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The appendix is organized as follows.

• Appendix A. Proof of Proposition 3.2.

• Appendix B. Proofs of results about off-policy evaluation in Section 4.

– Appendix B.1. Proof of Theorem 4.3.

– Appendix B.2. Proof of Lemma 4.6.

– Appendix B.3. Proof of Theorem 4.9.

• Appendix C. Proof of Theorem 5.1: upper bound of batch policy optimization.

• Appendix D. Proof of Theorem 5.2: minimax lower bound of batch policy optimiztion.

• Appendix E. Proofs of auxiliary lemmas.

• Appendix F. Some supporting lemmas.

A. Proof of Proposition 3.2

Proof of Proposition 3.2. Fix a policy π. Since M is a linear MDP, for every i ∈ [d] there exist wi ∈ Rd such that
Pφπi = gwi . Thus, for any (x, a) ∈ X ×A,

Ex′∼P (·|x,a)[φ
π(x′)>|x, a] = (Pφπ1 , . . . , Pφ

π
d ) = (φ(x, a)>w1, . . . , φ(x, a)>wd)

= φ(x, a)>
(
w1, · · · , wd

)
.

Thus, Eq. (3.1) holds if we choose

Kπ =
(
w1, · · · , wd

)
.

Under the sparsity assumption, Assumption 2.1, there exists K ⊂ [d] such that wij = 0 when j 6∈ K. This shows that all but
|K| rows of Kπ are identically zero, finishing the proof.

B. Proofs of Off-Policy Evaluation

B.1. Proof of Theorem 4.3: Lasso fitted Q-evaluation

Recall that we split the whole dataset D into T folds and each fold consists of R episodes or RL sample transitions. At tth
phase, only the fresh fold of dataset Dt = {(x(t)

i , a
(t)
i , x

(t)′

i )}RLi=1 is used.

Step 1: Approximate value iteration. We first show that the execution of Algorithm 1 is equivalent to approximate value
iteration. Denote a Lasso estimator with respect to a function V at tth phase:

ŵt(V ) = argmin
w∈Rd

( 1

RL

RL∑
i=1

(
V (x

(t)′

i )− φ(x
(t)
i , a

(t)
i )>w

)2

+ λ1‖w‖1
)
. (B.1)

Note that ŵt(·) only depends data collected at the tth phase. Define the parameterized value function as

V πw (x) =
∑
a

π(a|x)
(
r(x, a) + γφ(x, a)>w

)
.

Define an approximate Bellman operator for target policy π, i.e. T̂ (t)
π : RX → RX as:

[T̂ (t)
π V ](x) := V πŵt(V )(x) =

∑
a

π(a|x)
(
r(x, a) + γφ(x, a)>ŵt(V )

)
. (B.2)
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Note this T̂ (t)
π is a randomized operator that only depends data in the tth fold. It is easy to see that if (ŵt)

T
t=1 is the sequence

of weights computed in Algorithm 1 then ŵt = ŵt(Π[0,1/(1−γ)]V
π
ŵt−1

) and also

V πŵt = T̂ (t)
π Π[0,1/(1−γ)]V

π
ŵt−1

. (B.3)

Step 2: Linear representation of Bellman operator. Recall that the true Bellman operator for target policy π, i.e.
Tπ : RX → RX is defined as

[TπV ](x) :=
∑
a

π(a|x)
(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
. (B.4)

We first verify for each phase t ∈ [T ], TπΠ[0,1/(1−γ)]V
π
ŵt

has a linear representation. From Assumption 2.1, there exists a
vector w̄t ∈ Rd with w̄t,k = 0 if k /∈ K such that

[TπΠ[0,1/(1−γ)]V
π
ŵt

](x) =
∑
a

π(a|x)
(
r(x, a) + γφ(x, a)>w̄t

)
. (B.5)

It shows that TπΠ[0,1/(1−γ)]V
π
ŵt

has a linear representation if the reward could also be linearly represented. For notation

simplicity, we drop the supscript of x(t)
i and a(t)

i for the following derivations when there is no ambiguity.

Step 3: Sparse linear regression. We interpret w̄t as the ground truth of the lasso estimator in Algorithm 1 at phase t, in
terms of the following sparse linear regression:

Π[0,1/(1−γ)]V
π
ŵt−1

(x′i) = φ(xi, ai)
>w̄t + εi, i = 1 . . . , RL, (B.6)

where εi = Π[0,1/(1−γ)]V
π
ŵt−1

(x′i) − φ(xi, ai)
>w̄t. Define a filtration {Fi}i=1,...,RL with Fi generated by

{(x1, a1), . . . , (xi, ai)}. By the definition of Vŵt−1
, we have

E[εi|Fi] = E
[
Π[0,1/(1−γ)]V

π
ŵt−1

(x′i)|Fi
]
− φ(xi, ai)

>w̄t

=
∑
x′

[Π[0,1/(1−γ)]V
π
ŵt−1

](x′)P (x′|xi, ai)′ − φ(xi, ai)
>w̄t

=
∑
k∈K

φk(xi, ai)
∑
x′

[Π[0,1/(1−γ)]V
π
ŵt−1

](x′)ψk(x′)′ − φ(xi, ai)
>w̄t = 0.

Therefore, {εi}RLn=1 is a sequence of martingale difference noises and |εi| ≤ 1/(1 − γ) due to the truncation operator
Π[0,1/(1−γ)]. The next lemma bounds the difference between ŵt and w̄t within `1-norm. The proof is deferred to Appendix
E.2.

Lemma B.1. Consider the sparse linear regression described in Eq. (B.6). Suppose the restricted minimum eigenvalue of Σ

satisfy Cmin(Σ, s) > 0 and the number of episodes used in phase t satisfies

R ≥ C1 log(3d2/δ)s2

Cmin(Σ, s)
,

for some absolute constant C1 > 0. With the choice of λ1 = (1 − γ)−1
√

log(2d/δ)/(RL), the following holds with
probability at least 1− δ, ∥∥ŵt − w̄t∥∥1

≤ 16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2d/δ)

RL
. (B.7)

Note that the samples we use between phases are mutually independent. Thus, Eq. (B.7) uniformly holds for all t ∈ [T ]

with probability at least 1− Tδ.

Step 4: Error decomposition. Recall that v̂πŵT = 1
m

∑m
u=1 Π[0,1/(1−γ)](QŵT (x̃u, ãu)) and we denote v̄πŵT =∑

x V
π
ŵT

(x)ξ0(x). According to Eq. (B.3), we decompose the policy evaluation error by Monte Carlo error, estimation error
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and approximation error as follows:

|v̂πŵT − v
π| =

∣∣∣v̂πŵT − v̄πŵT +
∑
x

(
V πŵT (x)− vπ(x)

)
ξ0(x)

∣∣∣
=
∣∣∣v̂πŵT − v̄πŵT +

∑
x

(
[T̂ (T )
π Π[0,1/(1−γ)]V

π
ŵT−1

](x)− [Tπvπ](x)
)
ξ0(x)

∣∣∣
≤
∣∣∣∑
x

(
[T̂ (T )
π Π[0,1/(1−γ)]V

π
ŵT−1

](x)− [TπΠ[0,1/(1−γ)]V
π
ŵT−1

](x)
)
ξ0(x)︸ ︷︷ ︸

estimation error

∣∣∣
+
∣∣∣∑
x

[
Tπ(Π[0,1/(1−γ)]V

π
ŵT−1

− vπ)
]
(x)ξ0(x)︸ ︷︷ ︸

approximation error

∣∣∣+
∣∣∣v̂πŵT − v̄πŵT ∣∣∣︸ ︷︷ ︸
Monte Carlo error

.

(B.8)

Since x̃u, ãu is i.i.d sampled from ξ0 and π, standard Hoeffding’s inequality shows that

∣∣∣v̂πŵT − v̄πŵT ∣∣∣ ≤
√

log(1/δ)

m(1− γ)2
=

√
log(1/δ)

N(1− γ)2
, (B.9)

with probability at least 1− δ.

Recall that νπt = Eπ[φ(xt, at)|x0 ∼ ξ0]. To bound the estimation error, combining Eqs. (B.2) and (B.5) together, we have∑
x

(
[T̂ (T )
π Π[0,1/(1−γ)]V

π
ŵT−1

](x)− [TπΠ[0,1/(1−γ)]V
π
ŵT−1

](x)
)
ξ0(x)

=γ
∑
x

∑
a

π(a|x)φ(x, a)>(ŵT−1 − w̄T−1)ξ0(x)

=γ(νπ0 )>(ŵT−1 − w̄T−1).

(B.10)

To bound approximation error, we expand it by Eq. (B.4):∑
x

[
Tπ(Π[0,1/(1−γ)]V

π
ŵT−1

− vπ)
]
(x)ξ0(x)

=γ
∑
x

(∑
a

π(a|x)
∑
x′

P (x′|x, a)
(
Π[0,1/(1−γ)]V

π
ŵT−1

− vπ
)
(x′)

)
ξ0(x).

