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Abstract
Reinforcement learning (RL) with linear function
approximation has received increasing attention
recently. However, existing work has focused
on obtaining

√
T -type regret bound, where T is

the number of interactions with the MDP. In this
paper, we show that logarithmic regret is attain-
able under two recently proposed linear MDP
assumptions provided that there exists a posi-
tive sub-optimality gap for the optimal action-
value function. More specifically, under the linear
MDP assumption (Jin et al., 2020), the LSVI-
UCB algorithm can achieve Õ(d3H5/gapmin ·
log(T ))regret; and under the linear mixture MDP
assumption (Ayoub et al., 2020), the UCRL-VTR
algorithm can achieve Õ(d2H5/gapmin · log3(T ))
regret, where d is the dimension of feature map-
ping, H is the length of episode, gapmin is the
minimal sub-optimality gap, and Õ hides all log-
arithmic terms except log(T ). To the best of our
knowledge, these are the first logarithmic regret
bounds for RL with linear function approximation.
We also establish gap-dependent lower bounds for
the two linear MDP models.

1. Introduction
Designing efficient algorithms that learn and plan in sequen-
tial decision-making tasks with large state and action spaces
has become a central task of modern reinforcement learning
(RL) in recent years. RL often assumes the environment
as a Markov Decision Process (MDP), described by a tuple
of state space, action space, reward function, and transition
probability function. Due to a large number of possible
states and actions, traditional tabular reinforcement learning
methods such as Q-learning (Watkins, 1989), which directly
access each state-action pair, are computationally intractable.

1Department of Computer Science, University of California,
Los Angeles, CA 90095, USA. Correspondence to: Quanquan Gu
<qgu@cs.ucla.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

A common approach to cope with high-dimensional state
and action spaces is to utilize function approximation such
as linear functions or neural networks to map states and
actions to a low-dimensional space.

Recently, a large body of literature has been devoted to
provide regret bounds for online RL with linear function ap-
proximation. These works can be divided into two main cat-
egories. The first category is model-free algorithms, which
directly parameterize the action-value function as a linear
function of some given feature mapping. For instance, Jin
et al. (2020) studied the episodic MDPs with linear MDP
assumption, which assumes that both transition probability
function and reward function can be represented as a linear
function of a given feature mapping. Under this assumption,
Jin et al. (2020) showed that the action-value function is
a linear function of the feature mapping and proposed a
model-free LSVI-UCB algorithm to obtain an Õ(

√
d3H3T )

regret, where d is the dimension of the feature mapping, H
is the length of the episode, and T is the number of interac-
tions with the MDP. The second category is model-based
algorithms, which parameterize the underlying transition
probability function as a linear function of a given feature
mapping. For example, Ayoub et al. (2020) studied a class
of MDPs where the underlying transition probability kernel
is a linear mixture model. Ayoub et al. (2020) proposed a
model-based UCRL-VTR algorithm with an Õ(d

√
H3T )

regret. Zhou et al. (2020b) studied the linear kernel MDP1

in the infinite horizon discounted setting and proposed a
algorithm with

√
T -type regret. Although these

√
T -type

regrets are standard and easy to interpret, they do not con-
sider any additional problem-dependent structure of the
underlying MDPs. This motivates us to seek a tighter and
instance-dependent regret analysis for RL.

There is a large body of literature on bandits, which study
the instance-dependent regret bounds (See Bubeck and
Cesa-Bianchi (2012); Slivkins et al. (2019); Lattimore and
Szepesvári (2018) and references therein). Note that bandits
can be seen as a special instance of RL problems. Sub-
optimality gap has been playing a central role in many
gap-dependent bounds for bandits, which is defined as gap

1Linear kernel MDPs are essentially the same as linear mixture
MDPs.
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between the optimal action and the rest ones. For general
RL, previous works (Simchowitz and Jamieson, 2019; Yang
et al., 2020) have considered the tabular MDP with sub-
optimality gap and proved gap-dependent regret bounds.
However, as far as we know, there does not exist such
gap-dependent regret results for RL with linear function
approximation. Therefore, a natural question arises:

Can we derive instance/gap-dependent regret bounds for
RL with linear function approximation?

We answer the above question affirmatively in this paper. In
detail, following Simchowitz and Jamieson (2019); Yang
et al. (2020), we consider an instance-dependent quantity
called gapmin, which is the minimal sub-optimality gap for
the optimal action-value function. Under the assumption
that gapmin is strictly positive, we show that LSVI-UCB
proposed in Jin et al. (2020) achieves a Õ(d3H5/gapmin ·
log(T )) regret, and UCRL-VTR proposed by Ayoub et al.
(2020) achieves a regret of order Õ(d2H5/gapmin·log3(T )).
Furthermore, we prove an Ω(dH/gapmin) lower bound on
the regret for both linear MDPs and linear mixture MDPs.
To the best of our knowledge, this is the first instance-
dependent log T -type regret achieved by RL with linear
function approximation. Our results suggest that the de-
pendence on T in regrets can be drastically decreased from√
T to log T when considering the problem structure for

both model-free and model-based RL algorithms with linear
function approximation.

