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Appendix Outline
This Appendix provides background and preliminaries,
more details of four components, additional experimental
details and results, and discussions. The organization is as
follows:

Background and Preliminaries. Appendix A provides
the introduction for Transformer models, freeze training,
pipeline parallelism, data parallelism, and hybrid of pipeline
parallelism and data parallelism. This section serves as the
required knowledge to understand PipeTransformer.

More Details of Freeze Algorithm, AutoPipe,
AutoDP, AutoCache. Appendix B explains more details
of design motivation for freeze training algorithm and
shows details of the deviation; Appendix C provides more
analysis to understand the design choice of AutoPipe;
Appendix D contains more details of AutoDP, including
the dataset redistributing, and comparing another way to
skip frozen parameters; Appendix E introduces additional
details for AutoCache.

More Experimental Results and Details. In Appendix
F, we provide hyper-parameters and more experimental
results. Especially, we provide more details of speedup
breakdown in F.2.

Discussion. In Appendix 6, we will discuss pretraining
v.s. fine-tuning, designing better freeze algorithms, and the
versatility of our approach.

A. Background and Preliminaries
A.1. Transformer Models: ViT and BERT

Figure 11. Evolution of Transformer Models.

Transformer. The Transformer model originates from the
Natural Language Processing (NLP) community. It replaces
the recurrent neural network (RNN) using a self-attention
mechanism which relates different positions of a single se-
quence in order to compute a representation of the sequence.
The transformer model has an encoder-decoder structure
which is a classical structure for sequence modeling. The

encoder maps an input sequence of symbol representations
(x1, . . . , xn) to a sequence of continuous representations
z = (z1, . . . , zn). Given z, the decoder then generates an
output sequence (y1, . . . , ym) of symbols one element at a
time. As shown in Figure 12, the Transformer follows this
overall architecture using stacked self-attention and point-
wise, fully connected layers for both the encoder (left) and
decoder (right). To better understand this architecture, we
refer readers to the tutorial “The Annotated Transformer” 1.

Figure 12. Transformer Model Architecture (Vaswani et al., 2017)

BERT (ViT). BERT (Devlin et al., 2018), which stands
for Bidirectional Encoder Representations from Transform-
ers, simply stacks multiple Transformer encoders (also
called the Transformer layer, Figure 12, left). BERT BASE
has 12 Transformer layers, and its total number of parame-
ters is 110M. BERT LARGE has 24 Transformer layers, and
its total number of parameters is 340M. BERT is pre-trained
using unsupervised tasks (masked language model, and next
sentence prediction) and then fine-tuned to various NLP
tasks such as text classification and question answering.

Vision Transformer (ViT). ViT (Dosovitskiy et al., 2020)
attains excellent results compared to state-of-the-art convo-
lutional networks. Its architecture is shown in Figure 13. It
splits an image into fixed-size patches, linearly embeds each
of them, adds position embeddings, and feeds the resulting
sequence of vectors to a Transformer encoder. Similar to
BERT, the Transformer encode repeats multiple layers.

Model Architecture Comparison. Note that ViT and
BERT’s Transformer encoder places layer normalization

1 http://nlp.seas.harvard.edu/2018/04/03/
attention.html
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Figure 13. Vision Transformer (Dosovitskiy et al., 2020)

Figure 14. Comparison of Transform in BERT and ViT

in different locations. To understand the differences be-
tween these two architectures, please refer to the analysis
in (Xiong et al., 2020). Due to this slight difference, our
PipeTransformer source code implements the model
partition of these two architectures separately.

A.2. Freeze Training.

The concept of freeze training is first proposed by (Raghu
et al., 2017), which provides a posterior algorithm, named
SVCCA (Singular Vector Canonical Correlation Analysis),
to compare two representations. SVCCA can compare the
representation at a layer at different points during training
to its final representation and find that lower layers tend to
converge faster than higher layers. This means that not all
layers need to be trained through training. We can save com-
putation and prevent overfitting by consecutively freezing
layers. However, SVCCA has to take the entire dataset as its
input, which does not fit an on-the-fly analysis. This draw-
back motivates us to design an adaptive on the fly freeze
algorithm.

