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Appendices
Notations: ∆m denotes the (m − 1)-dimensional simplex. [m] = {1, 2, . . . ,m} represents an index set of size m. ‖ · ‖
denotes the operator norm for matrices and the `2 norm for vectors. For a matrix A ∈ Rm×m, diag(A) = [C11, . . . , Cmm]>

outputs the m diagonal entries. For an index j ∈ [m], onehot(j) ∈ {0, 1}m denotes a one-hot encoding of j, and for a
classifier h : X→[m], h̃ = onehot(h) denotes the same classifier with one-hot outputs, i.e. h̃(x) = onehot(h(x)).

A. Extension to General Linear Metrics
We describe how our proposal extends to black-box metrics ED[h] = ψ(C[h]) defined by a function ψ : [0, 1]m×m→R+ of
all confusion matrix entries. This handles, for example, the label noise models in Table 1 with a general (non-diagonal) noise
transition matrix T. We begin with metrics that are linear functions of the diagonal and off-diagonal confusion matrix entries
ED[h] =

∑
ij βijCij [h] for some β ∈ Rm×m. In this case, we will use an example weighting function W : X→Rm×m+

that maps an instance x to an m ×m weight matrix W(x), where Wij(x) ∈ Rm×m+ is the weight associated with the
(i, j)-th confusion matrix entry.

Note that in practice, the metric ED may depend on only a subset of d entries of the confusion matrix, in which case, the
weighting function only needs to weight those entries. Consequently, the weighting function can be parameterized with
Ld parameters, which can then be estimated by solving a system of Ld linear equations. For the sake of completeness,
here we describe our approach for metrics that depend on all m2 confusion entries.

Modeling weighting function: Like in (5), we propose modeling this function as a weighted sum of L basis functions:

Wij(x) =

L∑
`=1

α`ijφ
`(x),

where each φ` : X→[0, 1] and α`ij ∈ R. Similar to (4), our goal is to then estimate coefficients α so that:

E(x,y)∼µ

[∑
ij

Wij(x) 1(y = i)hj(x)
]
≈ ED[h],∀h. (13)

Expanding the weighting function in (13), we get:
L∑
`=1

∑
i,j

α`ij E(x,y)∼µ
[
φ`(x) 1(y = i)hj(x)

]︸ ︷︷ ︸
Φµ,`i,j [h]

≈ ED[h],∀h,

which can be re-written as:
L∑
`=1

∑
i,j

α`ijΦ
µ,`
ij [h] ≈ ED[h],∀h. (14)

Estimating coefficients α: To estimate α ∈ RLm2

, our proposal is to probe the metric ED at Lm2 different classifiers
h`,1,1, . . . , h`,m,m, with one classifier for each combination (`, i, j) of basis functions and confusion matrix entries, and to
solve the following system of Lm2 linear equations:∑

`,i,j

α`ij Φ̂tr,`
ij [h1,1,1] = Êval[h1,1,1]

... (15)∑
`,i,j

α`ij Φ̂tr,`
ij [hL,m,m] = Êval[hL,m,m]

Here Φ̂tr,`
ij [h] is an estimate of Φµ,`ij [h] using training sample Str and Êval[h] is an estimate of ED[h] using the validation

sample Sval. Equivalently, defining Σ̂ ∈ RLm2×Lm2

and Ê ∈ RLm2

with each:

Σ̂(`,i,j),(`′,i′,j′) = Φ̂tr,`′

i′j′ [h
`,i,j ]; Ê(`,i,j) = Êval[h`,i,j ],
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we compute α̂ = Σ̂
−1

Ê .

Choosing probing classifiers: As described in Section 3.4, we propose picking each probing classifier h`,i,j so that the
(`, i, j)-th diagonal entry of Σ̂ is large and the off-diagonal entries are all small. This can be framed as the following
constrained satisfaction problem:

For h`,i,j pick h ∈ H such that:

Φ̂tr,`
i,j [h] ≥ γ, and Φ̂tr,`′

i′,j′ [h] ≤ ω,∀(`′, i′, j′) 6= (`, i, j),

for some 0 < ω < γ < 1. While the more practical approach prescribed in Section 3.4 of constructing the probing classifiers
from trivial classifiers that predict the same class on all or a subset of examples does not apply here (because here we need to
take into account both the diagonal and off-diagonal confusion entries), the above problem can be solved using off-the-shelf
tools available for rate-constrained optimization problems (Cotter et al., 2019b).

Plug-in classifier: Having estimated an example weighting function Ŵ : X→Rm×m, we seek to maximize a weighted
objective on the training distribution:

max
h

E(x,y)∼µ

∑
ij

Ŵij(x) 1(y = i)hj(x)

 ,
for which we can construct a plug-in classifier that post-shifts a pre-trained class probability model η̂tr : X→∆m:

ĥ(x) ∈ argmaxj∈[m]

m∑
i=1

Ŵij(x) η̂tr
i (x).

For handling general non-linear metrics ED[h] = ψ(C[h]) with a smooth ψ : [0, 1]m×m→R+, we can directly adapt the
iterative plug-in procedure in Algorithm 3, which would in turn construct a plug-in classifier of the above form in each
iteration (line 9). See Narasimhan et al. (2015b) for more details of the iterative Frank-Wolfe based procedure for optimizing
general metrics, where the authors consider non-black-box metrics in the absence of distribution shift.

B. Proofs
B.1. Proof of Theorem 1

Theorem ((Restated) Error bound on elicited weights). Let the input metric be of the form Ê lin[h] =
∑
i βiĈ

val
ii [h] for

some (unknown) coefficients β ∈ Rm+ , ‖β‖ ≤ 1. Let ED[h] =
∑
i βiC

D
ii [h]. Let γ, ω > 0 be such that the constraints

in (11) are feasible for hypothesis class H̄, for all `, i. Suppose Algorithm 1 chooses each classifier h`,i to satisfy (11),
with ED[h`,i] ∈ [c, 1],∀`, i, for some c > 0. Let ᾱ be the associated coefficient in Assumption 1 for metric ED. Suppose
γ > 2

√
2Lmω and ntr ≥ L2m log(Lm|H|/δ)

( γ2−
√

2Lmω)2
. Fix δ ∈ (0, 1). Then w.p. ≥ 1 − δ over draws of Str and Sval from µ and D

resp., the coefficients α̂ output by Algorithm 1 satisfies:

‖α̂− ᾱ‖ ≤O
(Lm
γ2

√
L log(Lm|H|/δ)

ntr +

√
Lm

γ

(√L2m log(Lm/δ)

c2γ2nval + ν
))
,

where the term |H| can be replaced by a measure of capacity of the hypothesis classH.

The solution from Algorithm 1 is given by α̂ = Σ̂
−1

Ê . Let ᾱ be the “true” coefficients given in Assumption 1. Let
Σ ∈ RLm×Lm denote the population version of Σ̂, with Σ(`,i),(`′,i′) = E(x,y)∼µ

[
φ`

′
(x)1(y = i′)h`,ii′ (x)

]
. Similarly,

denote the population version of Ê by: E(`,i) = ED[h`,i]. Let α = Σ−1E be the solution we obtain had we used the
population versions of these quantities. Further, define the vector Ē ∈ RLm:

Ē(`′,i′) =
∑
`,i

ᾱ`iΦ
µ,`
i [h`

′,i′ ]. (16)
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It trivially follows that the coefficient ᾱ given by Assumption 1 can be written as ᾱ = Σ−1Ē .

We will find the following lemmas useful. Our first two lemmas bound the gap between the empirical and population
versions of Σ (the left-hand side of the linear system) and E (the right-hand side of the linear system).

Lemma 3 (Confidence bound for Σ). Fix δ ∈ (0, 1). With probability at least 1− δ over draw of Str from µ,

|Σ(`,i),(`′,i′) − Σ̂(`,i),(`′,i′)| ≤ O
(√

p`,i log(Lm|H|/δ)
ntr

)
,

where p`,i = E(x,y)∼µ[φ`(x)1(y = i)], and consequently,

‖Σ− Σ̂‖ ≤ O
(√

L2m log(Lm|H|/δ)
ntr

)
.