Notation We use lower case letters to denote scalars, and
use lower and upper case bold face letters to denote vectors
and matrices respectively. For any positive integer n, we
denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd , we
denote by ‖x‖1 the Manhattan norm and denote by ‖x‖2 the
Euclidean norm. For a vector x ∈ Rd and matrix Σ ∈ Rd×d,
we define ‖x‖Σ =

√
x>Σx. For two sequences {an} and

{bn}, we write an = O(bn) if there exists an absolute
constant C such that an ≤ Cbn. We use Õ(·) to further
hide the logarithmic factors. For logarithmic regret, we use
Õ(·) to hide all logarithmic terms except log T .

2. Related Work
Logarithmic regret bound for RL. A line of works fo-
cus on proving log T -style regret bounds for RL algorithms
based on problem-dependent quantities. It has been shown
that such a log T dependence is unavoidable according to
the lower bound results shown in Ok et al. (2018). For
the upper bounds, Auer and Ortner (2007) showed that
the UCRL algorithm achieves logarithmic regret in the
average reward setting, while the regret bound depends
on both the hitting time and the policy sub-optimal gap.
Tewari and Bartlett (2008) proposed an OLP algorithm for
average-reward MDP and showed that OLP achieves log-

arithmic regret O
(
C(P ) log T

)
where C(P ) is an explicit

MDP-dependent constant. Both results in Auer and Ort-
ner (2007) and Tewari and Bartlett (2008) are asymptotic,
which required the number of steps T is large enough. For
non-asymptotic bounds, Jaksch et al. (2010) proposed a
UCRL2 algorithm for average-reward MDP with regret
O
(
D2S2A log(T )/∆

)
, where D is the diameter of the

MDP and ∆ is the policy sub-optimal gap. For episodic
MDPs, Simchowitz and Jamieson (2019) proposed a model-
based StrongEuler algorithm with a logarithmic regret, and
proved a regret lower bound for tabular MDPs that depends
on the minimal sub-optimality gap. Recently, Yang et al.
(2020) showed that the model-free algorithm optimistic
Q-learning achieves O

(
SAH6 log(SAT )/gapmin

)
regret.

However, all the above results are limited to tabular MDPs.

Linear function approximation. Recently, there has
emerged a large body of literature on learning MDPs with
linear function approximation. These results can be catego-
rized based on their assumptions on the MDPs. The first
category of works consider linear MDPs (Yang and Wang,
2019; Jin et al., 2020). Jin et al. (2020) proposed LSVI-UCB
algorithm with Õ(

√
d3H3T ) regret. Wang et al. (2019b)

proposed USVI-UCB algorithm in a weaker assumption
called “optimistic closure” and achieved Õ(H

√
d3T ) re-

gret. Zanette et al. (2020) proposed a weaker assumption
which is called low inherent Bellman error, and improved
the regret to Õ(dH

√
T ) by considering a global planning or-

acle. Jiang et al. (2017) studied a larger class of MDPs with
low Bellman rank and proposed an OLIVE algorithm with
polynomial sample complexity. The second line of works
consider linear mixture MDPs (Jia et al., 2020; Ayoub et al.,
2020). Jia et al. (2020) and Ayoub et al. (2020) proposed
UCLR-VTR algorithm for episodic MDPs which achieves
Õ(d
√
H3T ) regret. Cai et al. (2019) proposed policy op-

timization algorithm OPPO which achieves Õ(
√
d2H3T )

regret. Zhou et al. (2020b) focused on infinite-horizon dis-
counted setting and proposed a UCLK algorithm, which
achieves Õ(d

√
T/(1− γ)2) regret.

3. Preliminaries
We consider episodic Markov Decision Pro-
cesses (MDP) which can be denoted by a tuple
M(S,A, H, {rh}Hh=1, {Ph}Hh=1). Here, S is the state
space, A is the finite action space, H is the length of each
episode, rh : S ×A → [0, 1] is the reward function at step
h and Ph(s′|s, a) is the transition probability function at
step h which denotes the probability for state s to transfer
to state s′ with action a at step h.

A policy π : S × [H]→ A is a function which maps a state
s and the step number h to an action a. For any policy π and
step h ∈ [H], we denote the action-value function Qπh(s, a)
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and value function V πh (s) as follows

Qπh(s, a) = rh(s, a)

+ E
[ ∞∑
h′=h+1

rh′
(
sh′ , π(sh′ , h

′)
)
|sh = s, ah = a

]
,

V πh (s) = Qπh(s, π(s, h)),

where sh′+1 ∼ Ph(·|sh′ , ah′). We define the optimal value
function V ∗h and the optimal action-value function Q∗h as
V ∗h (s) = supπ V

π
h (s) and Q∗(s, a) = supπ Q

π(s, a). By
definition, the value function V πh (s) and action-value func-
tion Qπh(s, a) are bounded in [0, H]. For simplicity, for
any function V : S → R, we denote [PhV ](s, a) =
Es′∼Ph(·|s,a)V (s′). Therefore, for each h ∈ [H] and policy
π, we have the following Bellman equation, as well as the
Bellman optimality equation:

Qπh(s, a) = rh(s, a) + [PhV πh+1](s, a),

Q∗h(s, a) = rh(s, a) + [PhV ∗h+1](s, a), (3.1)

where V πH+1 = V ∗H+1 = 0. In the online learning setting,
for eack episode k ≥ 1, at the beginning of the episode
k, the agent determine a policy πk to be followed in this
episode. At each step h ∈ [H], the agent observe the state
skh, choose an action following the policy πk and observe
the next state with skh+1 ∼ Ph(·|skh, akh). Furthermore, we
define the total regret in the first K episodes as follows.