According to Eq. (B.10), we decompose(
Π[0,1/(1−γ)]V

π
ŵT−1

− vπ
)
(x) ≤ (V πŵT−1

− vπ)(x)

=
[
T̂ (T−1)
π Π[0,1/(1−γ)]V

π
ŵT−2

− TπΠ[0,1/(1−γ)]V
π
ŵT−2

+ TπΠ[0,1/(1−γ)]V
π
ŵT−2

− Tπvπ
]
(x)

=γ
∑
a

π(a|x)φ(x, a)>(ŵT−2 − w̄T−2) +
[
Tπ(Π[0,1/(1−γ)]V

π
ŵT−2

− vπ)
]
(x).

This implies ∑
x

[
Tπ(Π[0,1/(1−γ)]V

π
ŵT−1

− vπ)
]
(x)ξ0(x)

≤ γ2
∑
x

(∑
a

π(a|x)γ
∑
x′

P (x′|x, a)
(∑

a

π(a|x′)φ(x′, a)>(ŵT−2 − w̄T−2)
))
ξ0(x)

+
∑
x

(∑
a

π(a|x)γ
∑
x′

[
Tπ(Π[0,1/(1−γ)]V

π
ŵT−2

− vπ)
]
(x′)P (x′|x, a)

)
ξ0(x)

= γ2Eπ[φ(x1, a1)|x ∼ ξ0]>(ŵT−2 − w̄T−2)

+ γEπ
[
[Tπ(Π[0,1/(1−γ)]V

π
ŵT−2

− vπ)](x1)|x0 ∼ ξ0
]
.

(B.11)
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Combining Eqs. (B.8), (B.10) and (B.11) together, we have

|v̄πŵT − v
π| ≤|γ(νπ0 )>(ŵT−1 − w̄T−1)|+ |γ2(νπ1 )>(ŵT−2 − w̄T−2)|

+
∣∣∣γEπ[[Tπ(Π[0,1/(1−γ)]V

π
ŵT−2

− vπ)](x1)|x0 ∼ ξ0
]∣∣∣.

Iteratively implementing the above decomposition, we have

|v̄πŵT − v
π| ≤

T−1∑
t=0

γt+1|(νπt )>(ŵT−t−1 − w̄T−t−1)|+ γT
∣∣∣Eπ[(Π[0,1/(1−γ)]V

π
ŵ0
− vπ)(xT )|x0 ∼ ξ0

]∣∣∣
≤
T−1∑
t=0

γt+1|(νπt )>(ŵT−t−1 − w̄T−t−1)|+ 2γT

1− γ

≤
T−1∑
t=0

γt+1‖νπt )‖∞‖ŵT−t−1 − w̄T−t−1‖1 +
2γT

1− γ
.

Since we assume ‖φ(x, a)‖∞ ≤ 1, then ‖νπt ‖∞ ≤ 1 as well. Using the fact that
∑T−1
t=0 γt ≤ 1/(1− γ), we have

|v̄πŵT − v
π| ≤ 1

1− γ
max

t=0,...,T−1
‖ŵt − w̄t‖1 +

2γT

1− γ
.

Suppose the sample size satisfies

N ≥ C1 log(3d2/δ)s2

Cmin(Σ, s)

L

1− γ
log(N/(1− γ))),

for a sufficient large constant C1 > 0. Applying Lemma B.1 over t = 0, . . . , T − 1, it implies

|v̄πŵT − v
π| ≤ 1

(1− γ)2

16
√

2s

Cmin(Σ, s)

√
log(2d/δ)

RL
+

2γT

1− γ
,

holds with probability at least 1− Tδ. By elementary change of base formula and Taylor expansion, we have

log1/γ(x) =
log(x)

log(1/γ)
≈ log(x)λ

1− γ
.

By properly choosing T = Θ(log(N/(1− γ))/(1− γ)), we have with probability at least 1− δ,

|v̄πŵT − v
π| ≤ 1

(1− γ)5/2

32
√

2s

Cmin(Σ, s)

√
log(N/(1− γ)) log(2dT/δ)

N
,

where we use N = TRL. Combining with Monte Carlo approximation error Eq. (B.9) This ends the proof. �

B.2. Proof of Lemma 4.6: Feature selection

We study the feature screening and sparsity properties of the model selected by the regularized estimator K̂π. Recall that
from the identity Eq. (3.1), we solve the following multivariate regression problem:

φπ(x′n)> = φ(xn, an)>Kπ + εn, n ∈ [N ], (B.12)

where x′n ∼ P (·|xn, an) and εn = φπ(x′n)> − E[φπ(x′n)>] ∈ Rd is the noise vector. Define a filtration {Fn}n=1,...,N

with Fn generated by {(x1, a1), . . . , (xn, an)}. It is easy to see E[εn|Fn] = 0 such that {εn}Nn=1 are martingale difference
vectors. We introduce some notations for simplicities:
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• Denote the response Yj = (φπj (x′1), . . . , φπj (x′N ))> for j ∈ [d] where φπj (·) is jth coordinate of φπ(·). And Y =

(Y >1 , . . . , Y >d )> ∈ RNd×1.

• Denote the noise Wj = (ε1j , . . . , εNj)
> where εnj is the jth coordinate of εn, and W = (W>1 , . . . ,W

>
d )> ∈ RNd×1.

• Denote the design matrix as

Φ =

 φ(x1, a1)>

...
φ(xN , aN )>

 ∈ RN×d;X =

Φ . . . 0
...

. . .
...

0 . . . Φ

 ∈ RNd×d2 .

Note that X is a block diagonal matrix.

• Let β∗j as the jth column of Kπ and β∗ = (β∗>1 , . . . ,β∗>d )> ∈ Rd2×1 as the regression coefficient.

• For every β ∈ Rd2 , we define βj = (βj+(i−1)d : i ∈ [d])> as the vector formed by the coefficients corresponding
to the jth variable. For instance, β∗j is the jth row of Kπ. If J ⊆ [d], denote βJ ∈ Rd2 by stacking the vectors
βj 1{j ∈ J}. Write S(β) = {j : βj 6= 0} as the relevant feature set of β.

• For a vector β ∈ Rd2 , define the `2,p-norm for 1 ≤ p <∞ as:

‖β‖2,p =
( d∑
j=1

( d∑
i=1

β2
j+(i−1)d

)p/2)1/p

,

and the `2,0-norm as:

‖β‖2,0 =

d∑
j=1

1
{
‖βj‖2 6= 0

}
.

Therefore, we can rewrite Eq. (B.12) into an ordinary linear regression form with group sparse structure on the regression
coefficients β∗:

Y = Xβ∗ +W.

Note that S(β∗) = K where K is defined in Assumption 2.1 since Kπ is row-sparse. The corresponding group lasso
estimator defined in Eq. (3.2) can be rewritten into:

β̂ = argmin
β

{ 1

Nd

∥∥Y −Xβ
∥∥2

2
+ λ2

d∑
j=1

‖βj‖2
}
, (B.13)

and S(β̂) = K̂. The regularization parameter is chosen as

λ2 = 4

√
2 log(2d2/δ)

Nd
, (B.14)

for some δ > 0.

Now we study the feature screening property of β̂ in four steps.

Step 1. By the optimality of β̂, we have

1

Nd
‖Y −Xβ̂‖22 + λ2

d∑
j=1

‖β̂j‖2 ≤
1

Nd
‖Y −Xβ∗‖22 + λ2

d∑
j=1

‖β∗j‖2.
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Plugging in Y = Xβ∗ +W ,

1

Nd
‖X(β̂ − β∗)‖22 ≤

2

Nd
W>X(β̂ − β∗) + λ2

d∑
j=1

(
‖β∗j‖2 − ‖β̂j‖2

)

≤ 2

Nd
max
j∈[d]

∥∥(X>W )j
∥∥

2

d∑
j=1

‖β̂j − β∗j‖2 + λ2

d∑
j=1

(
‖β∗j‖2 − ‖β̂j‖2

) (B.15)

where the last inequality is from Hölder’s inequality.

Step 2. Next, we will bound the noise term: ‖(X>W )j‖2. From the definitions of X and W , we write it explicitly as

‖(X>W )j‖2 =

√√√√ d∑
i=1

( N∑
n=1

φj(xn, an)εni

)2

.

It is easy to verify that {φj(xn, an)εni}Nn=1 is also a martingale difference sequence for any i, j ∈ [d] and |φj(xn, an)εni| ≤
1 since we assume ‖φ(x, a)‖∞ ≤ 1 for any state-action pair. According to Azuma-Hoeffding inequality (Lemma F.2), for
all δ̃ > 0,

P
(∣∣∣ N∑

n=1

φj(xn, an)εni

∣∣∣ ≥ δ̃) ≤ 2 exp
(
− δ̃2

2N

)
.

Using the union bound twice, the following holds,

P
(

max
j∈[d]

√√√√ d∑
i=1

( N∑
n=1

φj(xn, an)εni

)2

≥
√
dδ̃
)
≤ 2d2 exp

(
− δ̃2

2N

)
. (B.16)

Letting δ = 2d2 exp(−δ̃2/2N), we have with probability at least 1− δ,

1

Nd
max
j∈[d]

∥∥(X>W )j
∥∥

2
≤ λ2

4
.