Proof. Each row of Σ− Σ̂ contains the difference between the elements Φµ,`i [h] and Φ̂tr,`
i [h] for a classifier h chosen from

H. Using multiplicative Chernoff bounds, we have for a fixed h, with probability at least 1− δ over draw of Str from µ

|Φµ,`i [h]− Φ̂tr,`
i [h]| ≤ O

(√
p`,i log(1/δ)

ntr

)
,

where p`,i = E(x,y)∼µ[φ`(x)1(y = i)]. Taking a union bound over all h ∈ H, we have with probability at least 1− δ over
draw of Str from µ, for any h ∈ H:

|Φµ,`i [h]− Φ̂tr,`
i [h]| ≤ O

(√
p`,i log(|H|/δ)

ntr

)
.

Taking a union bound over all Lm× Lm entries, we have with probability at least 1− δ, for all (`, i), (`′, i′):

|Σ(`,i),(`′,i′) − Σ̂(`,i),(`′,i′)| ≤ O
(√

p`,i log(Lm|H|/δ)
ntr

)
.

Upper bounding the operator norm of Σ− Σ̂ with the Frobenius norm, we have

‖Σ− Σ̂‖ ≤ O

√ log(Lm|H|/δ)
ntr

√ ∑
(`,i),(`′,i′)

p`′,i′


≤ O

√ log(Lm|H|/δ)
ntr

√∑
`,i,`′

(1)

 ≤ O(√L2m log(Lm|H|/δ)
ntr

)
,

where the second inequality uses the fact that
∑
i′ p`′,i′ = Ex∼Pµ

[
φ`

′
(x)
]
≤ 1.

Lemma 4 (Confidence bound for E). Fix δ ∈ (0, 1). With probability at least 1− δ over draw of Sval from D,

‖E − Ê‖ ≤ O
(√

Lm log(Lm/δ)

nval

)
.

Proof. From an application of Hoeffding’s inequality, we have for any fixed h`,i:

|E(`,i) − Ê(`,i)| = |ED[h`,i] − Êval[h`,i]| =

∣∣∣∣∣∑
i

βiC
D
ii [h`,i] −

∑
i

βiĈ
val
ii [h`,i]

∣∣∣∣∣ ≤ O
(√

log(1/δ)

nval

)
,
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which holds with probability at least 1− δ over draw of Sval and uses the fact that each βi and CDii [h] is bounded. Taking a
union bound over all Lm probing classifiers, we have:

‖E − Ê‖ ≤ O
(
√
Lm

√
log(Lm/δ)

nval

)
.

Note that we do not need a uniform convergence argument like in Lemma 3 as the probing classifiers are chosen independent
of the validation sample.

Our last two lemmas show that Σ is well-conditioned. We first show that because the probing classifiers h`,i’s are chosen to
satisfy (11), the diagonal and off-diagonal entries of Σ can be lower and upper bounded respectively as follows.

Lemma 5 (Bounds on diagonal and off-diagonal entries of Σ). Fix δ ∈ (0, 1). With probability at least 1− δ over draw of
Str from µ,

Σ(`,i),(`,i) ≥ γ − O
(√

p`,i log(Lm|H|/δ)
ntr

)
,∀(`, i)

and

Σ(`,i),(`′,i′) ≤ ω + O
(√

p`,i log(Lm|H|/δ)
ntr

)
,∀(`, i) 6= (`′, i′),

where p`,i = E(x,y)∼µ[φ`(x)1(y = i)].

Proof. Because the probing classifiers h`,i’s are chosen from H to satisfy (11), we have Σ̂(`,i),(`,i) ≥ γ,∀(`, i) and
Σ̂(`,i),(`′,i′) ≤ ω,∀(`, i) 6= (`′, i′). The proof follows from generalization bounds similar to Lemma 3.

The bounds on the diagonal and off-diagonal entries of Σ then allow us to bound its smallest and largest singular values.

Lemma 6 (Bounds on singular values of Σ). We have ‖Σ‖ ≤ L
√
m. Fix δ ∈ (0, 1). Suppose γ > 2

√
2Lmω and

ntr ≥ L2m log(Lm|H|/δ)
( γ2−
√

2Lmω)2
. With probability at least 1− δ over draw of Str from µ, ‖Σ−1‖ ≤ O

(
1
γ

)
.

Proof. We first derive a straight-forward upper bound on the the operator norm of Σ in terms of its Frobenius norm:

‖Σ‖ ≤
√ ∑

(`,i),(`′,i′)

Σ2
(`,i),(`′,i′) ≤

√ ∑
(`,i),(`′,i′)

p2
`′,i′ ≤

√ ∑
(`,i),(`′,i′)

p`′,i′ ≤
√∑
`,i,`′

1 = L
√
m,

where p`,i = E(x,y)∼µ[φ`(x)1(y = i)] and the last inequality uses the fact that
∑
i′ p`′,i′ = Ex∼Pµ

[
φ`

′
(x)
]
≤ 1.

To bound the operator norm of ‖Σ−1‖, denote υ`,i = O
(√

p`,i log(Lm|H|/δ)
ntr

)
. From Lemma 5, we can express Σ as a sum

of a matrix A and a diagonal matrix D, i.e. Σ = A+D, where eachA(`,i),(`,i) = 0,A(`,i),(`′,i′) ≤ ω+υ`,i,∀(`, i) 6= (`′, i′)
and D(`,i),(`,i) ≥ γ − υ`,i. Let σ`,i(Σ) denote the (`, i)-th largest singular value of Σ. By Weyl’s inequality, we have that
the singular values of Σ can be bounded in terms of the singular values D (see e.g., Stewart (1998)):

|σ`,i(Σ)− σ`,i(D)| ≤ ‖A‖,

or
σ`,i(D)− σ`,i(Σ) ≤ ‖A‖.

We further have:

σ`,i(D)− σ`,i(Σ) ≤ ‖A‖ ≤
√ ∑

(`,i)6=(`′,i′)

(ω + υ`,i)2 + υ`,i ≤
√

2

√ ∑
(`,i) 6=(`′,i′)

ω2 +
∑

(`,i) 6=(`′,i′)

υ2
`,i + υ`,i

≤
√

2

√ ∑
(`,i)6=(`′,i′)

ω2 +
√

2

√ ∑
(`,i)6=(`′,i′)

υ2
`,i
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≤
√

2Lmω + O
(√

log(Lm|H|/δ)
ntr

)√ ∑
(`,i) 6=(`′,i′)

p`,i

≤
√

2Lmω + O
(√

L2m log(Lm|H|/δ)
ntr

)
.

Since σ`,i(D) ≥ γ −max`,i υ`,i, and

σ`,i(Σ) ≥ γ −
√

2Lmω − O
(√

L2m log(Lm|H|/δ)
ntr

)
−max

`,i
υ`,i.

Substituting for max`,i υ`,i ≤ O
(√

log(Lm|H|/δ)
ntr

)
, and denoting ξ =

√
2Lmω + O

(√
L2m log(Lm|H|/δ)

ntr

)
, we have

σ`,i(Σ) ≥ ξ. With this, we can bound operator norm of ‖Σ−1‖ as:

‖Σ−1‖ =
1

min`,i σ`,i(Σ)
≤ 1

γ − ξ ≤ O
(

1

γ

)
,

where the last inequality follows from the assumption that ntr ≥ L2m log(Lm|H|/δ)
( γ2−
√

2Lmω)2
and hence ξ ≤ O (γ/2).

We are now ready to prove Theorem 1.

Proof of Theorem 1. The solution from Algorithm 1 is given by α̂ = Σ̂
−1

Ê . Recall we can write the “true” coefficients
by ᾱ = Σ−1Ē , where Ē is defined in (16), and we also defined α = Σ−1E . The left-hand side of Theorem 1 can then be
expanded as:

‖α̂− ᾱ‖ ≤ ‖α̂−α‖+ ‖α− ᾱ‖
≤ ‖α̂−α‖+ ‖Σ−1(E − Ē)‖
≤ ‖α̂−α‖+ ‖Σ−1‖‖(E − Ē)‖
≤ ‖α̂−α‖+ ν

√
Lm‖Σ−1‖ (17)

≤ ‖α̂−α‖ +
2ν
√
Lm

γ
. (18)

Here the second-last step follows from Assumption 1, in particular from
∣∣∣∑`,i ᾱ

`
iΦ

µ,`
i [h]− ED[h]

∣∣∣ ≤ ν,∀h, which gives

us that
∣∣∣∑`,i ᾱ

`
iΦ

µ,`
i [h`

′,i′ ]− ED[h`
′,i′ ]
∣∣∣ ≤ ν, for all `′, i′. The last step follows from Lemma 6 and holds with probability

at least 1− δ over draw of Str.