Definition 3.1. For any algorithm, we define its regret on
MDP M(S,A, H, r,P) in the first K episodes as the sum
of the suboptimality for epsiode k = 1, . . . ,K, i.e.,

Regret(K) =

K∑
k=1

V ∗1 (sk1)− V πk
1 (sk1),

where πk is the policy in the episodes k.

In this paper, we focus on the minimal sub-optimality gap
condition (Simchowitz and Jamieson, 2019; Du et al., 2019;
2020; Yang et al., 2020; Mou et al., 2020) and linear function
approximation (Jin et al., 2020; Ayoub et al., 2020; Jia et al.,
2020; Zhou et al., 2020b).

Definition 3.2 (Minimal sub-optimality gap). For each
s ∈ S, a ∈ A and step h ∈ [H], the sub-optimality gap
gaph(s, a) is defined as

gaph(s, a) = V ∗h (s)−Q∗h(s, a),

and the minimal sub-optimality gap is defined as

gapmin = min
h,s,a

{
gaph(s, a) : gaph(s, a) 6= 0

}
. (3.2)

In this paper, we assume the minimal sub-optimality gap is
strictly positive.

Assumption 3.3. The minimal sub-optimality gap is strictly
positive, i.e., gapmin > 0.

4. Model-free RL
In this section, we focus on model-free RL algorithms with
linear function approximation. We make the following lin-
ear MDP assumption (Jin et al., 2020; Yang and Wang,
2019) where the probability transition kernels and the re-
ward functions are assumed to be linear with respect to a
given feature mapping φ : S ×A → Rd.

Assumption 4.1. MDP M(S,A, H, {rh}Hh=1, {Ph}Hh=1)
is a linear MDP such that for any step h ∈ [H], there
exists an unknown vector µh, unknown measures θh =(
θ
(1)
h , ..,θ

(d)
h

)
and a known feature mapping φ : S ×A →

Rd, where for each (s, a) ∈ S ×A and s′ ∈ S,

Ph(s′|s, a) =
〈
φ(s, a),θh(s′)

〉
, rh(s, a) =

〈
φ(s, a),µh

〉
.

For simplicity, we assume that the unknown vector µh and
feature φ(s, a) satisfy ‖φ(s, a)‖2 ≤ 1, ‖µh‖2 ≤

√
d and∥∥θh(S)

∥∥ ≤ √d.
Remark 4.2. Under Assumption 4.1, by the Bellman equa-
tion (3.1), it can be shown that for any policy π, the action-
value function Qπh(s, a) is a linear function 〈φ(s, a),θπh〉
with respect to the feature mapping φ, where θπh is a vector
decided by the policy π. This suggests to estimate the un-
known optimal action-value function Q∗h, we only need to
estimate its corresponding parameter θ∗h.

Remark 4.3. Though the probability transition kernel and
the reward function are linear with respect to φ(s, a), the
degree of freedom of measure θh is |S| × d. Therefore,
when S is large, it is computationally intractable to directly
estimate the probability transition kernel Ph.

4.1. Algorithm

We analyze the LSVI-UCB algorithm proposed in Jin et al.
(2020), which is showed in Algorithm 1. At a high level,
Algorithm 1 treats the optimal action-value function Q∗h as
a linear function of the feature φ and an unknown parameter
θ∗h. The goal of Algorithm 1 is to estimate θ∗h. Algorithm 1
directly estimates the action-value function, and that is why
it is “model-free”. Algorithm 1 uses the least-square value
iteration to estimate the θ∗h for each h with additional ex-
ploration bonuses. In Line 5, Algorithm 1 computes wk

h,
the estimate of θ∗h, by solving a regularized least-square
problem:

wk
h ← argmin

w∈Rd

λ‖w‖22 +

k−1∑
i=1

(
φ(sih, a

i
h)>w

− rh(sih, a
i
h)−max

a
Qkh+1(sih+1, a)

)2
.

