(
`t,At − ˆ̀>

t pt

)
=

T∑
t=1

γt

K∑
i=1

ˆ̀
t,i .

Then, combining with (16), we have

T∑
t=1

ˆ̀>
t (pt − p̃t+1) +

T∑
t=1

(
`t,At − ˆ̀>

t pt

)
≤

T∑
t=1

K∑
i=1

(
ηt + γt +

∑
s:t∈Os

ηsIs,i

)
ˆ̀
t,i

=

T∑
t=1

K∑
i=1

(
ηt + γt +

∑
s:t∈Os

ηsIs,i

)
`t,i +

d? + 2

2
ε̂1:T ,

6Neu (2015b) states the lemma for “a fixed sequence” of γt, but this is not used anywhere in their proof; their proof goes through
without change, as long as γt is determined by the historyHt.
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where ε̂t =
∑K
i=1 2

ηt+γt+
∑
s:t∈Os ηsIs,i

d?+2 (ˆ̀
t,i − `t,i). Note that in the latter definition, the coefficient of (ˆ̀

t,i − `t,i) is
bounded by 2γt since ηt = γt, ηt ≥ ηs for all s such that t ∈ Os (since s > t in this case), and d? ≥ |Os|. Hence, with
probability at least 1− δ′, ε̂1:T ≤ log(1/δ′) by Lemma A.1 for any δ′ ∈ (0, 1). Furthermore,

T∑
t=1

K∑
i=1

∑
s:t∈Os

ηsIs,i =

T∑
s=1

∑
t:t∈Os

ηs =

T∑
s=1

ηsτs .

Therefore, using that `t,i ∈ [0, 1] and ηt = γt, the first term on the right hand side above can be bounded as

T∑
t=1

K∑
i=1

(
ηt + γt +

∑
s:t∈Os

ηsIs,i

)
`t,i ≤

T∑
t=1

2Kηt +

T∑
s=1

ηsτs =

T∑
t=1

ηt(τt + 2K) .

Putting these back into (17), combining with (5), and letting γt = ηt, for any δ′ ∈ [0, 1] we have

T∑
t=1

(`t,At − `t,A?) ≤ log(K)

ηT
+

T∑
t=1

ηt(τt + 2K) +
d? + 2

2
ε̂1:T + ε?1:T

≤ log(K)

ηT
+

T∑
t=1

ηt(τt + 2K) +
log(K/δ′)

2ηT
+
d? + 2

2
log(1/δ′)

=
3 log(K)

2ηT
+

T∑
t=1

ηt(τt + 2K) +
η−1
T + d? + 2

2
log(1/δ′) ,

with probability at least 1− 2δ′, where we also used that

ε?1:T ≤
1

2γT

T∑
t=1

2γt

(
ˆ̀
t,A∗ − `t,A?

)
=

1

2γT

T∑
t=1

K∑
i=1

2γtI [A∗ = i]
(

ˆ̀
t,i − `t,i

)
≤ 1

2γT
log(K/δ′)

with probability at least 1− δ′ simultaneously for all A? by Lemma A.1 and the union bound.

Letting δ′ = δ/2 and using the assumption that `t,i ≤ 1 completes the proof.

B. Proof of Theorem 5.1
Proof. First define the effective delay for time step s as d̃s =

∑s+ds
t=s+1 a

t
s; that is, if time step s is not “skipped” (i.e., ats = 1

for all t ∈ [T ]), d̃s = ds, and d̃s = t − s if s is skipped at the end of time step t, that is, at+1
s = 0 and ats = 1. Let

S = {t ∈ [T ] : aTt = 0} denote the set of skipped time steps, and define a new loss sequence (˜̀
t) such that the loss is

zeroed out if the corresponding time step is ever skipped by the algorithm, that is, ˜̀
t = `t if t 6∈ S and ˜̀

t = 0 if t ∈ S. Note
that this loss sequence can be constructed deterministically from the loss sequence (`t) and the delay sequence (dt).

It is easy to see that the τt-dependent tuning of DAda-Exp3, considered in this theorem, results in exactly the same
sequence of predictions (pt) as the original DAda-Exp3 algorithm for the losses (˜̀

t) and delays (d̃t).