All that remains is to bound the term ‖α̂−α‖. Given that α̂ = Σ̂
−1

Ê . and α = Σ−1E , we can use standard error analysis
for linear systems (see e.g., Demmel (1997)) to bound:

‖α̂−α‖ ≤ ‖α‖‖Σ‖‖Σ−1‖
(
‖Σ− Σ̂‖
‖Σ‖ +

‖E − Ê‖
‖E‖

)

≤ ‖Σ−1‖2‖E‖
(
‖Σ− Σ̂‖ + ‖Σ‖‖E − Ê‖

‖E‖

)
(from α = Σ−1E)

≤ ‖Σ−1‖2‖E‖
(
‖Σ− Σ̂‖ + L

√
m
‖E − Ê‖
‖E‖

)
(from Lemma 6)

≤ ‖Σ−1‖2
√
Lm

(
‖Σ− Σ̂‖ +

L
√
m√

Lmc
‖E − Ê‖

)
(using E(`,i) ∈ (c, 1])
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≤ ‖Σ−1‖2
√
Lm

(
‖Σ− Σ̂‖ +

√
L

c
‖E − Ê‖

)

≤ O
(√

Lm

γ2

(√
L2m log(Lm|H|/δ)

ntr +

√
L

c

√
Lm log(Lm/δ)

nval

))

= O
(
Lm

γ2

(√
L log(Lm|H|/δ)

ntr +
1

c

√
L log(Lm/δ)

nval

))
,

where the last two steps follow from Lemmas 3–4 and Lemma 6, and hold with probability at least 1− δ over draws of Str

and Sval. Plugging this back into (18) completes the proof.

B.2. Error Bound for PI-EW

When the metric is linear, we have the following bound on the gap between the metric value achieved by classifier ĥ output
by Algorithm 2, and the optimal value. This result will then be useful in proving an error bound for Algorithm 3 in the next
section.

Lemma 7 (Error Bound for PI-EW). Let the input metric be of the form Ê lin[h] =
∑
i βiĈ

val
ii [h] for some (unknown)

coefficients β ∈ Rm+ , ‖β‖ ≤ 1, and denote E lin[h] =
∑
i βiC

D
ii [h]. Let ᾱ be the associated weighting coefficient for E lin in

Assumption 1, with ‖ᾱ‖1 ≤ B and with slack ν. Fix δ > 0. Suppose w.p. ≥ 1− δ over draw of Str and Sval, the weight
elicitation routine in line 2 of Algorithm 2 provides coefficients α̂ with ‖α̂− ᾱ‖ ≤ κ(δ, ntr, nval), for some function κ(·) > 0.
Let B′ = B +

√
Lmκ(δ, ntr, nval). Then with the same probability, the classifier ĥ output by Algorithm 2 satisfies:

max
h
E lin[h]− E lin[ĥ] ≤ B′Ex [‖ηtr(x)− η̂tr(x)‖1] + 2

√
Lmκ(δ, ntr, nval) + 2ν,

where ηtr
i (x) = Pµ(y = i|x). Furthermore, when the metric coefficients ‖β‖ ≤ Q, for some Q > 0, then

max
h
E lin[h]− E lin[ĥ] ≤ Q

(
B′Ex [‖ηtr(x)− η̂tr(x)‖1] + 2

√
Lmκ(δ, ntr, nval) + 2ν

)
.

Proof. For the proof, we will treat ĥ as a classifier that outputs one-hot labels, i.e. as classifier ĥ : X→{0, 1}m with

ĥ(x) = onehot
(

argmax∗i∈[m] Ŵi(x)η̂tr
i (x)

)
, (19)

where argmax∗ breaks ties in favor of the largest class.

Let W̄i(x) =
∑L
`=1 ᾱ

`
iφ
`(x) and Ŵi(x) =

∑L
`=1 α̂

`
iφ
`(x). It is easy to see that

|W̄i(x)− Ŵi(x)| ≤ ‖ᾱ− α̂‖

√√√√ L∑
`=1

φ`(x)2 ≤
√
Lm‖ᾱ− α̂‖ ≤

√
Lmκ, (20)

where in the second inequality we use |φ`(x)| ≤ 1, and in the last inequality, we have shortened the notation κ(δ, ntr, nval)
to κ and for simplicity will avoid mentioning that this holds with high probability.

Further, recall from Assumption 1 that

|W̄i(x)| ≤ ‖ᾱ‖1 max
`
|φ`(x)| ≤ B(1) = B

and so from (20),
|Ŵi(x)| ≤ B +

√
Lmκ. (21)

We also have from Assumption 1 that∣∣∣∣∣E lin[h] − E(x,y)∼µ

[
m∑
i=1

W̄i(x)1(y = i)hi(x)

]∣∣∣∣∣ ≤ ν, ∀h.
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Equivalently, this can be re-written in terms of the conditional class probabilities ηtr(x) = Pµ(y = 1|x):∣∣∣∣∣E lin[h] − Ex∼Pµ

[
m∑
i=1

W̄i(x)ηtr
i (x)hi(x)

]∣∣∣∣∣ ≤ ν, ∀h, (22)

where Pµ denotes the marginal distribution of µ over X . Denoting h∗ ∈ argmaxh E lin[h], we then have from (22),

max
h
E lin[h] − E lin[ĥ]

=

m∑
i=1

Ex

[
W̄i(x)ηtr

i (x)h∗i (x))
]
−

m∑
i=1

Ex

[
W̄i(x)ηtr

i (x)ĥi(x)
]

+ 2ν

≤
m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)h∗i (x))
]
−

m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)ĥi(x)
]

+ 2ν + 2
√
Lmκ

(from (20),
∑m
i=1 η

tr
i (x) = 1 and hi(x) ≤ 1)

≤
m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)h∗i (x))
]
−

m∑
i=1

Ex

[
Ŵi(x)η̂tr

i (x)h∗i (x))
]

+

m∑
i=1

Ex

[
Ŵi(x)η̂tr

i (x)h∗i (x))
]
−

m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)ĥi(x)
]

+ 2ν + 2
√
Lmκ

From the definition of ĥ in (19), we have that
∑m
i=1 Ŵi(x)η̂tr

i (x)ĥi(x) ≥ ∑m
i=1 Ŵi(x)η̂tr

i (x)hi(x), for all h : X→∆m.
Therefore,

max
h
E lin[h] − E lin[ĥ]

≤
m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)h∗i (x))
]
−

m∑
i=1

Ex

[
Ŵi(x)η̂tr

i (x)h∗i (x))
]

+

m∑
i=1

Ex

[
Ŵi(x)η̂tr

i (x)ĥi(x))
]
−

m∑
i=1

Ex

[
Ŵi(x)ηtr

i (x)ĥi(x)
]

+ 2ν + 2
√
Lmκ

≤
m∑
i=1

Ex

[
Ŵi(x)|ηtr

i (x)− η̂tr
i (x)|h∗i (x)

]
+

m∑
i=1

Ex

[
Ŵi(x)|ηtr

i (x)− η̂tr
i (x)|ĥi(x)

]
+ 2ν + 2

√
Lmκ

≤
m∑
i=1

Ex

[
Ŵi(x)|ηtr

i (x)− η̂tr
i (x)||h∗i (x)− ĥi(x)|

]
+ 2ν + 2

√
Lmκ

≤ Ex

[
max
i

(
Ŵi(x)|h∗i (x)− ĥi(x)|

)
‖η(x)− η̂(x)‖1

]
+ 2ν + 2

√
Lmκ

≤ (B +
√
Lmκ) Ex [‖η(x)− η̂(x)‖1] + 2ν + 2

√
Lmκ,

where the last step follows from (21) and |hi(x)− ĥi(x)| ≤ 1. This completes the proof. The second part, where ‖β‖ ≤ Q,
follows by applying Assumption 1 to normalized coefficients β/‖β‖, and scaling the associated slack ν by Q.