In Line 6, Algorithm 1 computes the action-value function
Qkh(s, a) by wk

h and adds a UCB bonus to make sure the es-
timate of action-value function Qkh(s, a) is an upper bound
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Algorithm 1 Least Square Value-iteration with UCB (LSVI-
UCB) (Jin et al., 2020)

1: for episodes k = 1, . . . ,K do
2: Received the initial state sk1 .
3: for step h = H, . . . , 1 do
4: Λkh =

∑k−1
i=1 φ(sih, a

i
h)φ(sih, a

i
h)> + λ · I

5: wk
h = (Λkh)−1

∑k−1
i=1 φ(sih, a

i
h)
[
rh(sih, a

i
h) +

maxaQ
k
h+1(sih+1, a)

]
6: Qkh(s, a) = min

{
β
√
φ(s, a)>(Λkh)−1φ(s, a) +

w>h φ(s, a), H
}

7: end for
8: for step h = 1, . . . ,H do
9: Take action akh ← argmaxaQ

k
h(skh, a) and receive

next state skh+1

10: end for
11: end for

of the optimal action-value function Q∗h(s, a). In Line 9, a
greedy policy with respect to estimated action-value func-
tion Qkh(s, a) is used to choose action and transit to the next
state.

4.2. Regret analysis

In this subsection, we present our regret analysis for LSVI-
UCB. For simplicity, we denote T = KH , which is the
total number of steps.

Theorem 4.4. Under Assumptions 3.3 and 4.1, there ex-
ists a constant C such that, if we set λ = 1, β =
78dH

√
log(2dT/δ) in Algorithm 1, then with probabil-

ity at least 1− 2(K + 1)H log(H/gapmin)δ − log Tδ, the
regret for Algorithm 1 in first T steps is upper bounded by

Regret(K) ≤ 9Cd3H5 log(2dT/δ)

gapmin

ι+
16H2 log δ

3
,

where ι is defined as follows:

ι = log

(
Cd3H4 log(2dT/δ)

gap2
min

)
.

Remark 4.5. If we set the δ in Theorem 4.4 as δ =
1/(2K(K + 1)H3) and define the high probability event Ω
as: {Theorem 4.4 holds}. Then, for the expected regret, we
have

E
[
Regret(K)

]
≤ E

[
Regret(K)|Ω

]
Pr[Ω] + T Pr[Ω̄]

≤ 9Cd3H5 log(2dT/δ)

gapmin

ι+
16H2 log δ

3
+ T Pr[Ω̄]

= Õ(d3H5/gapmin log T ).

The regret bound in Theorem 4.4 is independent of the size
of the state space S , action spaceA, and is only logarithmic
in the number of steps T , which suggests that Algorithm 1 is
sample efficient for MDPs with large state and action spaces.
To our knowledge, this is the first theoretical result that
achieves logarithmic regret for model-free RL with linear
function approximation. Besides, the UCB bonus parameter
β depends on T logarithmically. When the number of steps
T is unknown at the beginning, we can use the “doubling
trick” (Besson and Kaufmann, 2018) to learn T adaptively,
and the regret will only be increased by a constant factor.

The following theorem gives a lower bound of the regret for
any algorithm learning linear MDPs.

Theorem 4.6. Suppose gapmin ≤ 1/(3dH), H ≥ 3, then
for any algorithm, there exist a linear MDP such that ex-
pected regret is lower bounded by

E
[
Regret(K)

]
≥ Ω

(
Hd

gapmin

)
.

5. Model-based RL
In this section we focus on model-based RL with linear
function approximation. We make the following linear mix-
ture MDP assumption (Jia et al., 2020; Ayoub et al., 2020;
Zhou et al., 2020b), which assumes that the unknown transi-
tion probability function is an aggregation of several known
basis models.

Assumption 5.1. MDPM(S,A, H, {r}Hh=1, {Ph}Hh=1) is
called a linear mixture MDP if there exists an unknown
vector θ∗h ∈ Rd with ‖θ∗h‖2 ≤ Cθ and a known feature
mapping φ(s′|s, a) : S ×A× S → Rd, such that

• For any state-action-next-state triplet (s, a, s′) ∈ S ×
A× S , we have Ph(s′|s, a) = 〈φ(s′|s, a),θ∗h〉; More-
over, the reward function r is deterministic and known.

• For any bounded function V : S → [0, 1] and any
tuple (s, a) ∈ S × A, we have ‖φV (s, a)‖2 ≤ 1,
where φV (s, a) =

∑
s′∈S φ(s′|s, a)V (s′) ∈ Rd.

5.1. Algorithm

In this subsection, we analyze the model-based UCRL with
the Value-Targeted Model Estimation (UCRL-VTR) algo-
rithm proposed in Jia et al. (2020); Ayoub et al. (2020),
which is shown in Algorithm 2. It is worth noting that the
original UCRL-VTR algorithm is designed for the time-
homogeneous MDP, where the transition probability func-
tions Ph are identical across different step h. In this pa-
per, we consider the time-inhomogeneous MDP and there-
fore propose the following time-inhomogeneous version
of UCRL-VTR algorithm, which is slightly different from
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Algorithm 2 UCRL with Value-Targeted Model Estimation
(UCRL-VTR) (Jia et al., 2020; Ayoub et al., 2020)