Define an event A as
A =

{ 1

Nd
max
j∈[d]

∥∥(X>W )j
∥∥

2
≤ λ2

4

}
.

Then we have P(A) ≥ 1− δ.

Step 3. According to Karush–Kuhn–Tucker (KKT) condition, the solution β̂ of the optimization problem Eq. (B.13) satisfies{(
X>(Y −Xβ̂)

)j
/(Nd) = λ2β̂

j/‖β̂j‖2, if β̂j 6= 0,

‖
(
X>(Y −Xβ̂)

)j‖2/(Nd) ≤ λ2, if β̂j = 0.

Under event A and using KKT condition, we have if β̂j 6= 0, then

λ2 =
∥∥ 1

Nd

(
X>(Y −Xβ̂)

)j∥∥
2

=
∥∥ 1

Nd

(
X>X(β∗ − β̂)

)j
+

1

Nd

(
X>W

)j∥∥
2

≤
∥∥ 1

Nd

(
X>X(β∗ − β̂)

)j∥∥
2

+
∥∥ 1

Nd

(
X>W

)j∥∥
2

≤
∥∥ 1

Nd

(
X>X(β∗ − β̂)

)j∥∥
2

+
1

4
λ2,

which implies

1

(Nd)2

∥∥(X>X(β̂ − β∗)
)
S(β̂)

∥∥2

2
=

1

(Nd)2

∑
j∈S(β̂)

∥∥(X>X(β̂ − β∗)
)j∥∥2

2

≥ |S(β̂)| 9

16
λ2

2.

(B.17)
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We define a notation of restricted maximum eigenvalue with respect to S(β∗) and X:

C̃max(m) = max
β∈Rd2×d2 :‖βS(β∗)c‖2,0≤m

β>X>Xβ

N‖β‖22
. (B.18)

Denote m̂ = |S(β̂) \ S(β∗)|. Then we have

∥∥(X>X(β̂ − β∗)
)
S(β̂)

∥∥
2
≤ sup
‖αS(β∗)c‖2,0≤m̂

|α>X>X(β̂ − β∗)|
‖α‖2

≤ sup
‖αS(β∗)c‖2,0≤m̂

‖α>X>‖2‖X(β̂ − β∗)‖2
‖α‖2

= sup
‖αS(β∗)c‖2,0≤m̂

√
|α>X>Xα|
‖α‖2

‖X(β̂ − β∗)‖2

≤
√
NCmax(m̂)‖X(β̂ − β∗)‖2.

(B.19)

Combining Eqs. (B.17) and (B.19) together, we have

|S(β̂)| ≤ 16Cmax(m̂)

9Nd2λ2
2

∥∥X(β̂ − β∗)
∥∥2

2
, (B.20)

holds with probability at least 1− δ.

Step 4. It remains to control the in-sample prediction error ‖X(β̂ − β∗)‖22. Under event A, using Eq. (B.15) implies

1

Nd

∥∥X(β̂ − β∗)
∥∥2

2
≤ λ2

2

d∑
j=1

∥∥β̂j − β∗j
∥∥

2
+ λ2

d∑
j=1

(
‖β∗j‖2 − ‖β̂j‖2

)
.

Adding
∑d
j=1

∥∥β̂j − β∗j
∥∥

2
λ2/2 to both sides and using the fact that ‖β∗j − β∗j‖2 + ‖β̂j‖2 − ‖β̂j‖2 = 0 for j 6= S(β∗),

we have

1

Nd

∥∥X(β̂ − β∗)
∥∥2

2
+
λ2

2

d∑
j=1

∥∥β̂j − β∗j
∥∥

2

≤λ2

∑
j∈S(β∗)

(∥∥β̂j − β∗j
∥∥

2
+ ‖β∗j‖2 − ‖β̂j‖2

)
≤2λ2

√
s
∥∥(β̂ − β∗)S(β∗)

∥∥
2
,

(B.21)

where the last inequality is from Cauchy-Schwarz inequality. Recall that the expected uncentered covariance matrix is
defined as

Σ = E
[ 1

L

L−1∑
h=0

φ(x
(1)
h , a

(1)
h )φ(x

(1)
h , a

(1)
h )>

]
,

and we define the empirical uncentered covariance matrix as

Σ̂ =
1

N

N∑
n=1

φ(xn, an)φ(xn, an)> =
1

K

K∑
k=1

1

L

L−1∑
h=0

φ(x
(k)
h , a

(k)
h )φ(x

(k)
h , a

(k)
h )>,

with N = KL. Denote the expected and empirical uncentered covariance matrices for the multivariate linear regression as

Ψ̂ =

Σ̂ . . . 0
...

. . .
...

0 . . . Σ̂

 ∈ Rd2×d2 ; Ψ =

Σ . . . 0
...

. . .
...

0 . . . Σ

 ∈ Rd2×d2 .

We introduce a generalization of restricted eigenvalue condition (Definition 4.2) for multivariate linear regression.
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Definition B.2 (`2,1-restricted eigenvalue). Given a symmetric matrix H ∈ Rd2×d2 and integer s ≥ 1, the restricted
eigenvalue of H is defined as

C̃min(H, s) := min
S⊂[d],|S|≤s

min
β∈Rd2

{ 〈β, Hβ〉
‖βS‖22

: β ∈ Rd
2

, ‖βSc‖2,1 ≤ 3‖βS‖2,1
}
.

Next lemma provides a lower bound for C̃min(Φ̂, s). The proof is deferred to Appendix E.1.

Lemma B.3. Assume the `2,1-restricted eigenvalue of Ψ satisfies C̃min(Ψ, s) > 0 for some δ > 0. Suppose the sample
size satisfies N ≥ 322L log(3d2/δ)s2/C̃min(Ψ, s)2. Then the `2,1-restricted eigenvalue of Ψ̂ satisfies C̃min(Ψ̂, s) >

C̃min(Ψ, s)/2 with probability at least 1− δ.

On the other hand, from Eq. (B.21), we know that

1

2

d∑
j=1

∥∥β̂j − β∗j
∥∥

2
≤ 2

∑
j∈S(β∗)

∥∥β̂j − β∗j
∥∥

2
,

and thus, ∑
j∈S(β∗)c

∥∥β̂j − β∗j
∥∥

2
≤ 3

∑
j∈S(β∗)

∥∥β̂j − β∗j
∥∥

2
. (B.22)

This implies that ‖(β̂−β∗)S(β∗)c‖2,1 ≤ 3‖(β̂−β∗)S(β∗)‖2,1. Applying Lemma B.3, the following holds with probability
at least 1− δ, ∥∥X(β̂ − β∗)

∥∥2

2

N
∥∥(β̂ − β∗)S(β∗)

∥∥2

2

=
(β̂ − β∗)>Ψ̂(β̂ − β∗)∥∥(β̂ − β∗)S(β∗)

∥∥2

2

≥ C̃min(Ψ̂, s) ≥ C̃min(Ψ, s)/2. (B.23)

Plugging the above bound into Eq. (B.21),

1

Nd

∥∥X(β̂ − β∗)
∥∥2

2
≤ 2λ2

√
s
∥∥(β̂ − β∗)S(β∗)

∥∥
2

≤ 1√
N

∥∥X(β̂ − β∗)
∥∥

2

4
√
sλ2√

C̃min(Ψ, s)
.

Combining with Eq. (B.20) and the choice of λ2 in Eq. (B.14), we reach

|S(β̂)| ≤ 16C̃max

9Nd2λ2
2

16λ2
2Nd

2s

C̃min(Ψ, s)
=

256C̃max(m̂)s

9C̃min(Ψ, s)
,

with probability at least 1 − δ, as long as N ≥ 322L log(3d2/δ)s2/C̃min(Ψ, s)2. If the vanilla restricted eigenvalue
(Definition 4.2) of Σ satisfies Cmin(Σ, s) > 0, then we have for any S ⊂ [d], |S| ≤ s, and any βj ∈ Rd satisfying
‖(βj)Sc‖1 ≤ 3‖(βj)S‖1,

β>j Σβj

‖(βj)S‖22
≥ Cmin(Σ, s) > 0.

Consider a sequence of vectors β1, . . . ,βd satisfying ‖(βj)Sc‖1 ≤ 3‖(βj)S‖1. Then for β = (β>1 , . . . ,β
>
d )>, we have

β>Ψβ =

d∑
j=1

β>j Σβj ≥ Cmin(Σ, s)

d∑
j=1

∥∥(βj)S
∥∥2

2
= Cmin(Σ, s)

∥∥βS∥∥2

2
.

Therefore, we conclude C̃min(Ψ, s) ≥ Cmin(Σ, s) > 0 such that

|S(β̂)| ≤ 256C̃max(m̂)s

9Cmin(Σ, s)
, (B.24)
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with probability at least 1− δ, as long as N ≥ 322L log(3d2/δ)s2/C2
min(Σ, s).