A.3. Pipeline Parallelism

In PipeTransformer, we reuse GPipe as the baseline.
GPipe is a pipeline parallelism library that can divide differ-
ent sub-sequences of layers to separate accelerators, which
provides the flexibility of scaling a variety of different net-

Figure 15. GPipe (Huang et al., 2018)

works to gigantic sizes efficiently. The key design in GPipe
is that it splits the mini-batch into M micro-batches, which
can train faster than naive model parallelism (as shown in
Figure 15(b). However, as illustrated in Figure 15(c), micro-
batches still cannot thoroughly avoid bubble overhead (some
idle time per accelerator). GPipe empirically demonstrates
that the bubble overhead is negligible when M ≥ 4 ×K.
Different from GPipe, PipeTransformer has an elas-
tic pipelining parallelism in which K and pipeline number
are dynamic during the training.

A.4. Data Parallelism

Figure 16. PyTorch DDP Bucket-based AllReduce

In PyTorch DDP (Li et al., 2020), to improve communi-
cation efficiency, gradients are organized into buckets, and
AllReduce is operated on one bucket at a time. The map-
ping from parameter gradients to buckets is determined at
the construction time, based on the bucket size limit and pa-
rameter sizes. Model parameters are allocated into buckets
in (roughly) the reverse order of Model.parameters()
from the given model. Reverse order is used because DDP
expects gradients to be ready during the backward pass
in approximately that order. Figure 16 shows an example.
Note that, grad0 and grad1 are in bucket1, and the other two
gradients are in bucket0. With this bucket design, DDP can
overlap part of the communication time with the computa-
tion time of backward propagation.
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A.5. Hybrid of Pipeline Parallelism and Data
Parallelism

To understand the hybrid of pipeline parallelism and data
parallelism, we illustrate the training process in Figure 17.
This example is hybrid two-way data parallelism and two-
stage pipeline parallelism: pipeline 0 has two partitions,
using GPU 1 and 3; pipeline 1 also has two partitions, using
GPU 0 and 2; two pipelines are synchronized by data par-
allelism. Each batch of training data is divided into micro-
batches that can be processed in parallel by the pipeline
partitions. Once a partition completes the forward pass for
a micro-batch, the activation memory is communicated to
the pipeline’s next partition. Similarly, as the next partition
completes its backward pass on a micro-batch, the gradient
with respect to the activation is communicated backward
through the pipeline. Each backward pass accumulates gra-
dients locally. Subsequently, all data parallel groups perform
AllReduce on gradients.
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Figure 17. Illustration for Hybrid of Pipeline-parallel and Data-
parallel

In this example, to simplify the figure, we assume that the
bucket size is large enough to fit all gradients on a single
device. That is to say, DDP uses one bucket per device,
resulting in two AllReduce operations. Note that, since
AllReduce can start as soon as gradients in corresponding
buckets become ready. In this example, DDP launches
AllReduce on GPU 1 and 3 immediately after B3,1 and
B1,1, without waiting for the rest of backward computation.
Lastly, the optimizer updates the model weights.

B. More Details of Freeze Algorithm
Explanation of Equation 1. In numerical optimization,
the weight with the smallest gradient norm converges first.
With this assumption, we use the gradient norm as the indi-
cator to identify which layers can be frozen on the fly. To
verify this idea, we save the gradient norm for all layers
at different iterations (i.e., epoch). With this analysis, we
found that in the later phase of training, the pattern of gra-
dient norm in different layers matches the assumption, but
in the early phase, the pattern is random. Sometimes, we
can even see that the gradient norm of those layers close to
the output is the smallest. Figure 18 shows such an example.

layer index

gradient norm

upper bound of 
frozen layer number 

the layer which has 
the lowest gradient now

Figure 18. An example that the smallest gradient is not close to the
input layer.