B.3. Proof of Theorem 2

We will make a couple of minor changes to the algorithm to simplify the analysis. Firstly, instead of using the same sample
Sval for both estimating the example weights (through call to PI-EW in line 9) and estimating confusion matrices Ĉval (in
line 10), we split Sval into two halves, use one half for the first step and the other half for the second step. Using independent
samples for the two steps, we will be able to derive straight-forward confidence bounds on the estimated confusion matrices
in each case. In our experiments however, we find the algorithm to be effective even when a common sample is used for
both steps. Secondly, we modify line 8 to include a shifted version of the metric Êval, so that later in Appendix D when we
handle the case of “unknown ψ”, we can avoid having to keep track of an additive constant in the gradient coefficients.
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Algorithm 3∗: Frank-Wolfe with Elicited Gradients (FW-EG) for General Diagonal Metrics

1: Input: Êval, Basis functions φ1, . . . , φL : X→[0, 1], Pre-trained η̂tr : X→∆m, Str ∼ µ, Sval ∼ D split into two halves
Sval

1 and Sval
2 of sizes dnval/2e and bnval/2c respectively, T , ε

2: Initialize classifier h0 and c0 = diag(Ĉval[h0])
3: For t = 0 to T − 1 do
4: if ED[h] = ψ(CD11[h], . . . , CDmm[h]) for known ψ:
5: βt = ∇ψ(ct)

6: Ê lin[h] =
∑
i β

t
i Ĉ

val
ii [h], evaluated using Sval

1

7: else
8: Ê lin[h] = Êval[h]− Êval[ht], evaluated using Sval

1 {small ε recommended}
9: f̂ = PI-EW(Ê lin, φ1, ..., φL, η̂tr, Str, Sval

1 , ht, ε)

10: c̃ = diag(Ĉval[f̂ ]), evaluated using Sval
2

11: ht+1 =
(
1− 2

t+1

)
ht + 2

t+1 onehot(f̂)

12: ct+1 =
(
1− 2

t+1

)
ct + 2

t+1 c̃
13: End For
14: Output: ĥ = hT

Theorem ((Restated) Error Bound for FW-EG with known ψ). Let ED[h] = ψ(CD11[h], . . . , CDmm[h]) for a
known concave function ψ : [0, 1]m→R+, which is Q-Lipschitz, and λ-smooth w.r.t. the `1-norm. Let Êval[h] =

ψ(Ĉval
11 [h], . . . , Ĉval

mm[h]). Fix δ ∈ (0, 1). Suppose Assumption 1 holds with slack ν, and for any linear metric
∑
i βiC

D
ii [h]

with ‖β‖ ≤ 1, whose associated weight coefficients is ᾱ with ‖ᾱ‖ ≤ B, w.p. ≥ 1− δ over draw of Str and Sval
1 , the weight

elicitation routine in Algorithm 1 outputs coefficients α̂ with ‖α̂ − ᾱ‖ ≤ κ(δ, ntr, nval), for some function κ(·) > 0. Let
B′ = B +

√
Lmκ(δ/T, ntr, nval). Assume m ≤ nval. Then w.p. ≥ 1− δ over draws of Str and Sval from D and µ resp., the

classifier ĥ output by Algorithm 3∗ after T iterations satisfies:

max
h
ED[h]− ED[ĥ] ≤ 2QB′Ex

[
‖ηtr(x)− η̂tr(x)‖1

]
+ 4Qν + 4Q

√
Lmκ(δ/T, ntr, nval)

+O
(
λm

√
m log(nval) log(m) + log(m/δ)

nval +
λ

T

)
.

The proof adapts techniques from Narasimhan et al. (2015b), who show guarantees for a Frank-Wolfe based learning
algorithm with a known ψ in the absence of distribution shift. The main proof steps are listed below:

• Prove a generalization bound for the confusion matrices Ĉval evaluated in line 10 on the validation sample (Lemma 8)

• Establish an error bound for the call to PI-EW in line 9 (Lemma 7 in previous section)

• Combine the above two results to show that the classifier f̂ returned in line 9 is an approximate linear maximizer
needed by the Frank-Wolfe algorithm (Lemma 9)

• Combine Lemma 9 with a convergence guarantee for the outer Frank-Wolfe algorithm (Narasimhan et al., 2015b; Jaggi,
2013) (using convexity of the space of confusion matrices C) to complete the proof (Lemmas 10–11).

Lemma 8 (Generalization bound for CD). Fix δ ∈ (0, 1). Let η̂tr : X→∆m be a fixed class probability estimator. Let
G = {h : X→[m] |h(x) ∈ argmaxi∈[m] βiη̂

tr
i (x) for some β ∈ Rm+} be the set of plug-in classifiers defined with η̂tr. Let

Ḡ = {h(x) =
∑T
t=1 utht(x) |T ∈ N, h1, . . . , hT ∈ G,u ∈ ∆T }

be the set of all randomized classifiers constructed from a finite number of plug-in classifiers in G. Assume m ≤ nval. Then
with probability at least 1− δ over draw of Sval from D, then for h ∈ Ḡ:

‖CD[h]− Ĉval[h]‖∞ ≤ O
(√

m log(m) log(nval) + log(m/δ)

nval

)
.
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Proof. The proof follows from standard convergence based generalization arguments, where we bound the capacity of
the class of plug-in classifiers G in terms of its Natarajan dimension (Natarajan, 1989; Daniely et al., 2011). Applying
Theorem 21 from (Daniely et al., 2011), we have that the Natarajan dimension of G is at most d = m log(m). Applying the
generalization bound in Theorem 13 in Daniely et al. (2015), along with the assumption that m ≤ nval, we have for any
i ∈ [m], with probability at least 1− δ over draw of Sval from D, for any h ∈ G:

|CDii [h]− Ĉval
ii [h]| ≤ O

(√
m log(m) log(nval) + log(1/δ)

nval

)
.

Further note that for any randomized classifier h̄(x) =
∑T
t=1 utht(x) ∈ Ḡ, for some u ∈ ∆T ,

|CDii [h̄]− Ĉval
ii [h̄]| ≤

T∑
t=1

ut|CDii [ht]− Ĉval
ii [ht]| ≤ O

(√
m log(m) log(nval) + log(1/δ)

nval

)
,

where the first inequality follows from linearity of expectations. Taking a union bound over all diagonal entries i ∈ [m]
completes the proof.

We next show that the call to PI-EW in line 9 of Algorithm 3 computes an approximate maximizer f̂ for Ê lin. This is an
extension of Lemma 26 in Narasimhan et al. (2015b).

Lemma 9 (Approximation error in linear maximizer f̂ ). For each iteration t in Algorithm 3, denote c̄t = diag(CD[ht]),
and β̄

t
= ∇ψ(c̄t). Suppose the assumptions in Theorem 2 hold. Let B′ = B +

√
Lmκ(δ, ntr, nval). Assume m ≤ nval.

Then w.p. ≥ 1− δ over draw of Str and Sval from µ and D resp., for any t = 1, . . . , T , the classifier f̂ returned by PI-EW
in line 9 satisfies:

max
h

∑
i

β̄tiC
D
ii [h] −

∑
i

β̄tiC
D
ii [f̂ ] ≤ QB′Ex

[
‖ηtr(x)− η̂tr(x)‖1

]
+ 2Qν

+ 2Q
√
Lmκ

(
δ
T , n

tr, nval
)

+ O
(
λm

√
m log(m) log(nval) + log(m/δ)

nval

)
.

Proof. The proof uses Theorem 1 to bound the approximation errors in the linear maximizer f̂ (coupled with a union bound
over T iterations), and Lemma 8 to bound the estimation errors in the confusion matrix ct used to compute the gradient
∇ψ(ct).

Recall from Algorithm 3 that ct = diag(Ĉval[ht]) and βt = ∇ψ(ct). Note that these are approximations to the actual
quantities we are interested in c̄t = diag(CD[ht]) and β̄

t
= ∇ψ(c̄t), both of which are evaluated using the population

confusion matrix. Also, ‖β‖ = ‖∇ψ(ct)‖ ≤ Q from Q-Lipschitzness of ψ.