For any β = (β>1 , . . . ,β
>
d )> satisfying ‖βS(β∗)c‖2,0 ≤ m0, we have ‖(βj)S(β∗)c‖0 ≤ m0 for any j ∈ [d]. Given a

positive semi-definite matrix Z ∈ Rd×d and integer s ≥ 1, the restricted maximum eigenvalue of Z are defined as

Cmax(Z, s) := max
S⊂[d],|S|≤s

max
β∈Rd

{ 〈β, Zβ〉
‖β‖22

: β ∈ Rd, ‖βSc‖0 ≤ s
}
.

Using the definition of Cmax(Σ̂, s), it holds that

β>j Σ̂βj ≤ Cmax(Σ̂, s)‖βj‖22, for any j ∈ [d].

Summing the above inequality from 1 to d,

β>
X>X

N
β =

d∑
j=1

β>j Σ̂βj ≤ Cmax(Σ̂, s)

d∑
j=1

‖βj‖22 = Cmax(Σ̂, s)‖β‖22.

This implies C̃max(m̂) ≤ Cmax(Σ̂, m̂). As shown in the Lemma 1 in Belloni et al. (2013), we have Cmax(Σ̂,m) ≤
4Cmax(Σ,m) for any m+ s ≤ log(n) as long as n & s.

Step 5. Recall that m̂ = |S(β̂) \ S(β∗)| and denote

M =
{
m ∈ N+ : m >

2048sCmax(Σ,m)

9Cmin(Σ, s)

}
.

Suppose there is a m0 ∈M such that m̂ > m0. From Eq. (B.24), we know that

m̂ ≤ |S(β̂)| ≤ Cmax(Σ,m)
1024s

9Cmin(Σ, s)
.

According to Lemma 3 in Belloni et al. (2013) for the sublinearity of sparse maximum eigenvalues, we have

Cmax(Σ, m̂) ≤ dm̂/m0eCmax(Σ,m0) ≤ 2Cmax(Σ,m0)m̂/m0.

where the last inequality we use dκe ≤ 2κ. Putting the above two results together, we have

m0 ≤
2048sCmax(Σ,m0)

9Cmin(Σ, s)
.

This leads a contradiction with the definition ofM. Therefore, m̂ ≤ m0 for all m0 ∈M. This implies

|S(β̂)| ≤ min
m0∈M

Cmax(Σ,m0)
1024s

9Cmin(Σ, s)

=
[1024 minm0∈M Cmax(Σ,m0)

9Cmin(Σ, s)

]
s . s.

The term minm0∈M Cmax(Σ,m0)/Cmin(Σ, s) essentially characterizes the condition number of Σ on a restricted support
and is upper bounded by the condition number defined in the full support. Now we finish the proof of the first part of Lemma
4.6 and start to prove the second part of Lemma 4.6 under separability condition.

According to Eq. (B.22), under event A we have

∥∥β̂ − β∗
∥∥

2,1
=

d∑
j=1

∥∥β̂j − β∗j
∥∥

2
=

∑
j∈S(β∗)

∥∥β̂j − β∗j
∥∥

2
+

∑
j∈S(β∗)c

∥∥β̂j − β∗j
∥∥

2

≤ 4
∑

j∈S(β∗)

∥∥β̂j − β∗j
∥∥

2
.
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From Eq. (B.23), ∑
j∈S(β∗)

∥∥β̂j − β∗j
∥∥

2
≤
√
s
∥∥(β̂ − β∗)S(β∗)

∥∥
2

≤
√

2s

C̃min(Σ, s)

1√
N

∥∥X(β̂ − β∗)
∥∥

2

≤ 4
√

2sdλ2

C̃min(Σ, s)
≤ 4
√

2sdλ2

Cmin(Σ, s)
.

Combining the above two inequality together and plugging in the choice of λ2, we can bound

∥∥β̂ − β∗
∥∥

2,1
≤ 64

√
2s
√
d

Cmin(Σ, s)

√
2 log(2d2/δ)

N
.

with probability at least 1− δ. Under Assumption 4.5, the following holds that with probability at least 1− δ,

min
j∈S(β∗)

∥∥β∗j∥∥
2
>
∥∥β̂ − β∗

∥∥
2,1
≥
∥∥β̂ − β∗

∥∥
2,∞.

If there is a j ∈ S(β∗) but j /∈ S(β̂), we have∥∥β̂j − β∗j
∥∥

2
=
∥∥β∗j∥∥

2
>
∥∥β̂ − β∗

∥∥
2,∞.

On the other hand, ∥∥β̂j − β∗j
∥∥

2
≤
∥∥β̂ − β∗

∥∥
2,∞,

which leads a contradiction. Now we conclude that S(β̂) ⊇ K. This ends the proof. �

B.3. Proof of Theorem 4.9: Instance-dependent upper bound

We restate the instance-dependent error bound error bound of vanilla fitted Q-evaluation algorithm on the full support.

Theorem B.4 (Theorem 5 in Duan and Wang (2020)). Suppose Assumption 2.1 holds. Suppose φ(x, a)>Σ−1φ(x, a) . d
for any pair of (x, a). Let δ ∈ (0, 1) and Algorithm 2 without feature selection stage takes N samples satisfying

N &
γ2 log(d/δ)d

(1− γ)3
.

Set regularization parameter λ3 = λmin(Σ) log(12d/δ)C1d/(1− γ). Letting the number of iteration T →∞, the following
holds with probability at least 1− δ,

v̂πŵ − vπ ≤
1

1− γ

∞∑
t=0

γt+1
√

(νπt )>Σ−1(νπt )

√
log(1/δ)

N
+
γ ln(12d/δ)d

N(1− γ)3.5
,

where νπt = Eπ[φ(xt, at)|x ∼ ξ0].

If the true relevant feature set K is known in an oracle case, we could directly run the algorithm on K such that all the
dependency on d can be reduced to s and the instance-dependent term turns to be defined in the K that is much sharper than
the original one. Fortunately, Lemma 4.6 implies K̂ ⊇ K and |K̂| . s. Suppose

N &
γ2 log(s/δ)s

(1− γ)3
&
γ2 log(|K̂|/δ)|K̂|

(1− γ)3
.

Rewriting Theorem B.4 with respect to K̂, we have

|v̂πŵ − vπ| .
1

1− γ

∞∑
t=0

γt+1

√
(ν̃πt )>Σ̃−1(ν̃πt )

√
log(1/δ)

N
,
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where ν̃πt = [νπt ]K̂ and Σ̃ = ΣK̂×K̂. The corresponding condition φ(x, a)>Σ−1φ(x, a) . |K̂| can be satisfied due to
Cmin(Σ, s) > 0 and ‖φ(x, a)‖∞ ≤ 1. From Definitions 4.7, 4.8 and Lemma B.2 in (Duan and Wang, 2020), we have

√
1 + χ2

G(K̂)
(µπ, µ̄) =

∞∑
t=0

γt sup
f∈G(K̂)

(1− γ)Eπ[f(xt, at)|x0 ∼ ξ0]√
E[ 1

L

∑L−1
h=0 f

2(x1h, a1h)]

= (1− γ)

∞∑
t=0

γt
√

(ν̃πt )>Σ̃−1(ν̃πt ).

Now we end the proof. �

C. Proof of Theorem 5.1: Lasso Fitted Q-iteration

C.1. Proof of Theorem 5.1

The main structure of this proof is similar to the proof of Theorem 4.3 in Appendix B.1 but we need to utilize the contraction
property of Bellman optimality operator. Recall that we split the whole dataset into T folds and each fold consists of R
episodes or RL sample transitions. The overall sample size is N = TRL.

Step 1. We verify that the execution of Algorithm 3 is equivalent to the approximate value iteration. Recall that a generic
Lasso estimator with respect to a function V at tth phase is defined in Eq. (B.1) as

ŵt(V ) = argmin
w∈Rd

( 1

RL

RL∑
i=1

(
Π[0,1/(1−γ)]V (x

(t)′

i )− φ(x
(t)
i , a

(t)
i )>w

)2

+ λ1‖w‖1
)
.