To prove the upper bound on the expected regret, we start by applying Corollary 3.2 for the latter case:

T∑
t=1

(E [`t,At ]− `t,A?) ≤ |S|+
T∑
t=1

(
E
[
˜̀
t,At

]
− ˜̀

t,A?

)
≤ |S|+ 3

√√√√log(K)

(
TK +

T∑
t=1

d̃t

)
. (18)

To finish, we need to bound |S|, and relate the resulting bound to the bound in the theorem for an arbitrary R ⊂ [T ]. To do

so, we recycle a few results from Zimmert and Seldin (2019): In their Lemma 5, they show that |S| ≤ 2
√

log(K)
∑T
t=1 d̃t.

Furthermore, in the proof of their Theorem 2, they show that if
∑T
t=1 d̃t ≥ 16 log(K), then√√√√ T∑

t=1

d̃t log(K) ≤ 2 min
R⊂[T ]

|R|+√∑
t∈R̄

dt log(K)

 .
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Combining these results with (18) (and using
√
a+ b ≤

√
a+
√
b for any a, b > 0), we obtain that the expected regret can

be bounded as

T∑
t=1

(E [`t,At ]− `t,A?) ≤ 3
√
TK log(K) + 5

√√√√log(K)

T∑
t=1

d̃t

≤ 3
√
TK log(K) + 10 max

2 logK, min
R⊂[T ]

|R|+√∑
t∈R̄

dt log(K)

 ,

proving the bound on the expected regret.

To get the high-probability bound, we use Corollary 4.2 to get a high-probability version of (18): With ηt = γt =
1
2

√
3 log(K)

2tK+
∑t
s=1 τs

, and defining d̃? = maxt∈[T ] d̃t, we obtain that with probability at least 1− δ,

T∑
t=1

(`t,At − `t,A?)

≤ |S|+ 2

√√√√3 log(K)

(
2KT +

T∑
t=1

d̃t

)
+

2

√
2TK +

∑T
t=1 d̃t

3 log(K)
+ d̃? + 2

 log(2/δ)

2
. (19)

By construction, d̃? ≤
√
D̃T / log(K) =

√∑T
t=1 d̃t/ log(K). Using this and the same steps as for the regret bound in

expectation proves the high-probability bound of the theorem.

C. Proof of Theorem 6.2
Proof. The proof follows the same lines as the proof of Theorem 3.1, but instead of bounding the losses by their maximum
value, we approximate the adaptive data-dependent step-size that needs to be used to obtain a data-adaptive bound.

First, it can be easily seen that with γt and ηt as defined, we have

ηt ≤

√√√√√log(K)

(
4(d?t )

2 + 6d?t + 2

γt
+

K∑
i=1

∑
s+ds<t

`bck
s,i

)−1

≤

√√√√log(K)

(
K∑
i=1

`fwd
1:t,i

)−1

,

where the first inequality follows from the definition of |etat and γt and the second step follows from Lemma 6.1.7

Combining this with (7) and using the well-know AdaGrad lemma (see, e.g., Lemma 4 of McMahan, 2017, and also the
proof of Corollary 3.2), we obtain

T∑
t=1

K∑
i=1

ˆ̀
t,ipt,i

(
1− p̃t+1,i

pt,i

)
≤

T∑
t=1

K∑
i=1

ηt`
fwd
t,i

≤ 2

√√√√log(K)

K∑
i=1

`fwd
1:T,i = 2

√√√√log(K)

K∑
i=1

T∑
t=1

∑
s∈Ot∪{t}

ˆ̀
s,i

ˆ̀
t,ipt,i

≤ 2

√√√√log(K)

K∑
i=1

T∑
t=1

∑
s∈Ot∪{t}∪Dt

ˆ̀
s,i

ˆ̀
t,ipt,i .

7Selecting ηt and γt such that the first inequality becomes an equality is possible by setting ηt = γt =[
4(d?t )

2+6d?t+2

2 log(K)
+

√
(4(d?t )

2+6d?t+2)2

4 log2(K)
+

∑K
i=1

∑
s+ds<t

`bck
s,i

log(K)

]−1

. This would yield a slightly better but slightly uglier bound in the

theorem. Our current choice of ηt is a little smaller than this, implying the inequality.