1: Set Σ1
h = λI, b1

h = 0
2: for episodes k = 1, . . . ,K do
3: Compute θk,h ← (Σk

h)−1bkh
4: for step h = H, . . . , 1 do
5: Qkh(s, a) = r(s, a) + φV k

h+1
(s, a)>θk,h +

βk

√(
φV k

h+1
(s, a)

)>
(Σk

h)−1φV k
h+1

(s, a)

6: end for
7: Received the initial state sk1
8: for step h = 1, . . . ,H do
9: Take action akh ← argmaxaQ

k
h(skh, a) and receive

next state skh+1

10: Update value matrix Σ and vector b:
11: Σk+1

h ← Σk
h + φV k

h+1
(skh, a

k
h)
(
φV k

h+1
(skh, a

k
h)
)>

12: bk+1
h = bkh + V kh+1(skh+1) · φV k

h+1
(skh, a

k
h)

13: end for
14: end for

the original algorithm. At a high level, unlike Algorithm 1
which treats the action-value function as a linear function,
Algorithm 2 treats the transition probability function as a lin-
ear function of the feature mappingφ(·|·, ·) and an unknown
parameter θ∗. The goal of Algorithm 2 is to estimate θ∗,
which makes Algorithm 2 a model-based algorithm since
it directly estimates the underlying transition model. To
estimate θ∗, Algorithm 2 computes the estimate θk+1 by
solving the following regularized least-square problem in
Line 3:

θk+1,h ← argmin
θ∈Rd

λ‖θ‖22

+

k∑
i=1

(
φV i

h+1
(sih, a

i
h)>θ − V ih+1(sih+1)

)2
,

where for any value function V : S → R, we denote
φV (s, a) =

∑
s′∈S φ(s′|s, a)V (s′) ∈ Rd. The close-form

solution to θk+1 can be computed by considering the ac-
cumulated covariance matrix Σk+1

1 in Line 11 and 12. To
guarantee exploration, in Line 5, Algorithm 2 computes the
action-value function Qk+1

h (s, a) by θk+1 and adds a UCB
bonus to make sure the estimate of action-value function
Qk+1
h (s, a) is an upper bound of the optimal action-value

function Q∗h(s, a). Algorithm 2 then follows the greedy pol-
icy induced by the estimated action-value function Qkh(s, a)
in Line 5.

5.2. Regret Analysis

In this subsection, we propose our regret analysis for UCRL-
VTR. For simplicity, we denote T = KH , which is the total
number of steps.

Theorem 5.2. Suppose Assumption 3.3 and As-
sumption 5.1 hold. If we set λ = H2d and

βk = 4CθH
√
d log(1 +Hk) log2

(
(k + 1)2H/δ

)
in Algorithm 2, then with probability at least
1 − 2(K + 1)H log(H/gapmin)δ − log Tδ, the re-
gret for Algorithm 2 in first T steps is upper bounded
by

Regret(K) ≤ 4097C2
θd

2H5 log3(2dT/δ)

gapmin

ι+
16H2 log δ

3
,

where ι is defined as follows:

ι = log

(
512C2

θd
2H4 log3(2dT/δ)

gap2
min

)
.

Remark 5.3. If we set the δ in Theorem 4.4 as δ =
1/(2K(K + 1)H3) and define the high probability event Ω
as: {Theorem 4.4 holds}. Then, for the expected regret, we
have

E
[
Regret(K)

]
≤ E

[
Regret(K)|Ω

]
Pr[Ω] + T Pr[Ω̄]

≤ 4097C2
θd

2H5 log3(2dT/δ)

gapmin

ι+
16H2 log δ

3
+ T Pr[Ω̄]

= Õ(d2H5/gapmin log T ).

The regret bound in Theorem 5.2 depends on gapmin in-
versely. It is independent of the size of the state, action
space S,A, and is logarithmic in the number of steps T ,
similar to that of Theorem 4.4. This suggests that model-
based RL with linear function approximation also enjoys a
log T -type regret considering the problem structure.

Similar to the model-free setting, the following theorem
gives a lower bound of the regret for any algorithm learning
linear mixture MDPs.

Theorem 5.4. Suppose gapmin ≤ 1/(3dH), H ≥ 3, then
for any algorithm, there exist a linear mixture MDP such
that Cθ = 2 and the lower bounded of the expected regret is
bounded by

E
[
Regret(K)

]
≥ Ω

(
Hd

gapmin

)
.

6. Proof of the Main Results
In this section, we give a proof outline of Theorem 4.4,
along with the proofs of the key technical lemmas.

6.1. Proof outline of Theorem 4.4

The proof can be divided into three main steps.