Define Vw(x) = maxa∈A(r(x, a) + γφ(x, a)>w). For simplicity, we write ŵt := ŵt(Vŵt−1
) for short. Define an

approximate Bellman optimality operator T̂ (t) : RX → RX as:

[T̂ (t)V ](x) := max
a

[
r(x, a) + γφ(x, a)>ŵt(V )

]
. (C.1)

Note this T̂ (t) is a randomized operator that only depends data collected at tth phase. Algorithm 3 is equivalent to the
following approximate value iteration:

[T̂ (t)Π[0,1/(1−γ)]Vŵt−1
](x) = max

a

[
r(x, a) + γφ(x, a)>ŵt

]
= max

a
Qŵt(x, a) = Vŵt(x). (C.2)

Recall that the true Bellman optimality operator T : RX → RX is defined as

[T V ](x) := max
a

[
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)′
]
. (C.3)

Step 2. We verify that the true Bellman operator on Π[0,1/(1−γ)]Vŵt−1
can also be written as a linear form. From Assumption

2.1, there exists a vector w̄t ∈ Rd with w̄t,k = 0 if k /∈ K such that

[T Π[0,1/(1−γ)]Vŵt−1
](x) = max

a

[
r(x, a) + γφ(x, a)>w̄t

]
. (C.4)

Step 3. We start to bound ‖Vŵt − v∗‖∞ for each phase t. By the approximate value iteration form Eq. (C.2) and the
definition of optimal value function,∥∥Vŵt − v∗∥∥∞ =

∥∥T̂ (t)Π[0,1/(1−γ)]Vŵt−1
− T v∗

∥∥
∞

=
∥∥T̂ (t)Π[0,1/(1−γ)]Vŵt−1

− T Π[0,1/(1−γ)]Vŵt−1

∥∥
∞

+
∥∥T Π[0,1/(1−γ)]Vŵt−1

− T v∗
∥∥
∞.

(C.5)
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The first term mainly captures the error between approximate Bellman optimality operator and true Bellman optimality
operator while the second term can be bounded by the contraction of true Bellman operator. From linear forms Eqs. (C.2)
and (C.4), it holds for any x ∈ X ,

[T̂ (t)Π[0,1/(1−γ)]Vŵt−1
](x)− [T Π[0,1/(1−γ)]Vŵt−1

](x)

= max
a

[
r(x, a) + γφ(x, a)>ŵt

]
−max

a

[
r(x, a) + γφ(x, a)>w̄t

]
≤ γmax

a

∣∣φ(x, a)>(ŵt − w̄t)
∣∣

≤ γmax
a,x
‖φ(x, a)‖∞‖ŵt − w̄t‖1. (C.6)

Applying Lemma B.1, with the choice of λ1 = (1−γ)−1
√

log(2d/δ)/RL, the following error bound holds with probability
at least 1− δ, ∥∥ŵt − w̄t∥∥1

≤ 16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2d/δ)

RL
, (C.7)

where R satisfies R ≥ C1 log(3d2/δ)s2/Cmin(Σ, s).

Note that the samples we use between phases are mutually independent. Thus Eq. (C.7) uniformly holds for all t ∈ [T ] with
probability at least 1− Tδ. Plugging it into Eq. (C.6), we have for any phase t ∈ [T ],

∥∥T̂ (t)Π[0,1/(1−γ)]Vŵt−1
− T Π[0,1/(1−γ)]Vŵt−1

∥∥
∞ ≤ γ

16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2dT/δ)

RL
, (C.8)

holds with probability at least 1− δ.

To bound the second term in Eq. (C.5), we use the contraction property of true Bellman operator such that∥∥T Π[0,1/(1−γ)]Vŵt−1
− T v∗

∥∥
∞ ≤ γ

∥∥Π[0,1/(1−γ)]Vŵt−1
− v∗

∥∥
∞. (C.9)

Plugging Eqs. (C.8) and (C.9) into Eq. (C.5), it holds that

∥∥Vŵt − v∗∥∥∞ ≤ γ 16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2dT/δ)

RL
+ γ
∥∥Π[0,1/(1−γ)]Vŵt−1

− v∗
∥∥
∞, (C.10)

with probability at least 1− δ. Recursively using Eq. (C.10), the following holds with probability 1− δ,∥∥Π[0,1/(1−γ)]VŵT−1
− v∗

∥∥
∞ ≤

∥∥VŵT−1
− v∗

∥∥
∞

= γ
16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2dT/δ)

RL
+ γ
∥∥Π[0,1/(1−γ)]VŵT−2

− v∗
∥∥
∞

≤ γT−1
∥∥Π[0,1/(1−γ)]Vŵ0

− v∗
∥∥
∞ +

T−1∑
t=1

γt
16
√

2s

Cmin(Σ, s)

1

1− γ

√
log(2dT/δ)

RL

≤ 2γT−1

1− γ
+

1

(1− γ)2

16
√

2s

Cmin(Σ, s)

√
log(2dT/δ)

RL
,

where the first inequality is due to that Π[0,1/(1−γ)] can only make error smaller and the last inequality is from
∑T−1
t=1 γt ≤

1/(1− γ). By properly choosing T = Θ(log(N/(1− γ))/(1− γ)), it implies

∥∥Π[0,1/(1−γ)]VŵT−1
− v∗

∥∥
∞ ≤

1

(1− γ)5/2

32
√

2s

Cmin(Σ, s)

√
log(2dT/δ) log(N/(1− γ))

N
,

holds with probability at least 1− δ. From Proposition 2.14 in Bertsekas (1995),∥∥vπ̂T − v∗∥∥∞ ≤ 1

1− γ
∥∥QŵT −Q∗∥∥∞ ≤ 2

1− γ
∥∥Π[0,1/(1−γ)]VŵT−1

− v∗
∥∥
∞. (C.11)
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Putting the above together, we have with probability at least 1− δ,

∥∥vπ̂T − v∗∥∥∞ ≤ 64
√

2s

Cmin(Σ, s)

√
log(2dT/δ) log(N/(1− γ))

N(1− γ)7
,

when the sample size N satisfies

N ≥ C1s
2L log(3d2/δ)T

Cmin(Σ, s)
,

for some sufficiently large constant C1. This ends the proof. �

D. Proof of Theorem 5.2: Minimax Lower Bound of Policy Optimization

D.1. Reducing to likelihood test

We prove the minimax lower bound by conducting likelihood test. Similar to Lemma C.1 in Duan and Wang (2020), we
have Lemma D.1 below.

Lemma D.1. Let Mα and Mβ be two MDP instances with transition kernels pα(x′ |x, a) and pβ(x′ |x, a). Suppose
Assumption 2.2 holds. Define likelihood functions

Li(D) :=

K∏
k=1

ξ̄0(x
(k)
0 )

L−1∏
h=0

π̄(a
(k)
h |x

(k)
h )pi(x

(k)
h+1 |x

(k)
h , a

(k)
h ), i = α, β.

Denote Pα the probability space generated by running Mα following the behavioral policy π̄. If Pα
(
Lβ(D)
Lα(D) ≥

1
2

)
≥ 1

2 and
there exist scalars ρα, ρβ ≥ 0 such that{

policy π
∣∣ v∗Mα,ξ0 − v

π
Mα,ξ0 ≥ ρα

}
∩
{

policy π
∣∣ v∗Mβ ,ξ0

− vπMβ ,ξ0
≥ ρβ

}
= ∅, (D.1)

then for any policy learning algorithm π̂,

Pα
(
v∗Mα,ξ0 − v

π̂(D)
Mα,ξ0

≥ ρα
)
≥ 1

6
or Pβ

(
v∗Mβ ,ξ0

− vπ̂(D)
Mβ ,ξ0

≥ ρβ
)
≥ 1

6
. (D.2)

We learn from Lemma D.1 that as long as Pα
(
Lβ(D)
Lα(D) ≥

1
2

)
≥ 1

2 and (D.1) hold, the lower bound is achieved at model Mα

or Mβ . In the following, we construct MDP models and analyze these two conditions separately.

D.2. Constructing MDP instances

We assume without loss of generality that the number of active features s is even. We consider a simplest case where
the MDP only consists of two states, i.e. X = {x, x}. At each state, the agent chooses from s

2 + s(d − s) actions
A =

{
a1, a2, . . . , a s2

}
∪
{
āi,k

∣∣ i = 1, 2, . . . , s2 , k = ±1,±2, . . . ,±(d − s)
}

. Here, we only use āi,j in collecting the
dataset D.

We first introduce Lemma D.2, which will be used in the construction of feature mapping φ : X ×A → Rd.

Lemma D.2. For any s ∈ Z+, there exists an s-by-s orthogonal matrix Θ ∈ Rs×s satisfying
√
s · |Θi,j | ≤

√
2, for i, j = 1, 2, . . . , s. (D.3)

Proof. Consider the discrete cosine transform (DCT) matrix Θ ∈ Rs×s, given by

Θi,1 =
1√
s
, i = 1, 2, . . . , s, Θi,j =

√
2

s
cos

(2i− 1)(j − 1)π

2s
, i = 1, 2, . . . , s, j = 2, 3, . . . , s.

Θ is orthogonal and satisfies (D.3).
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Let Θ ∈ Rs×s be the orthogonal matrix given in Lemma D.2. We fix K ⊆ [d] to be the active feature set and denote
by φK the corresponding coordinates of φ. We now construct φK : X × A → Rs as follows: For i = 1, 2, . . . , s2 ,
k = ±1,±2, . . . ,±(d− s), let

2i− 1 2i

φK(x, ai) :=
√

s
2 ·Θ

(
0 0 · · · 1 0 · · · 0 0

)> ∈ Rs,

2i− 1 2i

φK(x, āi,k) :=
√

s
2 ·Θ

(
0 0 · · · 1− ς1 ς1 · · · 0 0

)> ∈ Rs,

2i− 1 2i

φK(x, ai) = φK(x, āi,k) :=
√

s
2 ·Θ

(
0 0 · · · ς2 1− ς2 · · · 0 0

)> ∈ Rs,

where ς1, ς2 ∈ (0, 1) will be determined later. By construction, we have ‖φK(x, a)‖∞ ≤ 1 for any (x, a) ∈ X ×A. Note
that φK abstracts all the dynamic informatrion for state-action pairs, and φKc does not affect the transition model or reward
function. Therefore, it is sufficient for us to use φK when identifying the optimal policy or calculate value functions.