If we freeze all layers preceding the blue dash line layer,
the freezing is too aggressive since some layers have not
converged yet. This motivates us further amend this naive
gradient norm indicator. To avoid the randomness of gra-
dient norm at the early phase of training, we use a tunable
bound to limit the maximum number of frozen layers. We
do not freeze all layers preceding the layer with the smallest
gradient norm for the case in the figure. Instead, we freeze
layers preceding the bound (the red color dash line).
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C. More Details of AutoPipe
Balanced Partition: Trade-off between Communication
and Computational Cost. Let us compute the communi-
cation cost in Figure 5. The intermediate tensor from parti-
tion k − 2 needs two cross-GPU communications to arrive
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to partition k. The parameter number of this intermediate
tensor depends on the batch size and the Transformer model
architecture. In BERTbase, the intermediate tensor width
and height is the hidden feature size and sequence length,
respectively (i.e., 1024, 512). If we use a batch size 300 in
a pipeline, the total parameter number is 1024× 512× 300.
If we store it using float32, the memory cost is 0.63 GB.
The GPU-to-GPU communication bandwidth is 15.754 GB
(PCI 3.0, 16 lanes). Then one cross-GPU communication
costs 40 ms. In practice, the time cost will be higher than
this value. Therefore, two cross-GPU communications cost
around 100 ms. To compare with the computation cost,
we quantify the time cost for the forward propagation of
a Transformer layer (12 million parameters), the time cost
is around 35 ms, meaning that the communication cost for
skip connection is far more than a specific layer’s compu-
tation cost. Compared to a slightly unbalanced partition
in parameter number wise, 100 ms is non-trivial. If we do
not break the skip connection, the parameter number gap
between different partitions is far less than 12 million (e.g.,
4M or even less than 1 M). Therefore, this analysis explains
partitioning without breaking the skip connection is a rea-
sonable design choice. We also find that when the GPU
device number in a machine is fixed (e.g., 8), the larger the
model size is, the smaller the partition gap, which further
indicates that our design’s rationality.

Understanding Bubble in Pipeline. In the main text, Fig-
ure 6 depicts an example of running 4 micro-batches through
a 4-device pipeline. Time flows from left to right, and each
row denotes workload on one GPU device. F and B squares
with the same color represent the forward and the backward
pass time blocks of the same micro-batch. U represents the
time block for updating parameters. Empty time blocks
are bubbles. Assume that the load of the pipeline is evenly
distributed amongst all devices. Consequently, all the time
blocks during the forward pass are roughly in the same size,
and similarly for backward time blocks. Note that the sizes
of the forward time blocks can still differ from the back-
ward ones. Based on these assumptions, we can estimate
the per-iteration bubble size by simply counting the number
of empty blocks during the forward and backward passes,
respectively. In both the forward and backward pass, each
device idles for (K − 1) time blocks. Therefore, the total
bubble size is (K − 1) times per micro-batch forward and
backward delay, which clearly decreases with fewer pipeline
devices.

Relationship Between Number of Micro-batches per
Mini-batch (M ) and DDP. To understand the reason why
M and DDP have mutual impacts, a thorough understand-
ing of Section A.5 is needed first. In essence, DDP and
pipelining has opposite requirement for M : DDP requires
a relatively larger chunk of the bucket (smaller M ) to over-

lap the communication (introduced in Section A.4), while
pipelining requires a larger M to avoid bubble overhead
(introduced in Section A.3). To further clarify, we must first
remember that DDP must wait for the last micro-batch to fin-
ish its backward computation on a parameter before launch-
ing its gradient synchronization, then imagine two extreme
cases. One case is that M = 1, meaning the communication
can be fully overlapped with computation using buckets.
However, setting M = 1 leads to a performance downgrade
of pipelining (overhead of bubbles). Another extreme case
is a very large M , then the communication time (labeled as
green “AR” in Figure A.5) may be higher than the computa-
tion time for a micro-batch (note that the width of a block
in Figure A.5 represents the wall clock time). With these
two extreme cases, we can see that there must be an optimal
value of M in a dynamical environment (K and parameter
number of active layers) of PipeTransformer, indicat-
ing that it is sub-optimal to fix M during training. This
explains the need for a dynamic M for elastic pipelining.