Fix iteration t, and let h∗ ∈ argmaxh
∑
i β̄

t
iC

D
ii [h] for this particular iteration. Then:∑

i

β̄tiC
D
ii [h∗] −

∑
i

β̄tiC
D
ii [f̂ ]

=
∑
i

β̄tiC
D
ii [h∗] −

∑
i

βtiC
D
ii [h∗] +

∑
i

βtiC
D
ii [h∗] −

∑
i

βtiC
D
ii [f̂ ] +

∑
i

βtiC
D
ii [f̂ ] −

∑
i

β̄tiC
D
ii [f̂ ]

≤ ‖βt − β̄
t‖∞

∑
i

CDii [h∗] +
∑
i

βtiC
D
ii [h∗] −

∑
i

βtiC
D
ii [f̂ ] + ‖βt − β̄

t‖∞
∑
i

CDii [f̂ ]

≤ ‖βt − β̄
t‖∞(1) + max

h

∑
i

βtiC
D
ii [h] −

∑
i

βtiC
D
ii [f̂ ] + ‖βt − β̄

t‖∞(1) (because
∑
i,j C

D
ij [h] = 1)

= 2‖βt − β̄
t‖∞ + max

h

∑
i

βtiC
D
ii [h] −

∑
i

βtiC
D
ii [f̂ ]

= 2‖∇ψ(ct)−∇ψ(c̄t)‖∞ + max
h

∑
i

βtiC
D
ii [h] −

∑
i

βtiC
D
ii [f̂ ]
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≤ 2λ‖ct − c̄t‖1 + max
h

∑
i

βtiC
D
ii [h] −

∑
i

βtiC
D
ii [f̂ ] (because ψ is λ-smooth w.r.t. the `1 norm)

≤ 2λm‖ct − c̄t‖∞ + max
h

∑
i

βtiC
D
ii [h] −

∑
i

βtiC
D
ii [f̂ ]

≤ O
(
λm

√
m log(m) log(nval) + log(m/δ)

nval

)
+QB′Ex

[
‖ηtr(x)− η̂tr(x)‖1

]
+ 2Q

√
Lmκ(δ, ntr, nval) + 2Qν, (23)

where B′ = B +
√
Lmκ(δ, ntr, nval). The last step holds with probability at least 1 − δ over draw of Sval and Str, and

follows from Lemma 8 and Lemma 7 (using ‖βt‖ ≤ Q). The first bound on ‖ct − c̄t‖∞ = ‖Ĉval[ht]−CD[ht]‖∞ holds
for any randomized classifier ht constructed from a finite number of plug-in classifiers. The second bound on the linear
maximization errors holds only for a fixed t, and so we need to take a union bound over all iterations t = 1, . . . , T , to
complete the proof. Note that because we use two independent samples Sval

1 and Sval
2 for the two bounds, they each hold

with high probability over draws of Sval
1 and Sval

2 respectively, and hence with high probability over draw of Sval.

Our last two lemmas restate results from Narasimhan et al. (2015b). The first shows convexity of the space of confusion
matrices (Proposition 10 from their paper), and the second applies a result from Jaggi (2013) to show convergence of the
classical Frank-Wolfe algorithm with approximate linear maximization steps (Theorem 16 in Narasimhan et al. (2015b)).

Lemma 10 (Convexity of space of confusion matrices). Let C = {diag(CD[h]) |h : X→∆m} denote the set of all
confusion matrices achieved by some randomized classifier h : X→∆m. Then C is convex.

Proof. For any C1,C2 ∈ C, ∃h1, h2 : X→∆m such that c1 = diag(CD[h1]) and c2 = diag(CD[h2]). We need to show
that for any u ∈ [0, 1], uc1 + (1− u)c2 ∈ C. This is true because the randomized classifier h(x) = uh1(x) + (1− u)h2(x)
yields a confusion matrix diag(CD[h]) = u diag(CD[h1]) + (1− u)diag(CD[h2]) = uc1 + (1− u)c2 ∈ C.

Lemma 11 (Frank-Wolfe with approximate linear maximization (Narasimhan et al., 2015b)). Let ED[h] =
ψ(CD11[h], . . . , CDmm[h]) for a concave function ψ : [0, 1]m→R+ that is λ-smooth w.r.t. the `1-norm. For each itera-
tion t, define β̄t = ∇ψ(diag(CD[ht])). Suppose line 9 of Algorithm 3 returns a classifier f̂ such that maxh

∑
i β̄

t
iC

D
ii [h] −∑

i β̄
t
iC

D
ii [f̂ ] ≤ ∆,∀t ∈ [T ]. Then the classifier ĥ output by Algorithm 3 after T iterations satisfies:

max
h
ED[h]− ED[ĥ] ≤ 2∆ +

8λ

T + 2
.

Proof of Theorem 2. The proof follows by plugging in the result from Lemma 9 into Lemma 11.

C. Error Bound for Weight Elicitation with Fixed Probing Classifiers
We first state a general error bound for Algorithm 1 in terms of the singular values of Σ for any fixed choices for the probing
classifiers. We then bound the singular values for the fixed choices in (12) under some specific assumptions.

Theorem 12 (Error bound on elicited weights with fixed probing classifiers). Let ED[h] =
∑
i βiC

D
ii [h] for some

(unknown) β ∈ Rm, and let Êval[h] =
∑
i βiĈ

val
ii [h]. Let ᾱ be the associated coefficient in Assumption 1 for metric ED. Fix

δ ∈ (0, 1). Then for any fixed choices of the probing classifiers h`,i, we have with probability ≥ 1− δ over draws of Str and
Sval from µ and D resp., the coefficients α̂ output by Algorithm 1 satisfies:

‖α̂− ᾱ‖ ≤O
(

1

σmin(Σ)2

(
Lm

√
L log(Lm/δ)

ntr + σmax(Σ)

√
Lm log(Lm/δ)

nval

)
+

ν
√
Lm

σmin(Σ)

)
,

where σmin(Σ) and σmin(Σ) are respectively the smallest and largest singular values of Σ.

Proof. The proof follows the same steps as Theorem 1, except for the bound on ‖α̂−α‖. Specifically, we have from (17):

‖α̂− ᾱ‖ ≤ ‖α̂−α‖ + ν
√
Lm‖Σ−1‖. (24)



Optimizing Black-box Metrics with Iterative Example Weighting

We next bound:

‖α̂−α‖ ≤ ‖α‖‖Σ‖‖Σ−1‖
(
‖Σ− Σ̂‖
‖Σ‖ +

‖E − Ê‖
‖E‖

)

≤ ‖Σ−1‖2‖E‖
(
‖Σ− Σ̂‖ + ‖Σ‖‖E − Ê‖

‖E‖

)
(from α = Σ−1E)

≤ ‖Σ−1‖2
(
‖E‖‖Σ− Σ̂‖ + ‖Σ‖‖E − Ê‖

)
≤ ‖Σ−1‖2

(√
Lm‖Σ− Σ̂‖ + ‖Σ‖‖E − Ê‖

)
(as ED[h] ∈ [0, 1])

≤ O
(

1

σmin(Σ)2

(
√
Lm

√
L2m log(Lm/δ)

ntr + σmax(Σ)

√
Lm log(Lm/δ)

nval

))
,

where the last step follows from an adaptation of Lemma 3 (whereH contains the Lm fixed classifiers in (12)) and from
Lemma 4. The last statement holds with probability at least 1− δ over draws of Str and Sval. Substituting this bound back in
(24) completes the proof.

We next provide a bound on the singular values of Σ for a specialized setting where the the probing classifiers h`,i are set
to (12), the basis functions φ`’s divide the data into disjoint clusters, and the base classifier h̄ is close to having “uniform
accuracies” across all the clusters and classes.

Lemma 13. Let h`,i’s be defined as in (12). Suppose for any x, φ`(x) ∈ {0, 1} and φ`(x)φ`
′
(x) = 0,∀` 6= `′. Let

p`,i = E(x,y)∼µ[φ`(x)1(y = i)]. Let h̄ be such that κ− τ ≤ Φµ,`i [h̄] ≤ κ,∀`, i and for some κ < 1
m and τ < κ. Then:

σmax(Σ) ≤ Lmax
`,i

p`,i + ∆; σmin(Σ) ≥ ε(1−mκ) min
`,i

p`,i − ∆,

where ∆ = Lmτ max
`,i

p`,i.

Proof. We first write the matrix Σ as Σ = Σ̄ + E, where

Σ̄ =


p1,1 (ε+ (1− ε)κ) p1,2(1− ε)κ . . . p1,m(1− ε)κ p2,1κ . . . pL,mκ
p1,1(1− ε)κ p1,2 (ε+ (1− ε)κ) . . . p1,m(1− ε)κ p2,1κ . . . pL,mκ

...
p1,1κ p1,2κ . . . p1,mκ p2,1κ . . . pL,m (ε+ (1− ε)κ)

 ,

and E ∈ RLm×Lm with each |E(`,i),(`′,i′)| ≤ max
`,i

p`,i

(
κ− Φµ,`i [h̄]

)
≤ τ max

`,i
p`,i.