We propose s
2 MDP models M1,M2, . . . ,M s

2
, where Mi has transition kernel pi(x′ |x, a) = φK(x, a)>ψi(x

′) given by

2i− 1 2i

ψi(x) =
√

2
s ·Θ

(
1− δ1 δ2 · · · 1 0 · · · 1− δ1 δ2

)> ∈ Rs,

2i− 1 2i

ψi(x) =
√

2
s ·Θ

(
δ1 1− δ2 · · · 0 1 · · · δ1 1− δ2

)> ∈ Rs.

Here, δ1, δ2 ∈
[
0, 2(1− γ)

)
are parameters reflecting the small differences among actions.

The reward functions are the same for all models and are chosen as

r(x, ai) = r(x, āi,k) = 1, r(x, ai) = r(x, āi,k) = 0,

for i = 1, 2, . . . , s2 , j = ±1,±2, . . . ,±(d− s).

D.3. Analyzing the concentration of the likelihood ratio

We devise a behavior policy π̄ and verify the likelihood ratio condition under the data collecting scheme in Assumption
2.2. We start from an initial distribution ξ̄0 and take a behavior policy π̄(āi,k |x) = π̄(āi,k |x) = 1

s(d−s) for any i, k. Under
this specific π̄, due to symmetry, all MDP models M1,M2, . . . ,M s

2
have the same marginal distribution at each time step

l = 0, 1, . . . , L− 1, which we denote by ξ̄l =

(
ξ̄l(x)

ξ̄l(x)

)
∈ R2. Define the average distribution as ξ̄ := 1

L

∑L−1
l=0 ξ̄l ∈ R2.

Take
pmin := min

{
pi(x |x, āi,k), pi(x |x, āi,k), pi(x |x, āi,k)), pi(x |x, āi,k)),

i = 1, 2, . . . ,
s

2
, k = ±1,±2 . . . ,±(d− s)

}
and

Σ◦ := ξ̄(x)

(
1− ς1
ς1

)(
1− ς1 ς1

)
+ ξ̄(x)

(
ς2

1− ς2

)(
ς2 1− ς2

)
.

Parallel to Lemma C.3 in (Duan and Wang, 2020), we provide concentration results of the likelihood ratio in Lemma D.3.
The proof can be found in Appendix E.2.1.

Lemma D.3. If we take δ1, δ2 ≥ 0 such that

(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)
≤ spmin

100N
, δ1 ∨ δ2 ≤

pmin

100
√
L
, (D.4)
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then for any i, j = 1, 2, . . . , s, i 6= j, it holds that

Pi
(
Lj(D)

Li(D)
≥ 1

2

)
≥ 1

2
. (D.5)

Lemma D.3 suggests that as long as (D.4) is satisfied, the likelihood test in Lemma D.1 works for any pair of indices
(α, β) = (i, j), i 6= j.

D.4. Calculating the gap in values

For model Mi, the optimal policy is given by

π∗i (x) = ai and π∗i (x) =

{
aj for any j 6= i, if (1− ς2)δ2 > ς2δ1,

ai, otherwise.

For computational simplicity, we take initial distribution ξ0 :=

(
ξ0(x)

ξ0(x)

)
=

(
1

0

)
∈ R2. In the following Lemma D.4, we

provide an estimation for the difference between values of optimal and sub-optimal policies. See Appendix E.2.2 for the
proof.

Lemma D.4. If δ1 ≤ 1−γ
γ , δ2 ≤ ς2, then for any policy π such that π(x) 6= ai, it holds that

v∗Mi,ξ0 − v
π
Mi,ξ0 ≥

γδ1
2(1− γ)

· 1

1− γ + 2γς2
.

According to Lemma D.4, if we take

ρi = ρ′ :=
γδ1

2(1− γ)
· 1

1− γ + 2γς2
, i = 1, 2, . . . ,

s

2
, (D.6)

then condition (D.1) in Lemma D.1 holds for any (α, β) = (i, j), i 6= j.

D.5. Choosing parameters

We now integrate Lemmas D.1, D.3 and D.4. Specifically, we choose parameters ς1, ς2, δ1, δ2 and ξ̄ that maximize ρ′ in
(D.6) under the constraint (D.4).

We first consider the optimization problem

maximize δ1, subject to
(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)
≤ spmin

100N
.

It has solution

δ1 =

√
Σ◦22

det(Σ◦)

√
spmin

100N
, δ2 =

√
(Σ◦12)2

Σ◦22det(Σ◦)

√
spmin

100N
. (D.7)

Plugging (D.7) into (D.6) and assuming that pmin ≥ ς2
2 , we have

ρ′ ≥ γ

2(1− γ)
·

√
ς2

1− γ + 2γς2
·

√
Σ◦22

det(Σ◦)

√
s

200N
. (D.8)

We maximize the right hand side of (D.8) over ς2, and obtain

ς2 =
1− γ

2γ
, ρ′ ≥

√
γ

80

√
Σ◦22

det(Σ◦)

√
s

N(1− γ)3
.
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We further let ς1 ∈
[

1−γ
2γ , 1−

1−γ
2γ

)
and suppose the sample size

N ≥ (Σ◦22 ∨ Σ◦12)2

Σ◦22det(Σ◦)

400sL

1− γ
. (D.9)

In this case, pmin ≥ ς2
2 and δ1 ∨ δ2 ≤ pmin

100
√
L
≤ ς2 ≤ 1−γ

γ .

In summary, if the sample size N satisfies (D.9) and we take

γ ≥ 1

2
, ς1 ∈

[1− γ
2γ

, 1− 1− γ
2γ

)
, ς2 =

1− γ
2γ

and δ1, δ2 in (D.7),

then the conditions in Lemmas D.3 and D.4 are satisfied and (D.2) holds for

ρ :=
1

80
√

2

√
Σ◦22

det(Σ◦)

√
s

N(1− γ)3
. (D.10)

Remark that under this construction, we still have the flexibility to take ς1 ↗ 1− 1−γ
2γ so that Σ◦ is very ill-conditioned. For

instance, if we take ς1 = 1− 1−γ
γ , then det(Σ◦) or λmin(Σ◦) at least has the order of (1− γ)3.

In order that condition (D.9) is as weak as possible, we take γ ≥ 2
3 , ς1 = 1−γ

2γ and ξ̄(x) = ξ̄(x) = 1
2 . In this setting, if

N ≥ 2000sL(1− γ)−1 then (D.9) holds.

D.6. Relating to mismatch terms

In this part, we relate Σ◦22
det(Σ◦) in (D.10) to mismatch terms χ2

G(K)(µ
∗, µ̄) and Cmin(Σ, s).

D.6.1. RESTRICTED χ2-DIVERGENCE

According to Lemma B.2 in Duan and Wang (2020), we have

1 + χ2
G(K)(µ

∗, µ̄) = sup
f∈G(K)

Ei
[
f(x, a)

∣∣ (x, a) ∼ µ∗
]2

Ei
[
f2(x, a)

∣∣ (x, a) ∼ µ̄
] = (ν∗K)>Σ−1

K ν∗K,

where

ν∗K := Ei
[
φK(x, a)

∣∣ (x, a) ∼ µ∗
]

=
1

1− γ

∞∑
t=0

γtEi
[
φK(xt, at)

∣∣x0 ∼ ξ0, π∗i
]
∈ Rs

and
ΣK :=Ei

[
φK(x, a)φK(x, a)>

∣∣ (x, a) ∼ µ̄
]

=Ei

[
1

L

L−1∑
h=0

φK(x
(k)
h , a

(k)
h )φK(x

(k)
h , a

(k)
h )>

∣∣∣∣∣x(k)
0 ∼ ξ̄0, π̄

]
∈ Rs×s.

For model Mi, x is an absorbing state under the optimal policy π∗i . Therefore, µ∗(x) = 1 and ν∗K = φK(x, ai). Under our
proposed behavior policy π̄, we have

ΣK = Θ


Σ◦ 0 · · · 0

0 Σ◦ · · · 0
...

...
. . .

...
0 0 · · · Σ◦

Θ>. (D.11)

It follows that
1 + χ2

G(K)(µ
∗, µ̄) =

(
ν∗K
)>

Σ−1
K ν∗K =

s

2

(
(Σ◦)−1

)
1,1

=
sΣ◦22

2det(Σ◦)
.
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To this end, we have

ρ =
1

80

√
1 + χ2

G(K)(µ
∗, µ̄)

1√
N(1− γ)3

.