Adapting to Delays and Data in Adversarial Multi-Armed Bandits

Next, from (5), we have

T∑
t=1

ˆ̀>
t (p̃t+1 − p?) ≤ log(K)

4(d?T )2 + 6d?T + 2

log(K)
+

√∑K
i=1

∑
s+ds<T

`bck
s,i

log(K)


= CT +

√√√√log(K)

K∑
i=1

∑
s+ds<T

`bck
s,i

≤ CT +

√√√√2 log(K)

K∑
i=1

T∑
t=1

∑
s∈Ot∪{t}∪Dt

ˆ̀
s,i

ˆ̀
t,ipt,i ,

where the third step follows by Lemma 6.1. Putting everything together, taking expectation and moving it inside the square
root by Jensen’s inequality, we obtain

T∑
t=1

(E [`t,At ]− `t,A?) ≤ CT + c

√√√√log(K)

T∑
t=1

∑
s∈Ot∪{t}∪Dt

E

[
K∑
i=1

ˆ̀
s,i

ˆ̀
t,ipt,i

]
. (20)

What remains is to work out the expectations. To do this, notice that in our algorithm any action only affects another future
action if the corresponding feedback arrives before the second action is taken. Therefore, whenever s ∈ Ot ∪ Dt, the
indicators Is,i and It,i are independent givenHmax{s,t}, and for such t and s,

E

[
K∑
i=1

ˆ̀
s,i

ˆ̀
t,ipt,i

]
≤ E

[
K∑
i=1

(`s,i`t,iIt,i)
Is,i
ps,i

]
= E

[
K∑
i=1

`s,i`t,iE
[
It,i

Is,i
ps,i

∣∣∣Hmax{s,t}

]]

= E

[
K∑
i=1

`s,i`t,ipt,i

]
= E [`s,At`t,At ] ,

where the first step follows by the definition of ˆ̀
j , the second by the definition of It,i and the tower rule, and the third

by the fact that E
[
It,iIs,i/ps,i

∣∣Hmax{s,t}
]

= E
[
It,i|Hmax{s,t}

]
E
[
Is,i|Hmax{s,t}

]
/ps,i = pt,i whenever s ∈ Ot ∪ Dt.

Furthermore, when s = t, the corresponding term is E
[
ˆ̀2
t,ipt,i

]
= E

[
`2t,iIt,i/pt,i

]
≤ `t,i. Substituting these in (20)

completes the proof.

C.1. Proof of Lemma 6.1

Proof. We start by fixing t ∈ [T ] and expanding the sum `fwd
1:t,i:

`fwd
1:t,i =

t∑
j=1

t∑
s=1

I [s ≤ j ≤ s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i

=

t∑
s=1

t∑
j=1

I [s ≤ j ≤ s+ ds ≤ j + dj ] ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
s=1

t∑
j=1

I [s ≤ j ≤ j + dj < s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i

=

t∑
s=1

t∑
j=1

I [j ≤ s+ ds ≤ j + dj ] ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i − St,i ,

where

St,i =

t∑
s=1

t∑
j=1

I [s > j, j ≤ s+ ds ≤ j + dj ] ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
s=1

t∑
j=1

I [s > j, s ≤ j + dj < s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i

+

t∑
s=1

t∑
j=1

I [j + dj = s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i .
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Moving St,i to the left,

`fwd
1:t,i + St,i =

t∑
s=1

t∑
j=1

I [j ≤ s+ ds ≤ j + dj ] ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i

=

t∑
s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds] ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i)

=

t∑
s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds < t] ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i)

+

t∑
s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds, s+ ds ≥ t] ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i)

=
∑

s:s+ds<t

∑
j:s≤j+dj≤s+ds

ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i)

+
t∑

s=1

t∑
j=1

I [s ≤ j + dj ≤ s+ ds, s+ ds ≥ t] ˆ̀
s,i

ˆ̀
j,i(pj,i + ps,i) ,

where the second step follows by swapping the names of s and j in the first sum on the r.h.s. Therefore,

`fwd
1:t,i + St,i =

∑
s:s+ds<t

`bck
s,i +Mt,i , (21)

where Mt,i =
∑t
s=1

∑t
j=1 I [s ≤ j + dj ≤ s+ ds, s+ ds ≥ t] ˆ̀

s,i
ˆ̀
j,i(pj,i + ps,i).