The matrix Σ̄ can in turn be written as a product of a symmetric matrix A ∈ RLm×Lm and a diagonal matrix D ∈ RLm×Lm:

Σ̄ = AD,

where

A =



ε+ (1− ε)κ (1− ε)κ . . . (1− ε)κ κ . . . κ
(1− ε)κ ε+ (1− ε)κ . . . (1− ε)κ κ . . . κ

...
(1− ε)κ (1− ε)κ . . . ε+ (1− ε)κ κ . . . κ

...
κ κ . . . κ ε+ (1− ε)κ . . . (1− ε)κ

...
κ κ . . . κ (1− ε)κ . . . ε+ (1− ε)κ


; D = diag(p1,1, . . . , pL,m).
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We can then bound the largest and smallest singular values of Σ in terms of those of A and D. Using Weyl’s inequality (see
e.g., (Stewart, 1998)), we have

σmax(Σ) ≤ σmax(Σ̄) + ‖E‖ ≤ ‖A‖‖D‖ + ‖E‖ = σmax(A)σmax(D) + ‖E‖.
and

σmin(Σ) ≥ σmin(Σ̄) − ‖E‖ =
1

‖Σ̄−1‖
− ‖E‖ ≥ 1

‖A−1‖‖D−1‖ − ‖E‖ = σmin(A)σmin(D) − ‖E‖.

Further, we have ‖E‖ ≤ ‖E‖F ≤ Lmτ max
`,i

p`,i = ∆, giving us:

σmax(Σ) ≤ σmax(A)σmax(D) + ∆. (25)

σmin(Σ) ≥ σmin(A)σmin(D)−∆. (26)

All that remains is to bound the singular values of Σ and D. Since D is a diagonal matrix, it’s singular values are given by
its diagonal entries:

σmax(D) = max
`,i

p`,i; σmin(D) = min
`,i

p`,i.

The matrix A is symmetric and has a certain block structure. It’s singular values are the same as the positive magnitudes of
its Eigen values. We first write out it’s Lm Eigen vectors:

x1,1 = [

m entries︷ ︸︸ ︷
1,−1, 0, . . . , 0,

m entries︷ ︸︸ ︷
0, . . . , 0, . . .

m entries︷ ︸︸ ︷
0, . . . , 0 ]

x1,2 = [ 1, 0,−1, . . . , 0, 0, . . . , 0, . . . 0, . . . , 0 ]
...

x1,m−1 = [ 1, 0, 0, . . . ,−1, 0, . . . , 0, . . . 0, . . . , 0 ]

x1,m = [ 1, . . . , 1, −1, . . . ,−1, . . . 0, . . . , 0 ]

x2,1 = [ 0, . . . , 0, 1,−1, 0, . . . , 0, . . . 0, . . . , 0 ]
...

x2,m−1 = [ 0, . . . , 0, 1, 0, 0, . . . ,−1, . . . 0, . . . , 0 ]

x2,m = [ −1, . . . ,−1, 1, . . . , 1, . . . 0, . . . , 0 ]

...

xL,1 = [ 0, . . . , 0, 0, . . . , 0, . . . 1,−1, 0, . . . , 0 ]

...

xL,m−1 = [ 0, . . . , 0, 0, . . . , 0, . . . 1, 0, 0, . . . ,−1 ]

xL,m = [ 1, . . . , 1, 1, . . . , 1, . . . 1, . . . , 1 ]

One can then verify that the Lm Eigen values of A are ε with a multiplicity of (L− 1)m, ε(1−mκ) with a multiplicity of
m− 1 and (L− ε)mκ+ ε with a multiplicity of 1. Therefore:

σmax(A) ≤ L; σmin(A) = ε(1−mκ).

Substituting the singular (Eigen) values of A and D into (25) and (26) completes the proof.

In the above lemma, the base classifier h̄ is assumed to have roughly uniformly low accuracies for all classes and clusters,
and the closer it is to having uniform accuracies, i.e. the smaller the value of τ , the tighter are the bounds.

We have shown a bound on the singular values of Σ for a specific setting where the basis functions φ`’s divide the data into
disjoint clusters. When this is not the case (e.g. with overlapping clusters (6), or soft clusters (7)), the singular values of Σ
would depend on how correlated the basis functions are.
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D. Error Bound for FW-EG with Unknown ψ
In this section, we provide an error bound for Algorithm 3∗ for evaluation metrics of the form ED[h] =
ψ(CD11[h], . . . , CDmm[h]), for a smooth, but unknown ψ : Rm→R+. In this case, we do not have a closed-form ex-
pression for the gradient of ψ, but instead apply the example weight elicitation routine in Algorithm 1 using probing
classifiers chosen from within a small neighborhood around the current iterate ht, where ψ is effectively linear. Specifically,
we invoke Algorithm 1 with the current iterate ht as the base classifier and with the radius parameter ε set to a small value.
In the error bound that we state below for this version of the algorithm, we explicitly take into account the “slack” in using a
local approximation to ψ as a proxy for its gradient.

Theorem 14 (Error Bound for FW-EG with unknown ψ). Let ED[h] = ψ(CD11[h], . . . , CDmm[h]) for an unknown
concave function ψ : [0, 1]m→R+, which is Q-Lipschitz, and also λ-smooth w.r.t. the `1-norm. Let Êval[h] =

ψ(Ĉval
11 [h], . . . , Ĉval

mm[h]). Fix δ ∈ (0, 1). Suppose Assumption 1 holds with slack ν. Suppose for any linear metric∑
i βiC

D
ii [h], whose associated weight coefficients in the assumption is ᾱ with ‖ᾱ‖ ≤ B, the following holds. For any

δ ∈ (0, 1), with probability ≥ 1− δ over draw of Str and Sval, when the weight elicitation routine in Algorithm 1 is given an
input metric Êval with |Êval −∑i βiĈ

val
ii [h]| ≤ χ,∀h, it outputs coefficients α̂ such that ‖α̂− ᾱ‖ ≤ κ(δ, ntr, nval, χ), for

some function κ(·) > 0. Let B′ = B +
√
Lmκ(δ, ntr, nval, 2λε2). Assume m ≤ nval. Then w.p. ≥ 1 − δ over draws of

Str and Sval from D and µ respectively, the classifier ĥ output by Algorithm 3∗ with radius parameter ε after T iterations
satisfies:

max
h
ED[h]− ED[ĥ] ≤ 2QB′Ex

[
‖ηtr(x)− η̂tr(x)‖1

]
+ 4Q

√
Lmκ(δ/T, ntr, nval, 2λε2)

+ 4Qν + O
(
λm

√
m log(nval) log(m) + log(m/δ)

nval +
λ

T

)
.

One can plug-in κ(·) with e.g. the error bound we derived for Algorithm 1 in Theorem 1, suitably modified to accommodate
input metrics Êval that may differ from the desired linear metric by at most χ. Such modifications can be easily made to
Theorem 1 and would result in an additional term

√
Lmχ in the error bound to take into account the additional approximation

errors in computing the right-hand side of the linear system in (10).

Before proceeding to prove Theorem 14, we state a few useful lemmas. The following lemma shows that because ψ(C) is
λ-smooth, it is effectively linear within a small neighborhood around C.

Lemma 15. Suppose ψ is λ-smooth w.r.t. the `1-norm. For each iteration t of Algorithm 3∗, let υt = ∇ψ(ct) denote the
true gradient of ψ at ct. Then for any classifier hε(x) = (1− ε)ht(x) + εh(x),∣∣∣∣∣Êval[hε]− Êval[ht]−

∑
i

υtiĈ
val
ii [hε]

∣∣∣∣∣ ≤ 2λε2.

Proof. For any randomized classifier hε(x) = (1− ε)ht(x) + εh(x),∣∣∣∣∣Êval[hε]− Êval[ht]−
∑
i

υtiĈ
val
ii [hε]

∣∣∣∣∣ =

∣∣∣∣∣ψ(diag(Ĉval[hε]))− ψ(diag(Ĉval[ht]))−
∑
i

υtiĈ
val
ii [hε]

∣∣∣∣∣
≤ λ

2
‖diag(Ĉval[hε]) − diag(Ĉval[ht])‖21

=
λ

2
‖ε(diag(Ĉval[h]) − diag(Ĉval[ht]))‖21

=
λ

2
ε2‖diag(Ĉval[h]) − diag(Ĉval[ht])‖21

≤ λ

2
ε2
(
‖diag(Ĉval[h])‖1 + ‖diag(Ĉval[ht])‖1

)2

≤ λ

2
ε2(2)2 = 2λε2.

Here the second line follows from the fact that ψ is λ-smooth w.r.t. the `1-norm,and υt = ∇ψ(diag(Ĉval[ht])). The third
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line follows from linearity of expectations. The last line follows from the fact that the sum of the entries of a confusion
matrix (and hence the sum of its diagonal entries) cannot exceed 1.