This implies there always exists an DMDP instance M ∈ Mφ,s(X ,A, γ) with feature φ ∈ (Rd)X×A satisfying
‖φ(x, a)‖∞ ≤ 1 for all (x, a) ∈ X ×A, then

PM

(
v∗ξ0 − v

π̂(D)
ξ0

&
1

(1− γ)
3
2

√
1 + χ2

G(K)(µ
∗, µ̄)

√
1

N

)
≥ 1

6
,

where µ∗ is the discounted state-action occupancy measure of π∗.

D.6.2. RESTRICTED MINIMUM EIGENVALUE

The uncentered covariance matrix Σ ∈ Rd×d is given by

Σ :=Ei

[
1

L

L−1∑
h=0

φ(x
(k)
h , a

(k)
h )φ(x

(k)
h , a

(k)
h )>

∣∣∣∣∣x(k)
0 ∼ ξ̄0, π̄

]
∈ Rs×s.

In the following, we specify the choice of φKc(x, āi,k) and φKc(x, āi,k) and show that if

ξ̄(x)ς21 + ξ̄(x)(1− ς2)2 ≥ ξ̄(x)(1− ς1)2 + ξ̄(x)ς22 , (D.12)

then
Σ◦22

det(Σ◦)
≥ 1

2Cmin(Σ, s)
. (D.13)

Under condition (D.12), it holds that Σ◦22 ≥ Σ◦11, therefore, Σ◦22
det(Σ◦) ≥

Tr(Σ◦)
2det(Σ◦) . In addition, for the 2-by-2 matrix Σ◦, we

have λmin(Σ◦) + λmax(Σ◦) = Tr(Σ◦) and λmin(Σ◦)λmax(Σ◦) = det(Σ◦). It follows that

Σ◦22

det(Σ◦)
≥ Tr(Σ◦)

2det(Σ◦)
≥ λmax(Σ◦)

2λmax(Σ◦)λmin(Σ◦)
=

1

2λmin(Σ◦)
.

We next relate λmin(Σ◦) to Cmin(Σ, s).

Let Θ̄ ∈ R(d−s)×(d−s) be an orthogonal matrix given by Lemma D.2. We take

φKc(x, āi,k) = φKc(x, āi,k) := sign(k)

√
d− s

2
· colk(Θ̄),

for i = 1, 2, . . . , s2 , k = ±1,±2, . . . ,±(d − s). It holds that ‖φKc(x, āi,k)‖∞ ≤ 1 and ‖φKc(x, āi,k)‖∞ ≤ 1. For
notational simplicity, let K = [s]. Under our proposed behavior policy π̄(āi,k |x) = π̄(āi,k |x) = 1

s(d−s) , we have

Σ =

(
ΣK 0

0 1
2Id−s

)
. (D.14)

By (D.11), λmin(ΣK) = λmin(Σ◦). We also note that Tr(Σ◦) = ξ̄(x)‖(1 − ς1, ς1)‖22 + ξ̄(x)‖(ς2, 1 − ς2)‖22 ≤ 1, and
therefore

λmin(Σ◦) ≤ Tr(Σ◦)

2
≤ 1

2
.

It follows that λmin(Σ) = λmin(Σ◦), which further implies Cmin(Σ, s) ≥ λmin(Σ) = λmin(Σ◦). On the other hand, the
eigenvector of Σ corresponding to λmin(Σ◦) has support set K and is s-sparse. Hence, λmin(Σ◦) ≥ Cmin(Σ, s). In this
way, we have proved Cmin(Σ, s) = λmin(Σ◦) for Σ defined in (D.14).

In the special case where ς1 = ς2 = 1−γ
2γ and ξ̄(x) = ξ̄(x) = 1

2 , condition (D.12) holds. Plugging (D.13) into (D.10), we
finish our proof of Theorem 5.2.
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E. Proofs of Auxiliary Results

E.1. Proof of Lemma B.3

We prove if the population covariance matrix satisfies the restricted eigenvalue condition, the empirical covariance matrix
satisfies it as well with high probability. Recall that

Σ̂ =
1

K

K∑
k=1

1

L

L−1∑
h=0

φ(x
(k)
h , a

(k)
h )φ(x

(k)
h , a

(k)
h )>,

and

Ψ̂ =

Σ̂ . . . 0
...

. . .
...

0 . . . Σ̂.

 .

For any i, j ∈ [d], define

v
(k)
ij =

1

L

L−1∑
h=0

φi(x
(k)
h , a

(k)
h )φj(x

(k)
h , a

(k)
h )− Σij .

It is easy to verify E[v
(k)
ij ] = 0 and |v(k)

ij | ≤ 1 since we assume ‖φ(x, a)‖∞ ≤ 1. Note that from the data collection process,

samples between different episodes are independent. This implies v(1)
ij , . . . , v

(K)
ij are independent. By standard Hoeffding’s

inequality (Proposition 5.10 in Vershynin (2010)), we have

P
(∣∣∣ K∑

k=1

v
(k)
ij

∣∣∣ ≥ δ) ≤ 3 exp
(
− C0δ

2

K

)
,

for some absolute constant C0 > 0. Applying the union bound over i, j ∈ [d], we have

P
(

max
i,j

∣∣∣ K∑
k=1

v
(k)
ij

∣∣∣ ≥ δ) ≤ 3d2 exp
(
− C0δ

2

K

)
⇒ P

(∥∥Σ̂− Σ
∥∥
∞ ≥ δ

)
≤ 3d2 exp

(
− C0δ

2

K

)
.

Since the blocks of Ψ are the same, the following holds holds with probability 1− δ.

∥∥Ψ̂−Ψ
∥∥
∞ ≤

√
log(3d2/δ)

K
.

Therefore, when the number of episodes K ≥ 322 log(3d2/δ)s2/C̃min(Ψ, s)2, the following holds with probability at least
1− δ, ∥∥Ψ̂−Ψ

∥∥
∞ ≤

C̃min(Ψ, s)

32s
.

Next lemma shows that if the restricted eigenvalue condition holds for one positive semi-definite block diagonal matrix Σ0,
then it holds with high probability for another positive semi-definite block diagonal matrix Σ1 as long as Σ0 and Σ1 are
close enough in terms of entry-wise max norm.

Lemma E.1 (Corollary 6.8 in Bühlmann and Van De Geer (2011)). Let Σ0 and Σ1 be two positive semi-definite block diago-
nal matrices. Suppose that the restricted eigenvalue of Σ0 satisfies C̃min(Σ0, s) > 0 and ‖Σ1−Σ0‖∞ ≤ C̃min(Σ0, s)/(32s).
Then the restricted eigenvalue of Σ1 satisfies C̃min(Σ1, s) > C̃min(Σ0, s)/2.

Applying Lemma E.1 with Ψ̂ and Ψ, we have the restricted eigenvalue of Φ̂ satisfies C̃min(Ψ̂, s) > C̃min(Ψ, s)/2 with
probability at least 1− δ, as long as the sample size N ≥ 322L log(3d2/δ)s2/C̃min(Ψ, s)2. This ends the proof. �
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E.2. Proof of Lemma B.1

We prove the `1-norm bound of estimating w̄t using a fresh fold of batch data. We overload the notation Σ̂ to denote

Σ̂ =
1

RL

RL∑
i=1

φ(xi, ai)φ(xi, ai)
> =

1

R

R∑
r=1

1

L

L∑
h=1

φ(x
(r)
h , a

(r)
h )φ(x

(r)
h , a

(r)
h )>.

Similar to the proof of Lemma B.3 in Appendix E.1, we can have with probability at least 1− δ,

∥∥Σ̂− Σ
∥∥
∞ ≤

√
C1

R
log
(3d2

δ

)
,

where C1 is an absolute constant. When R ≥ C1322 log(3d2/δ)s2/Cmin(Σ, s), we have

∥∥Σ̂− Σ
∥∥
∞ ≤

Cmin(Σ, s)

32s
.

Applying Lemma E.1, we have Cmin(Σ̂, s) > Cmin(Σ, s)/2 with probability at least 1− δ. Note that {εiφj(xi, ai)}RLi=1 is a
martingale difference sequence and |εiφj(xi, ai)| ≤ 1/(1− γ). Similar to the proof of Eq. (B.16) by Azuma-Hoeffding
inequality,

P
(

max
j∈[d]

∣∣∣ 1

RL

RL∑
i=1

εiφj(xi, ai)
∣∣∣ ≤ 1

1− γ

√
log(2d/δ)

RL

)
≥ 1− δ.

Denote event E as

E =
{

max
j∈[d]

∣∣∣ 1

RL

RL∑
i=1

εiφj(xi, ai)
∣∣∣ ≤ λ1

}
.