D. More details of AutoDP
D.1. Data Redistributing

In standard data parallel-based distributed training, PyTorch
uses DistributedSampler to make sure each worker in
DP only load a subset of the original dataset that is exclusive
to each other. The example code is as follows:

self.train_sampler =

DistributedSampler(self.train_dataset,

num_replicas=num_replicas,

rank=local_rank)

Compared to this standard strategy, we made the following
optimizations:

1. dynamic partition: the number of DP workers is in-
creased when new pipelines have participated in DP. In
order to guarantee that the data partition is evenly assigned
after adding new pipes, the training dataset is repartitioned
by rebuilding the DistributedSampler and setting new
num_replicas and rank as arguments.

2. to reuse the computation of FP for frozen layers, we
cached the hidden states in host memory and disk memory
as well. Since the training requires to shuffle each epoch,
the cache order of hidden features with respect to the order
of original samples is different across different epochs. In
order to identify which data point a hidden feature belongs
to, we build a sample unique ID by returning index in the
get_item() function of Dataset class. With this unique
ID, we can find a sample’s hidden feature with O(1) time
complexity during training.

3. when data is shuffled in each epoch, a data sample trained
in the previous epoch may be moved to another machine
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for training in the current epoch. This makes the cache
not reused across epochs. To address this issue, we fix a
subset of entire samples in a machine and only do shuffle
for this subset. This guarantees the shuffle during epochs is
only executed inside a machine, thus the hidden feature’s
cache can be reused deterministically. To achieve this, rather
than maintaining a global rank for DistributedSampler, we
introduce node_rank and local_rank. node_rank is
used to identify which subset of samples a machine needs
to hold. local_rank is used by DistributedSampler

to identify which part of the shuffle subset that a worker
inside a machine should train. Note that this does not hurt
the algorithmic convergence property. Shuffling for mul-
tiple subsets obtains more randomness than randomness
obtained by a global shuffle, which further increases the
robustness of training. The only difference is that some
parallel processes in distributed training are fixed in part
of the shuffled datasets. If a training task does not need
to shuffle the dataset across epochs, the above-mentioned
optimization will not be activated.

D.2. Skip Frozen Parameters in AutoDP

To reduce communication cost, another method is to use
PyTorch DDP API 2. However, this API is temporally de-
signed for Facebook-internal usage, and we must carefully
calculate and synchronize the information regarding which
parameters should be skipped, making our system unstable
and difficult to be debugged. Our design avoids this issue
and simplifies the system design. Since AutoPipe stores
Ffrozen andFpipe separately (introduced in Section 3.2.1), we
can naturally skip the frozen parameters because AutoDP
only needs to initialize the data parallel worker with Fpipe.

E. More Details of AutoCache

Figure 19. Hierarchical Caching

AutoCache supports hierarchical caching. Figure 19 shows
our design. We maintain a sliding window to represent the
maximum memory that the CPU host memory can hold,
then move the window to prefetch the caching that the train-

2See the internal API defined by PyTorch DDP:
https://github.com/pytorch/pytorch/blob/
master/torch/nn/parallel/distributed.py,
_set_params_and_buffers_to_ignore_for_model().

ing requires and delete the caching that is consumed from
the CPU host memory. In our implementation, we define the
window size as the maximum batch number that the CPU
host memory can hold. To avoid frequent memory exchange
between disk storage and CPU host memory, we also define
the block size that every time we prefetch (as the grey and
green blocks are shown in the figure). In general, this hierar-
chical caching is useful when the training dataset is too large
and exceeds the CPU host memory limit. However, we have
to point out that this complex caching may not always be
the optimal choice in the training system since the caching
exchange itself may cost time. To this end, we suggest users
of PipeTransformer using a relatively larger CPU host
memory, which avoids activating the hierarchical caching
and obtains faster training.