We next restate the error bounds for the call to PI-EW in line 9 and the corresponding bound on the approximation error in
the linear maximizer f̂ obtained.

Lemma 16 (Error bound for call to PI-EW in line 9 with unknown ψ). For each iteration t of Algorithm 3, let υt = ∇ψ(ct)
denote the true gradient of ψ at ct, when the algorithm is run with an unknown ψ that is Q-Lipschitz and λ-smooth
w.r.t. the `1-norm. Let ᾱ be the associated weighting coefficient for the linear metric

∑
i υ

t
iC

D
ii [h] (whose coefficients

are unknown) in Assumption 1, with ‖ᾱ‖1 ≤ B, and with slack ν. Fix δ > 0. Suppose w.p. ≥ 1 − δ over draw of
Str and Sval, when the weight elicitation routine used in PI-EW is called with the input metric Êval[h] − Êval[ht] with
|Êval[h]−∑i υiĈ

val
ii [h]| ≤ χ,∀h, it outputs coefficients α̂ such that ‖α̂−ᾱ‖ ≤ κ(δ, ntr, nval, χ), for some function κ(·) > 0.

Let B′ = B +
√
Lmκ(δ, ntr, nval, 2λε2). Then with the same probability, the classifier ĥ output by PI-EW when called by

Algorithm 3∗ with metric Ê lin[h] = Êval[h]− Êval[ht] and radius ε satisfies:

max
h

∑
i

υtiC
D
ii [h]−

∑
i

υtiC
D
ii [ĥ] ≤ Q

(
B′Ex [‖ηtr(x)− η̂tr(x)‖1] + 2

√
Lmκ(δ, ntr, nval, 2λε2) + 2ν

)
,

where ηtr
i (x) = Pµ(y = i|x).

Proof. The proof is the same as that of Lemma 7 for the “known ψ” case, except that the κ(·) guarantee for the call to
weight elicitation routine in line 2 is different, and takes into account the fact that the input metric Êval[h]− Êval[ht] to the
weight elicitation routine is only a local approximation to the (unknown) linear metric

∑
i υiĈ

val
ii [h]. We use Lemma 15 to

compute the value of slack χ in κ(·).

Lemma 17 (Approximation error in linear maximizer f̂ in line 9 with unknown ψ). For each iteration t in Algorithm 3∗, let
c̄t = diag(CD[ht]) and let β̄t = ∇ψ(c̄t) denote the unknown gradient of ψ evaluated at c̄t. Suppose the assumptions in
Theorem 14 hold. Let B′ = B +

√
Lmκ(δ, ntr, nval, 2λε2). Assume m ≤ nval. Then w.p. ≥ 1− δ over draw of Str and Sval

from µ and D resp., for any t = 1, . . . , T , the classifier f̂ returned by PI-EW in line 9 satisfies:

max
h

∑
i

β̄tiiC
D
i [h] −

∑
i

β̄tiC
D
ii [f̂ ] ≤ QB′Ex

[
‖ηtr(x)− η̂tr(x)‖1

]
+ 2Qν

+ 2Q
√
Lmκ

(
δ
T , n

tr, nval, 2λε2
)

+ O
(
λm

√
m log(m) log(nval) + log(m/δ)

nval

)
.

Proof. The proof is the same as that of Lemma 9 for the “known ψ” case, with the only difference being that we use Lemma
16 (instead of Lemma 7) to bound the linear maximization errors in equation (23).

Proof of Theorem 14. The proof follows from plugging Lemma 17 into the Frank-Wolfe convergence guarantee in Lemma
11 stated in Appendix B.3.

E. Running Time of Algorithm 3
We discuss how one iteration of FW-EG (Algorithm 3) compares with one iteration (epoch) of training a class-conditional
probability estimate η̂tr(x) ≈ Pµ(y = 1|x). In each iteration of FW-EG, we create Lm probing classifiers, where each
probing classifier via (12) only requires perturbing the predictions of the base classifier h̄ = ht and hence requires ntr + nval

computations. After constructing the Lm probing classifiers, FW-EG solves a system of linear equations with Lm unknowns,
where a naı̈ve matrix inversion approach requires O((Lm)3) time. Notice that this can be further improved with efficient
methods, e.g., using state-of-the-art linear regression solvers. Then FW-EG creates a plugin classifier and combines the
predictions with the Frank-Wolfe style updates, requiring Lm(ntr + nval) computations. So, the overall time complexity
for each iteration of FW-EG is O

(
Lm(ntr + nval) + (Lm)3

)
. On the other hand, one iteration (epoch) of training η̂tr(x)

requires O(ntrHm) time, where H represents the total number of parameters in the underlying model architecture up to
the penultimate layer. For deep networks such as ResNets (Sections 7.1 and 7.3), clearly, the run-time is dominated by the
training of η̂tr(x), as long as L and m are relatively small compared to the number of parameters in the neural network.
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Thus our approach is reasonably faster than having to train the model for η̂tr in each iteration (Jiang et al., 2020), training
the model (such as ResNets) twice (Patrini et al., 2017), or making multiple forward/backward passes on the training and
validation set requiring three times the time for each epoch compared to training η̂tr (Ren et al., 2018).

F. Plug-in with Coordinate-wise Search Baseline

We describe the Plug-in [train-val] baseline used in Section 7, which constructs a classifier ĥ(x) ∈ argmaxi∈[m] wiη̂
val
i (x),

by tuning the weights wi ∈ R to maximize the given metric on the validation set . Note that there are m parameters to be
tuned, and a naı̈ve approach would be to use an m-dimensional grid search. Instead, we use a trick from Hiranandani et al.
(2019b) to decompose this search into an independent coordinate-wise search for each wi. Specifically, one can estimate the
relative weighting wi/wj between any pair of classes i, j by constructing a classifier of the form

hζ(x) =

{
i if ζη̂tr

i (x) > (1− ζ)η̂tr
j (x)

j otherwise
,

that predicts either class i or j based on which of these receives a higher (weighted) probability estimates, and (through a
line search) finding the parameter ζ ∈ (0, 1) for which hζ yields the highest validation metric:

wi/wj ≈ argmaxζ∈[0,1] Êval[hζ ].

By fixing i to class m, and repeating this for classes j ∈ [m − 1], one can estimate wj/wm for each j ∈ [m − 1], and
normalize the estimated related weights to get estimates for w1, . . . , wm.

G. Solving Constrained Satisfaction Problem in (11)

We describe some common special cases where one can easily identify classifiers h`,i’s which satisfy the constraints in
(11). We will make use of a pre-trained class probability model η̂tr

i (x) ≈ Pµ(y = i|x), also used in Section 4 to construct
the plug-in classifier in Algorithm 2. The hypothesis class H we consider is the set of all plug-in classifiers obtained by
post-shifting η̂tr.

(ω, 0)

(0, ω)

Φ`
0

Φ`
1(π`, 0)

(0, 1 − π`)

Figure: Geometry of the space of Φ-confusions (Hiranandani et al., 2019a) form = 2 classes and with basis functions φ`(x) = 1(g(x) =

`) which divide the data into L disjoint clusters. For a fixed cluster `, we plot the values of Φµ,`0 [h] and Φµ,`1 [h] for all randomized
classifiers, with π` = Pµ(y = 1, g(x) = `). The points on the lower boundary correspond to classifiers of the form 1(ηtr(x) ≤ τ) for
varying thresholds τ ∈ [0, 1]. The points on the lower boundary within the dotted box correspond to the thresholded classifiers h which
yield both values Φµ,`0 [h] ≤ ω and Φµ,`1 [h] ≤ ω. One can thus find a feasible probing classifier h`,i for the constrained optimization
problem in (11) using the construction given in (27) as long as π` ≥ γ and 1− π` ≥ γ, and the lower boundary intersects with the dotted
box for clusters `′ 6= `. If the latter does not happen, one can increase ω in small steps until the classifier given in (27) is feasible for (11).