Then P(E) ≥ 1− δ. Under event E , applying (B.31) in Bickel et al. (2009), we have

∥∥ŵt − w̄t∥∥1
≤ 16

√
2sλ1

Cmin(Σ, s)
,

holds with probability at least 1− 2δ. This ends the proof. �

E.2.1. PROOF OF LEMMA D.3

Proof of Lemma D.3. It is easy to see that

ln
Lj(D)

Li(D)
=

K∑
k=1

L−1∑
l=0

ln
pj(x

(k)
l+1 |x

(k)
l , a

(k)
l )

pi(x
(k)
l+1 |x

(k)
l , a

(k)
l )

=

K∑
k=1

L−1∑
l=0

ln(1− Λ
(k)
l ),

where

Λ
(k)
l :=

pi(x
(k)
l+1 |x

(k)
l , a

(k)
l )− pj(s(k)

l+1 | s
(k)
l , a

(k)
l )

pi(s
(k)
l+1 | s

(k)
l , a

(k)
l )

=
φ(s

(k)
l , a

(k)
l )>

(
ψi(s

(k)
l+1)− ψj(s(k)

l+1)
)

pi(s
(k)
l+1 | s

(k)
l , a

(k)
l )

.

If we take δ1 ∨ δ2 ≤ pmin

2 , then |Λ(k)
l | ≤

1
2 and

ln
Lj(D)

Li(D)
≥ −

K∑
k=1

L−1∑
l=0

Λ
(k)
l︸ ︷︷ ︸

E1

−
K∑
k=1

L−1∑
l=0

(
Λ

(k)
l

)2
︸ ︷︷ ︸

E2

. (E.1)
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Since Ei[Λ(k)
l | s

(k)
l , a

(k)
l ] = 0, we apply Freedman’s inequality to analyze E1. The conditional variances satisfy

Ei
[(

Λ
(k)
l

)2 ∣∣ s(k)
l , a

(k)
l

]
=pi(x | s(k)

l , a
(k)
l )

(
φ(s

(k)
l , a

(k)
l )>

(
ψi(x)− ψj(x)

)
pi(x | s(k)

l , a
(k)
l )

)2

+ pi(x | s(k)
l , a

(k)
l )

(
φ(s

(k)
l , a

(k)
l )>

(
ψi(x)− ψj(x)

)
pi(x | s(k)

l , a
(k)
l )

)2

=

(
φ(s

(k)
l , a

(k)
l )>

(
ψi(x)− ψj(x)

))2

pi(x | s(k)
l , a

(k)
l )pi(x | s(k)

l , a
(k)
l )

≤ 1

pmin(1− pmin)

(
φ(s

(k)
l , a

(k)
l )>

(
ψi(x)− ψj(x)

))2

.

Denote Ξk := 1
L

∑L−1
l=0

(
φ(s

(k)
l , a

(k)
l )>(ψi(x)− ψj(x))

)2
. Note that

2i− 1 2i 2j − 1 2j

ψi(x)− ψj(x) =
√

2
s ·Θ

(
0 0 · · · δ1 −δ2 · · · −δ1 δ2 · · · 0 0

)> ∈ Rs,

therefore,

E[Ξk] =
4

s

(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)
and |Ξk| ≤ (δ1 ∨ δ2)2.

By Bernstein inequality and the independence of trajectories τ1, τ2, . . . , τK , we have with Pi-probability at least 5
6 ,

1

K

K∑
k=1

Ξk ≤

(√
E[Ξk] + (δ1 ∨ δ2)

√
2 ln 6

3K

)2

=: σ2. (E.2)

Since |Λ(k)
l | ≤ p

−1
min(δ1 ∨ δ2), by Freedman’s inequality, with Pi-probability at least 5

6 ,

1

N

K∑
k=1

L−1∑
l=0

Λ
(k)
l ≤ σ√

pmin(1− pmin)

√
2 ln 6

N
+ p−1

min(δ1 ∨ δ2)
2 ln 6

3N
and (E.2) holds. (E.3)

Combining (E.2) and (E.3), we use union bound and derive that with Pi-probabliity at least 2
3 ,

K∑
k=1

L−1∑
l=0

Λ
(k)
l ≤ 4

√
ln 6

√(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)√
N

pmins
+

2 ln 6

3
(δ1 ∨ δ2)

(√
6L

pmin
+

1

pmin

)
. (E.4)

As for E2, since

Ei

[
1

L

L−1∑
l=0

(
Λ

(k)
l

)2] ≤ 4

spmin(1− pmin)

(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)
,

∣∣∣∣∣ 1L
L−1∑
l=0

(
Λ

(k)
l

)2∣∣∣∣∣ ≤ (δ1 ∨ δ2)2

p2
min

,

by Bernstein’s inequality, with Pi-probability at least 5
6 ,

K∑
k=1

L−1∑
l=0

(
Λ

(k)
l

)2 ≤ (2
√

2

√(
δ1 −δ2

)
Σ◦
(
δ1
−δ2

)√
N

spmin
+
δ1 ∨ δ2
pmin

√
2L ln 6

3

)2

. (E.5)

Plugging (E.4) and (E.5) into (E.1) and applying condition (D.4), we obtain (D.5).
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E.2.2. PROOF OF LEMMA D.4

Proof of Lemma D.4. We consider another policy π′i such that π′i(x) = aj for some aj 6= ai and π′i(x) = π∗i (x). It holds
that

v
π′i
Mi,ξ0

= sup
{
vπMi,ξ0

∣∣π(x) 6= ai
}
.

For any π, denote its corresponding transition matrix by Pπi =

(
pπi (x |x) pπi (x |x)

pπi (x |x) pπi (x |x)

)
∈ R2×2. Define v∗Mi

:=(
v∗Mi

(x)

v∗Mi
(x)

)
∈ R2. We have the following decomposition,

v∗Mi,ξ0 − v
π′i
Mi,ξ0

=

∞∑
t=0

γt+1ξ>0
(
P
π′i
i

)t(
P
π∗i
i − P

π′i
i

)
v∗Mi

= γξ>0
(
I − γPπ

′
i

i

)−1(
P
π∗i
i − P

π′i
i

)
v∗Mi

. (E.6)

Under model Mi, when δ2 ≤ ς2, π∗i and π′i satisfy

p
π∗i
i (x |x) = 1, p

π′i
i (x |x) = 1− δ1, p

π∗i
i (x |x) = 0, p

π′i
i (x |x) = δ1,

p
π∗i
i (x |x) = p

π′i
i (x |x) ≤ 2ς2, p

π∗i
i (x |x) = p

π′i
i (x |x) ≥ 1− 2ς2,

therefore, (
P
π∗i
i − P

π′i
i

)
v∗Mi

=

(
δ1 −δ1
0 0

)
v∗Mi

=

(
δ1
0

)
·
(
v∗Mi

(x)− v∗Mi
(x)
)
.

To this end, we reduce (E.6) into

v∗Mi,ξ0 − v
π′i
Mi,ξ0

= γξ>0
(
I − γPπ

′
i

i

)−1
(
δ1
0

)
·
(
v∗Mi

(x)− v∗Mi
(x)
)
. (E.7)

Note that

v∗Mi
(x) = (1− γ)−1 and v∗Mi

(x) =
γ

1− γ
· p

π∗i
i (x |x)

1− γ
(
1− pπ

∗
i
i (x |x)

) .
Therefore,

v∗Mi
(x)− v∗Mi

(x) =
1

1− γ
− γ

1− γ
· p

π∗i
i (x |x)

1− γ
(
1− pπ

∗
i
i (x |x)

) =
1

1− γpπ
∗
i
i (x |x)

≥ 1

1− γ(1− 2ς2)
. (E.8)

In addition, we have

ξ>0
(
I − γPπ

′
i

i

)−1
(
δ1
0

)
=

δ1
1− γ

· 1− γpπ
∗
i
i (x |x)

1 + γδ1 − γp
π∗i
i (x |x)

Under the condition δ1 ≤ 1−γ
γ , we have γδ1 ≤ 1− γ ≤ 1− γpπ

∗
i
i (x |x), therefore,

ξ>0
(
I − γPπ

′
i

i

)−1
(
δ1
0

)
≥ δ1

2(1− γ)
. (E.9)

Plugging (E.8) and (E.9) into (E.7), we finish our proof.

F. Supporting Lemmas

Lemma F.1. Let Z1, . . . , Zn be random, positive-semidefinite adaptively chosen matrices with dimension d. Suppose
λmax(Zi) ≤ R2 almost surely for all i. Let Z+ =

∑n
i=1 Zi and W =

∑n
i=1 E[Zi|Z1, . . . , Zi−1]. Then for any µ and any

α ∈ (0, 1),

P
(
λmin(Z+) ≤ (1− α)µ and λmin(W ) ≥ µ

)
d
( 1

eα(1− α)1−α

)µ/R2
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Lemma F.2 (Azuma-Hoeffding’s inequality). Let Fn = σ(x1, . . . , xn) be a sequence of σ-fields known as a filtration. Let
{(xn,Fn)}∞n=1 be a martingale difference sequence for which there are constants {(ak, bk)nk=1} such that xk ∈ [ak, bk]

almost surely for k = 1, . . . , n. Then for all t ≥ 0,

P
(∣∣∣ n∑

k=1

xk

∣∣∣ ≥ t) ≤ 2 exp
(
− 2t2∑n

k=1(bk − ak)2

)
.