Step 1: Regret decomposition
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Our goal is to upper bound the total regret Regret(K). Fol-
lowing the regret decomposition procedure proposed in Sim-
chowitz and Jamieson (2019); Yang et al. (2020), for a given
policy π, we rewrite the sub-optimality V ∗h (sh)− V πk

h (sh)
as follows:

V ∗h (sh)− V πh (sh)

=
(
V ∗h (sh)−Q∗h(sh, ah)

)
+
(
Q∗h(sh, ah)− V πk

h (sh)
)

= gaph(sh, ah) + Es′∼Ph(·|sh,ah)
[
V ∗h+1(s′)− V πk

h+1(s′)
]
,

(6.1)

where ah = π(sh, h) and gaph(s, a) = V ∗h (s) −Q∗h(s, a).
Taking expectation on both sides of (6.1) with respect to the
randomness of state-transition and taking summation over
all h ∈ [H], for any policy π and initial state sk1 , we have

V ∗1 (sk1)− V π1 (sk1) = E
[ H∑
h=1

gaph(sh, ah)

]
, (6.2)

where s1 = sk1 and for each h ∈ [H], ah =
π(sh, h),sh+1 ∼ Ph(·|sh, ah). Taking summation of (6.2)
over all k ∈ [K] with π = πk, we have

E
[
Regret(K)

]
= E

[ K∑
k=1

H∑
h=1

gaph(skh, a
k
h)

]
. (6.3)

Furthermore, we have

Lemma 6.1. For each MDPM(S,A, H, rh,Ph) and any
τ > 0, with probability at least 1−me−τ , we have

Regret(K) ≤ 2

K∑
k=1

H∑
h=1

gaph(skh, a
k
h) +

16H2τ

3
+ 2.

where m = dlog T e.

Lemma 6.1 and (6.2) suggest that the total (expected) regret
can be represented as a summation of gaph(skh, a

k
h) over

time step h and episode k. Therefore, to bound the total
regret, it suffices to bound each gaph(skh, a

k
h) separately,

which leads to our next proof step.

Step 2: Bound the number of sub-optimalities

Recall the range of sub-optimality gap gaph(skh, a
k
h) is

[gapmin, H]. Therefore, to bound the summation of
gaph(skh, a

k
h), it suffices to divide the range [gapmin, H]

into several intervals and count the number of gaph(skh, a
k
h)

falling into each interval. Such a division is also used in
Yang et al. (2020) which is similar to the “peeling tech-
nique” widely used in local Rademacher complexity anal-
ysis (Bartlett et al., 2005). Formally speaking, we divide
the interval [gapmin, H] to N =

⌈
log(H/gapmin)

⌉
inter-

vals
[
2i−1gapmin, 2

igapmin

)(
i ∈ [N ]

)
. Therefore, for

each gaph(skh, a
k
h) falling into

[
2i−1gapmin, 2

igapmin

)(
i ∈

[N ]
)
, it can be upper bounded by 2igapmin. Meanwhile,

we have the following inequality by considering V ∗h (skh)−
Qπk

h (skh, a
k
h), which is the upper bound of gaph(skh, a

k
h):

V ∗h (skh)−Qπk

h (skh, a
k
h) ≥ gaph(skh, a

k
h) ≥ 2i−1gapmin,

which suggests that to count how many gaph(skh, a
k
h) be-

long to the interval
[
2i−1gapmin, 2

igapmin

)(
i ∈ [N ]

)
,

we only need to count the number of sub-optimalities
V ∗h (skh) − Qπk

h (skh, a
k
h) belonging to the interval. The fol-

lowing lemma is our main technical lemma. It is inspired
by Jin et al. (2020), and it shows that the number of sub-
optimalities can indeed be upper bounded.

Lemma 6.2. There exist a constant C such that, for any
h ∈ [H], n ∈ N , with probability at least 1− (K + 1)δ, we
have

K∑
k=1

1
[
V ∗h (skh)−Qπk

h (skh, a
k
h) ≥ 2ngapmin

]
≤ Cd3H4 log(2dT/δ)

4ngap2
min

log

(
Cd3H4 log(2dT/δ)

4ngap2min

)
.

Step 3: Summation of total error

Lemma 6.2 gives an upper bound on the number of
gaph(skh, a

k
h) in each interval

[
2i−1gapmin, 2

igapmin

)
. We

further give the following upper bound for the gaph(skh, a
k
h)

within each interval:∑
gaph(s

k
h,a

k
h)∈
[
2i−1gapmin,2

igapmin

) gaph(skh, a
k
h)

≤
K∑
k=1

2igapmin 1
[
gaph(skh, a

k
h) ∈

[
2i−1gapmin, 2

igapmin

)]
≤

K∑
k=1

2igapmin 1
[
V ∗h (skh)−Qπk

h (skh, a
k
h) ≥ 2i−1gapmin

]
.

Thus, by using the upper bound on the number of
gaph(skh, a

k
h) in Lemma 6.2, we have the following lemma:

Lemma 6.3. There exist a constant C such that, for h ∈
[H], with probability at least 1−2(K+1) log(H/gapmin)δ,
we have

K∑
k=1

(
V ∗h (skh)−Q∗h(skh, a

k
h)
)

≤ 4Cd3H4 log(2dT/δ)

gapmin

log

(
Cd3H4 log(2dT/δ)

gap2
min

)
.

Lemma 6.3 suggests that with high probability, the summa-
tion of gaph(skh, a

k
h) over episode k at step h is logarithmic

in the number of steps T = KH and its dependency in
gapmin is 1/gapmin. This leads to our final proof of our
main theorem.
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Proof of Theorem 4.4. We define the high probability event
Ω as follows.