F. More Experimental Results and Details
F.1. Hyper-Parameters Used in Experiments

Table 3. Hyperparameters used in Experiments
Dataset Model Hyperparameters Comments

SQuAD BERT

batch size 64
max sequence length 512
learning rate {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
epochs 3
gradient accumulation steps 1

ImageNet ViT

batch size 400
image size 224
learning rate {0.1, 0.3, 0.01, 0.03}
weighs decay 0.3
decay type cosine
warmup steps 2
epochs 10

CIFAR-100 ViT

batch size 320
image size 224
learning rate {0.1, 0.3, 0.01, 0.03}
weighs decay 0.3
decay type cosine
warmup steps 2
epochs 10

In Table 3, we follow the same hyper-parameters used in the
original ViT and BERT paper. Note that for ViT model, we
use image size 224 for fine-tuning training.

F.2. More Details of Speedup Breakdown

Understanding the speed downgrade of freeze only.
As shown in Figure 9, the Freeze Only strategy is
about 5% slower than the No Freeze baseline. After
the performance analysis, we found it is because Freeze
Only changes memory usage pattern and introduced ad-
ditional overhead in PyTorch’s CUDACachingAllocator
3. More specifically, to reduce the number of expen-
sive CUDA memory allocation operations, PyTorch main-

3To understand the design of this API, please refer to Section
5.3 in the original PyTorch paper (Paszke et al., 2019). The source
code is at https://github.com/pytorch/pytorch/b
lob/master/c10/cuda/CUDACachingAllocator.h

 https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/distributed.py
 https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/distributed.py
 https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/distributed.py
https://github.com/pytorch/pytorch/blob/master/c10/cuda/CUDACachingAllocator.h
https://github.com/pytorch/pytorch/blob/master/c10/cuda/CUDACachingAllocator.h
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tains a CUDACachingAllocator that caches CUDA mem-
ory blocks to speed up future reuses. Without freezing,
the memory usage pattern in every iteration stays consis-
tent, and hence the cached memory blocks can be per-
fectly reused. After introducing layer freezing, although
it helps to reduce memory footprint, on the other hand,
it might also change the memory usage pattern, forcing
CUDACachingAllocator to split blocks or launch new
memory allocations, which slightly slows down the train-
ing. In essence, this underlying mechanism of PyTorch
is not tailored for freeze training. Customizing it for freeze
training requires additional engineering efforts.

F.3. Tuning α for ViT on ImageNet

Figure 20. Tuning α for ViT on ImageNet

F.4. The Method That Can Accurately Measure the
Communication Cost

Since PyTorch DDP overlaps communication with compu-
tation, the time difference between a local training iteration
and a distributed training iteration does not faithfully repre-
sent the communication delay. Moreover, as DDP also orga-
nizes parameters into buckets and launches an AllReduce

for each bucket, recording the start and finish time of overall
communications is also insufficient. To correctly measure
DDP communication delay, we combined the DDP commu-
nication hook with CUDAFuture callback. We developed
a communication hook function that records a start CUDA
event immediately before launching AllReduce. Then, in
the CUDAFuture returned by the AllReduce function, we
install a callback that records a finish CUDA event immedi-
ately after the non-blocking CUDAFuture completes. The
difference between these two CUDA events represents the
AllReduce communication delay of one bucket. We col-
lected the events for all buckets and removed time gaps
between buckets if there were any. The remaining duration
in that time range accurately represents the overall DDP
communication delay.

Table 4. Overheads of pipe transformation (seconds)

Pipeline Transformation Overall Time Cost Dissect

C P D

initialization (length = 8) 18.2 16.6 0.7 0.9
length is compressed from 8 to 4 10.2 8.3 1.3 0.6
length is compressed from 4 to 2 5.5 3.8 2.1 0.7
length is compressed from 2 to 1 9.5 2.3 6.1 1.0

*C - creating CUDA context; P - Pipeline Warmup; D - DDP.

F.5. Overheads of Pipe Transformation

We have verified the time cost of pipeline transformation.
The result in Table 4 shows that the overall cost of pipeline
transformation is very small (less than 1 minute), compared
to the overall training time. Therefore, we do not consider
further optimization.