We start with a binary classification problem (m = 2) with basis functions φ`(x) = 1(g(x) = `), which divide the data
points into L disjoint groups according to g(x) ∈ [L]. For this setting, one can show under mild assumptions on the data
distribution that (11) does indeed have a feasible solution (using e.g. the geometric techniques used by Hiranandani et al.
(2019a) and also elaborated in the figure above). One such feasible h`,i predicts class i ∈ {0, 1} on all example belonging to
group `, and uses a thresholded of η̂tr for examples from other groups, with per-cluster thresholds. This would have the
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effect of maximizing the diagonal entry Φ̂tr,`
i [h`,i] of Σ̂ and the thresholds can be tuned so that the off-diagonal entries

Φ̂tr,`′

i′ [h`,i],∀(`′, i′) 6= (`, i) are small. More specifically, for any ` ∈ [L], i ∈ {0, 1}, the classifier h`,i can be constructed as:

h`,i(x) =

{
i if g(x) = `

1(η̂tr(x) ≤ τg(x)) otherwise,
(27)

where the thresholds τ`′ ∈ [0, 1], `′ 6= ` can each be tuned independently using a line search to minimize maxi′ Φ̂tr,`′

i′ [h`,i].
As long as η̂tr is a close approximation of P(y|x), the above procedure is guaranteed to find an approximately feasible
solution for (11), provided one exists. Indeed one can tune the values of γ and ω in (11), so that the above construction
(with tuned thresholds) satisfies the constraints.

We next look a multiclass problem (m > 2) with basis functions φ`(x) = 1(g(x) = `) which again divide the data points
into L disjoint groups. Here again, one can show under mild assumptions on the data distribution that (11) does indeed have
a feasible solution (using e.g. the geometric tools from Hiranandani et al. (2019b)). We can once again construct a feasible
h`,i by predicting class i ∈ [m] on all example belonging to group `, and using a post-shifted classifier for examples from
other groups. In particular, for any ` ∈ [L], i ∈ [m], the classifier h`,i can be constructed as:

h`,i(x) =

{
i if g(x) = `

argmaxj∈[m] w
g(x)
j η̂tr

j (x) otherwise
, (28)

where we use m parameters w`
′

1 , . . . , w
`′

m for each cluster `′ 6= `. We can then tune these m parameters to minimize the
maximum of the off-diagonal entries of Σ̂, i.e. minimize maxi′ Φ̂tr,`′

i′ [h`,i]. However, this may require anm-dimensional grid
search. Fortunately, as described in Appendix F, we can use a trick from Hiranandani et al. (2019b) to reduce the problem of
tuning m parameters into m independent line searches. This is based on the idea that the optimal relative weighting w`

′

i /w
`′

j

between any pair of classes can be determined through a line search. In our case, we will fix w`
′

m = 1,∀`′ 6= ` and compute
w`

′

i , i = 1, . . . ,m− 1 by solving the following one-dimensional optimization problem to determine the relative weighting
w`

′

i /w
`′

m = w`
′

i .

w`
′

i ∈ argmin
ζ∈[0,1]

(
max
i′

Φ̂tr,`′

i′ [hζ ]
)
, where hζ(x) =

{
i if ζη̂tr

i (x) < (1− ζ)η̂tr
m(x)

m otherwise
.

We can repeat this for each cluster `′ 6= ` to construct the (`, i)-th probing classifier h`,i in (28).

For the more general setting, where the basis functions φ`’s cluster the data into overlapping or soft clusters (such as in (7)),
one can find feasible classifiers for (11) by posing this problem as a “rate” constrained optimization problem of the form
below to pick h`,i:

max
h∈H

Φ̂tr,`
i [h] s.t. Φ̂tr,`′

i′ [h] ≤ ω,∀(`′, i′) 6= (`, i),

which can be solved using off-the-shelf toolboxes such as the open-source library offered by Cotter et al. (2019b).3 Indeed
one can tune the hyper-parameters γ and ω so that the solution to the above problem is feasible for (11). IfH is the set of
plug-in classifiers obtained by post-shifting η̂tr, then one can alternatively use the approach of Narasimhan (2018) to identify
the optimal post-shift on η̂tr that solves the above constrained problem.

H. Additional Experimental Details
For the experiments (Section 7), we provide the data statistics in Table 6. Observe that we always use small validation data
in comparison to the size of the training data. Below we provide some more details regarding the experiments:

• Maximizing Accuracy under Label Noise on CIFAR-10 (Section 7.1): The metric that we aim to optimize is test
accuracy, which is a linear metric in the diagonal entries of the confusion matrix. Notice that we work with the
asymmetric label noise model from Patrini et al. (2017), which corresponds to the setting where a label is flipped to a
particular label with a certain probability. This involves a non-diagonal noise transition matrix T, and consequently the

3https://github.com/google-research/tensorflow_constrained_optimization

https://github.com/google-research/tensorflow_constrained_optimization
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Table 6: Data Statistics for different problem setups in Section 7.

Problem Setup Dataset #Classes #Features train / val / test split
Indepen. Label Noise (Section 7.1) CIFAR-10 10 32 × 32 × 3 49K / 1K / 10K
Proxy-Label (Section 7.2) Adult 2 101 32K / 350 / 16K
Domain-Shift (Section 7.3) Adience 2 256 × 256 × 3 12K / 800 / 3K
Black-Box Fairness Metric (Section 7.4) Adult 2 (2 prot. groups) 106 32K / 1.5K / 14K

corrected training objective is a linear function of the entire confusion matrix. Indeed, the loss correction approach
from (Patrini et al., 2017) makes use of the estimate of the entire noise-transition matrix, including the off-diagonal
entries. Whereas, our approach in the experiment elicits weights for the diagonal entries alone, but assigns a different
set of weights for each basis function, i.e., cluster. We are thus able to achieve better performance than Patrini et al.
(2017) by optimizing correcting for the noise using a linear function of per-cluster diagonal entries. Indeed, we also
observed that PI-EW often achieves better accuracy during cross-validation with ten basis functions, highlighting the
benefit of underlying modeling in PI-EW. We expect to get further improvements by incorporating off-diagonal entries
in PI-EW optimization on the training side as explained in Appendix A. We also stress that the results from our methods
can be further improved by cross-validating over kernel width, UMAP dimensions, and selection of the cluster centers,
which are currently set to fixed values in our experiments. Lastly, we did not compare to the Adaptive Surrogates (Jiang
et al., 2020) for this experiment as this baseline requires to re-train the ResNet model in every iteration, and more
importantly, this method constructs its probing classifiers by perturbing the parameters of the ResNet model several
times in each iteration, which can be prohibitively expensive in practice.

• Maximizing G-mean with Proxy Labels on Adult (Section 7.2): In this experiment, we use binary features as basis
functions instead of RBF kernels as done in CIFAR-10 experiment. This reflects the flexibility of the proposed PI-EW
and FW-EG methods. Our approach can incorporate any indicator features as basis function as long as it reflects cluster
memberships. Moreover, our choice of basis function was motivated from choices made in (Jiang et al., 2020). We
expect to further improve our results by incorporating more binary features as basis functions.

• Maximizing F-measure under Domain Shift on Adience (Section 7.3): As mentioned in Section 7.3, for the basis
functions, in addition to the default basis φdef(x) = 1∀x, we choose from subsets of six basis functions φ1, . . . , φ6 that
are averages of the RBFs, centered at points from the validation set corresponding to each one of the six age-gender
combinations. We choose these subsets using knowledge of the underlying image classification task. Specifically,
besides the default basis function, we cross-validate over three subsets of basis functions. The first subset comprises
two basis functions, where the basis functions are averages of the RBF kernels with cluster centers belonging to the
two true class. The second subset comprises three basis functions, where the basis functions are averages of the RBF
kernels with cluster centers belonging to the three age-buckets. The third subset comprises six basis functions, where
the basis functions are averages of the RBF kernels with cluster centers belonging to the combination of true class ×
age-bucket. We expect to further improve our results by cross-validating over kernel width and selection of the cluster
centers. Lastly, we did not compare to Adaptive Surrogates, as this experiment again requires training a deep neural
network model, and perturbing or retraining the model in each iteration can be prohibitively expensive in practice.

• Maximizing Black-box Fairness Metric on Adult (Section 7.4): In this experiment, since we treat the metric as a
black-box, we do not assume access to gradients and thus do not run the [ψ known] variant of FW-EG. We only report
the [ψ unknown] variant of FW-EG with varied basis functions as shown in Table 5.

• In Table 7, we replicate the “Macro F-measure” experiment (without noise) from Section 6.2 in (Jiang et al., 2020) and
report results of maximizing the macro F-measure on Adult, COMPAS and Default datasets. We see that our approach
yields notable gains on two out of the three datasets in comparison to Adaptive Surrogates approach (Jiang et al., 2020).

Table 7: Test macro F-measure for the maximization task in Section 6.2 of Jiang et al. (2020).

↓ Data, Method→ Adaptive Surrogates (Jiang et al., 2020) FW-EG
COMPAS 0.629 0.652

Adult 0.665 0.670
Default 0.533 0.536