Ω = {Lemma 6.3 holds for all h ∈ [H],

and Lemma 6.1 holds on for τ = dlog(1/δ)e}.

According to Lemma 6.3 and Lemma 6.1, we have Pr[Ω] ≥
1−2(K+1)H log(H/gapmin)δ−δ log T . Given the event
Ω, we have

Regret(K)

≤ 2

K∑
k=1

H∑
h=1

gaph(skh, a
k
h) +

16H2 log δ

3
+ 2

= 2

K∑
k=1

H∑
h=1

V ∗h (skh)−Q∗h(skh, a
k
h) +

16H2 log δ

3
+ 2

≤ 9Cd3H5 log(2dHK/δ)

gapmin

log

(
Cd3H4 log(2dHK/δ)

gap2min

)
+

16H2 log δ

3
,

where the first inequality holds due to Lemma 6.1 and the
last inequality holds due to Lemma 6.3. Thus, we complete
the proof.

6.2. Proof of the Key Technical Lemma

In this subsection, we propose the proof to the main tech-
nical lemma, Lemma 6.2. Our proof follows the idea of
error decomposition proposed in Wang et al. (2019a); Yang
et al. (2020), that is, to upper bound the summation of
sub-optamalities by considering their summation of the ex-
ploration bonuses. The key difference between our proof
and that of Wang et al. (2019a); Yang et al. (2020) is the
choice of exploration bonus. Wang et al. (2019a); Yang et al.
(2020) considered the tabular MDP setting and adapted a
1/
√
n-type bonus term, while we consider the linear func-

tion approximation setting and adapt a linear bandit-style
exploration bonus (Dani et al., 2008; Abbasi-Yadkori et al.,
2011; Li et al., 2010) as suggested in Line 6. The following
lemmas guarantee that our constructed Qkh is indeed the
UCB of the optimal action-value function:

Lemma 6.4 (Lemma B.4 in Jin et al. 2020). With probabil-
ity at least 1− δ, for any policy π and all s ∈ S, a ∈ A, h ∈
[H], k ∈ [K], we have〈
φ(s, a),wk

h

〉
−Qπh(s, a) =

[
Ph(V kh+1 − V πh+1)

]
(s, a) + ∆,

where |∆| ≤ β
√
φ(s, a)>(Λkh)−1φ(s, a)

Lemma 6.5 (Lemma B.5 in Jin et al. 2020). With probabil-
ity at least 1 − δ, for all s ∈ S, a ∈ A, h ∈ [H], k ∈ [K],
we have

Qkh(s, a) ≥ Q∗h(s, a).

We also need the following technical lemma, which gives
us a slightly stronger upper bound for the summation of
exploration bonuses:

Lemma 6.6. For any subset C = {c1, .., ck} ⊆ [K] and
any h ∈ [H], we have

k∑
i=1

(φcih )>(Λcih )−1φcih ≤ 2d log

(
λ+ k

λ

)
,

where φcih is the abbreviation of φcih (scih , a
ci
h ).

With the lemmas above, we begin to prove Lemma 6.2.

Proof of Lemma 6.2. We fix h in this proof. Let k0 = 0,
and for i ∈ [N ], we denote ki as the minimum index of the
episode where the sub-optimality at step h is no less than
2ngapmin:

ki = min
{
k : k > ki−1,

V ∗h (skh)−Qπk

h (skh, a
k
h) ≥ 2ngapmin

}
. (6.4)

For simplicity, we denote by K ′ the number of episodes
such that the sub-optimality of this episode at step h is no
less than 2ngapmin. Formally speaking, we have

K ′ =

K∑
k=1

1
[
V ∗h (skh)−Qπk

h (skh, a
k
h) ≥ 2ngapmin

]
.

From now we only consider the episodes whose sub-
optimality is no less than 2ngapmin. We first lower bound
the summation of difference between the estimated action-
value function Qkih and the action-value function induced
by the policy πki , which can be represented as follows:

K′∑
i=1

(
Qkih (skih , a

ki
h )−Qπki

h (skih , a
ki
h )
)

≥
K′∑
i=1

(
Qkih
(
skih , π

∗
h(skih , h)

)
−Qπki

h (skih , a
ki
h )
)

≥
K′∑
i=1

(
Q∗h
(
skih , π

∗
h(skih , h)

)
−Qπki

h (skih , a
ki
h )
)

=

K′∑
i=1

(
V ∗h (skih )−Qπki

h (skih , a
ki
h )
)

≥ 2ngapminK
′, (6.5)

where the first inequality holds due to the definition of policy
πki , the second inequality holds due to Lemma 6.5 and the
last inequality holds due to the definition of ki in (6.4). On
the other hand, we upper bound

∑K′

i=1

(
Qkih (skih , a

ki
h ) −
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Q
πki

h (skih , a
ki
h )
)

as follows. For any h′ ∈ [H], k ∈ [K], we
have

Qkh′(s
k
h′ , a

k
h′)−Q

πk

h′ (s
k
h′ , a

k
h′)