To continue, note that Mt,i and St,i are non-negative. Hence, to get the results of the lemma it remains to bound the terms
Mt,i and St,i from above. To that end, note

St,i =

t∑
s=1

t∑
j=1

I [s > j, s ≤ j + dj ] ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
s=1

t∑
j=1

I [j + dj = s+ ds] ˆ̀
s,i

ˆ̀
j,ipj,i

≤
t∑

j=1

∑
s:j∈Os

ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
j=1

∑
s∈Oj∪{j}∪Dj

ˆ̀
s,i

ˆ̀
j,ipj,i ,

where in the first step we have merged the first two summations, and split the last one, in the definition of St,i. The second
step then follows from using the definition of Os for the first term, and noting for the second term that either j = s, or j < s
(which, together with j + dj = s+ ds ≥ s > j, implies j ∈ Os) or j > s (which, together with s+ ds = j + dj ≥ j > s
implies s ∈ Oj).

Combining with the definition of `fwd
1:t,i and recalling the definition of Dj , we obtain∑

s:s+ds<t

`bck
s,i ≤

∑
s:s+ds<t

`bck
s,i +Mt,i

= `fwd
1:t,i + St,i

≤ `fwd
1:t,i +

t∑
j=1

∑
s∈Dj

ˆ̀
s,i

ˆ̀
j,ipj,i +

t∑
j=1

∑
s∈Oj∪{j}∪Dj

ˆ̀
s,i

ˆ̀
j,ipj,i

= 2

t∑
j=1

∑
s∈Oj∪{j}∪Dj

ˆ̀
s,i

ˆ̀
j,ipj,i .

This concludes the proof of the first inequality (13).
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To bound Mt,i, note that the summations run up to t, and the conditions I [s+ ds ≥ t] and I [s ≤ j + dj ] imply, respectively,
that the value of the sum is zero for s < t− d?t and j < t− 2d?t (since dj and ds are at most d?t ). Hence, we have

K∑
i=1

Mt,i ≤
t∑

s=max{1,t−d?t }

t∑
j=max{1,t−2d?t }

K∑
i=1

(
`s,iIs,i
ps,i + γs

`j,iIj,i + `s,iIs,i
`j,iIj,i
pj,i + γj

)

≤
t∑

s=max{1,t−d?t }

t∑
j=max{1,t−2d?t }

K∑
i=1

(
Ij,iIs,i
γt

+
Is,iIj,i
γt

)
,

using the fact that the losses are non-negative and upper-bounded by 1, the definition of ˆ̀
k, k ∈ [T ], and the fact that γt

is a non-increasing sequence in t. Hence,
∑K
i=1Mt,i ≤ (4d?t

2 + 6d?t + 2)/γt. Putting back in (21) and summing over i
completes the proof of the second inequality (14).

D. Proof of (15)

Proof. By definition, if s ∈ Ot, then s + 1 ≤ t ≤ s + d?T , and if s ∈ Dt then s − d?T ≤ t ≤ s − 1. Therefore, since the
losses are [0, 1]-valued, we have

T∑
t=1

∑
s∈Ot∪Dt

E [`s,As`t,As ] =

T∑
s=1

∑
t:s∈Ot∪Dt

E [`s,As`t,As ] ≤
T∑
s=1

∑
t:s∈Ot∪Dt

E [`s,As ] ≤ 2

T∑
s=1

d?T E [`s,As ] .

Therefore,

RT ≤ CT + c′

√√√√ T∑
t=1

(
2d?TE [`t,At ] +

K∑
i=1

`t,i

)

≤ CT + c′
√

2d?T (RT + LT,A∗) + c′

√√√√ T∑
t=1

K∑
i=1

`t,i

≤ CT + 2c′
√
d?T
2
RT + c′

√
2d?TLT,A∗ + c′

√√√√ T∑
t=1

K∑
i=1

`t,i

≤ C ′T +
RT
2

+ c′
√

2d?TLT,A∗ + c′

√√√√ T∑
t=1

K∑
i=1

`t,i ,

where C ′T = CT + c′2d?T , and the last step uses 2
√
ab ≤ a+ b. Hence,

RT ≤ 2C ′T + 2c′
√

2d?TLT,A∗ + 2c′

√√√√ K∑
i=1

LT,i .