=
〈
φ(skh′ , a

k
h′),w

k
h′
〉
−Qπk

h′ (s
k
h′ , a

k
h′)

+ β
√
φ(skh′ , a

k
h′)
>(Λkh′)

−1φ(skh′ , a
k
h′)

≤
[
Ph(V kh′+1 − V

πk

h′+1)
]
(skh′ , a

k
h′)

+ 2β
√
φ(skh′ , a

k
h′)
>(Λkh′)

−1φ(skh′ , a
k
h′)

= V kh′+1(skh′+1)− V πk

h′+1(skh′+1) + εkh′

+ 2β
√
φ(skh′ , a

k
h′)
>(Λkh′)

−1φ(skh′ , a
k
h′)

= Qkh′+1(skh′+1, a
k
h′+1)−Qπk

h′+1(skh′+1, a
k
h′+1) + εkh′

+ 2β
√
φ(skh′ , a

k
h′)
>(Λkh′)

−1φ(skh′ , a
k
h′), (6.6)

where

εkh′ =
[
Ph(V kh′+1 − V

πk

h′+1)
]
(skh′ , a

k
h′)

−
(
V kh′+1(skh′+1)− V πk

h′+1(skh′+1)
)
,

and the inequality holds due to Lemma 6.4. Taking summa-
tion for (6.6) over all ki and h ≤ h′ ≤ H , we have

K′∑
i=1

(
Qkih (skih , a

ki
h )−Qπki

h (skih , a
ki
h )
)
−

K′∑
i=1

H∑
h′=h

εkih′︸ ︷︷ ︸
I1

≤
K′∑
i=1

H∑
h′=h

2β

√
φ(skih′ , a

ki
h′)
>(Λkih′)

−1φ(skih′ , a
ki
h′)︸ ︷︷ ︸

I2

. (6.7)

It therefore suffices to bound I1 and I2 separately. For I1,
by Lemma E.1, for each episode k ∈ [K], with probability
at least 1− δ, we have

k∑
i=1

H∑
j=h

([
Pj(V kij+1 − V

πki
j+1)

]
(skij , a

ki
j )−

(
V kij+1(skij+1)− V πki

j+1(skij+1)
))
≤
√

2kH3 log(1/δ),

where we use the fact that
[
Pj(V kij+1 − V

πki
j+1)

]
(skij , a

ki
j )−(

V kij+1(skij+1)− V πki
j+1(skij+1)

)
forms a martingale difference

sequence. Taking a union bound for all k ∈ [K] gives that,
with probability at least 1−Kδ,

K′∑
i=1

H∑
j=h

[
Pj(V kij+1 − V

πki
j+1)

]
(skij , a

ki
j )

−
k∑
i=1

H∑
j=h

(
V kij+1(skij+1)− V πki

j+1(skij+1)
)

≤
√

2K ′H3 log(1/δ), (6.8)

For I2, we have

I1 =

K′∑
i=1

H∑
h′=h

2β

√
φ(skih′ , a

ki
h′)
>(Λkih′)

−1φ(skih′ , a
ki
h′)

≤ 2β
√
K ′

H∑
h′=h

√√√√ K′∑
i=1

φ(skih′ , a
ki
h′)
>(Λkih′)

−1φ(skih′ , a
ki
h′)

≤ 2Hβ
√
K ′
√

2d log(K ′ + 1), (6.9)

where the first inequality holds due to Cauchy-Schwarz in-
equality and the second inequality holds due to Lemma 6.6.

Substituting (6.9) and (6.8) into (6.7), we obtain that with
probability at least 1− (K + 1)δ,

K′∑
i=1

(
Qkih (skih , a

ki
h )−Qπki

h (skih , a
ki
h )
)

≤
√

2K ′H3 log(1/δ) + 2Hβ
√
K ′
√

2d log(K ′ + 1).
(6.10)

By now, we have obtained both the lower and upper bounds
for
∑K′

i=1

(
Qkih (skih , a

ki
h )−Qπki

h (skih , a
ki
h )
)

from (6.5) and
(6.10). Finally, combining (6.5) and (6.10), we can derive
the following constraint on K ′:

2ngapminK
′ ≤

√
2K ′H3 log(1/δ)

+ 2Hβ
√

2K ′d log(K ′ + 1). (6.11)

Solving out K ′ from (6.11), we conclude that there exists a
constant C such that

K ′ ≤ Cd3H4 log(2dHK/δ)

4ngap2min

× log

(
Cd3H4 log(2dHK/δ)

4ngap2min

)
,

which ends our proof.

7. Conclusion
In this paper, we analyze the RL algorithms with function
approximation by considering a specific problem-dependent
quantity gapmin. We show that two existing algorithms
LSVI-UCB and UCRL-VTR attain log T -type regret in-
stead of

√
T -type regret under their corresponding linear

function approximation assumptions. It remains unknown
whether the dependence of the length of the episode H and
dimension d is optimal or not, and we leave it as future
work.
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