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Supplementary material for “Multiplicative Noise and Heavy Tails in
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A. Random linear recurrence relations
Here, we shall discuss existing theory concerning the random linear recurrence relation Wk`1 “ AkWk ` Bk that arises
in (5). Because pAk, Bkq for each k “ 0, 1, 2, . . . is independent and identically distributed, we let pA,Bq “ pA0, B0q,
noting that pA,Bq D

“ pAk, Bkq for all k. First, we state conditions under which (5) yields an ergodic Markov chain. For
clarity, we recall the definition of ergodicity in Markov chains (Meyn & Tweedie, 2012, Theorem 13.0.1 and 16.2.1).
Definition 1 (Ergodicity and Geometric Ergodicity). A Markov chain tWku

8
k“0 on Rd is ergodic if there exists a unique

invariant probability measure (a stationary distribution) π such that for any x P Rd,

sup
E
|PpWk P E|W0 “ xq ´ πpEq| Ñ 0, as k Ñ8,

where the supremum is taken over all Borel subsets of Rd. The Markov chain is also geometrically ergodic if there exist
constants R ą 0 and ρ ă 1 such that for any x P Rd and Borel set E,

|PpWk P E|W0 “ xq ´ πpEq| ď Rρk, for all k “ 0, 1, . . .

The following lemma combines Buraczewski et al. (2016, Theorem 4.1.4 and Proposition 4.2.1) and implies Lemma 1.
Lemma 4. Suppose that A and B are non-deterministic and both log` }A} and log` }B} are integrable. Then if
E log }A} ă 0, the Markov chain (5) has a unique stationary distribution. If also either A or B is non-atomic, then
the Markov chain (5) is ergodic.

The intuition behind the presence of heavy-tailed behaviour is easily derived from the Breiman lemma concerning regularly
varying random vectors. Recall that a random vector X is regularly varying if there exists a measure µX with zero mass at
infinity such that

lim
xÑ8

Ppx´1X P Bq

Pp}X} ą xq
“ µXpBq, for any set B satisfying µpBBq “ 0. (9)

By Karamata’s characterization theorem (Bingham et al., 1989, Theorem 1.4.1), for any regularly varying random vector
X , there exists an α ą 0 such that xαPpx´1X P ¨q converges as x Ñ 8 to a non-null measure. In particular, }X} and
|xu,Xy| for every u P Rd obey a power law with tail exponent α subject to slowly varying functions1 L, Lu:

Pp}X} ą xq „ Lpxqx´α, Pp|xu,Xy| ą xq „ Lupxqx
´α. (10)

A random vector X satisfying (9) and (10) is said to be regularly varying with index α (abbreviated α-RV). Key to the
universality of power laws is a certain closure property of α-RV random variables. This may be viewed analogously to the
closure of Gaussian distributions under linear operations and its importance in the central limit theorem. The following is
due to Buraczewski et al. (2016, Lemma C.3.1).
Lemma 5 (BREIMAN’S LEMMA). Let X be an α-RV random vector, A a random matrix such that2 E}A}α`ε ă `8, and
B a random vector such that Pp}B} ą xq “ opPp}X} ą xqq as xÑ8. Then AX `B is α-RV.

In other words, the index of regular variation is preserved under random linear operations, and so regularly varying random
vectors are distributional fixed points of random linear recurrence relations. Conditions for the converse statement are well-
known in the literature (Buraczewski et al., 2016). Here, we provide brief expositions of the three primary regimes dictating
the tails of any stationary distribution of (5). It is worth noting that other corner cases do exist, including super-heavy tails
(see Buraczewski et al. (2016, Section 5.5) for example), but are outside the scope of this paper.

1Recall that a function f is slowly varying if fptxq{fpxq Ñ 1 as }x} Ñ 8, for any t ą 0.
2For example, A could be β-RV with β ą α.
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A.1. The Goldie–Grübel (light-tailed) regime

To start, consider the case where neither A nor B are heavy-tailed and the stochastic optimization dynamics are such that
W8 is light-tailed. In particular, assume that all moments of B are finite. By applying the triangle inequality to (5), one
immediately finds

}Wk`1} ď }Ak}}Wk} ` }Bk}, and }Wk`1}α ď }A}α}Wk}α ` }B}α.

Therefore, if }A} ď 1 almost surely and Pp}A} ă 1q ą 0, then for any α ě 1, }A}α ă 1 and so }Wk}α is bounded in
k. The Markov chain (5) is clearly ergodic, and the existence of all moments suggests that the limiting distribution W8 of
Wk cannot satisfy a power law. With significant effort, one can show that more is true: Goldie & Grübel (1996, Theorem
2.1) proved that if B is also light-tailed, then W8 is light-tailed. To our knowledge, this is the only setting where one
can prove that the Markov chain (5) possesses a light-tailed limiting distribution, and it requires contraction (and therefore,
consistent linear convergence) at every step, with probability one. In the stochastic optimization setting, the Goldie–Grübel
regime coincides with optimizers that have purely exploitative (no explorative) behaviour. Should the chain fail to contract
even once, we move outside of this regime and enter the territory of heavy-tailed stationary distributions.

A.2. The Kesten–Goldie (heavy-tailed due to intrinsic factors) regime

Next, consider the case where neither A nor B are heavy-tailed, but the stochastic optimization dynamics are such that
W8 is heavy-tailed. To consider a lower bound, recall that the smallest singular value of A, σminpAq, satisfies σminpAq “
inf}w}“1 }Aw}. Therefore, once again from (5),

}Wk`1} ě σminpAkq}Wk} ´ }Bk}, and }Wk`1}α ě }σminpAq}α}Wk}α ´ }B}α.

Assuming that the Markov chain (5) is ergodic with limiting distribution W8, by the f -norm ergodic theorem (Meyn &
Tweedie, 2012, Theorem 14.0.1), }W8}α is finite if and only if }Wk}α is bounded in k for any initial W0. However, if
PpσminpAq ą 1q ą 0, then there exists some α ą 1 such that }σminpAq}α ą 1. If }B}α is finite, then }Wk}α is unbounded
when }W0}α is sufficiently large, implying that W8 is heavy-tailed.

This suggests that the tails of the distribution of }W8} are at least as heavy as a power law. To show they are dictated
precisely by a power law, that is, W8 is α-RV for some α ą 0, is more challenging. The following theorem is a direct
corollary of the Kesten’s celebrated theorem (Kesten, 1973, Theorem 6), and Goldie’s generalizations thereof in Goldie
(1991).

Theorem 2 (KESTEN–GOLDIE THEOREM). Assume the following:

• The Markov chain (5) is ergodic with W8 “ limkÑ8Wk (in distribution).

• The distribution ofX has absolutely continuous component with respect to Lebesgue density that has support containing
the zero matrix, and Y is non-zero with positive probability.

• There exists s ą 0 such that EσminpAq
s “ 1.

• A is almost surely invertible and Er}A}s log` }A}s ` Er}A}s log` }A´1}s ă 8.

• E}B}s ă 8.

Then W8 is α-RV for some 0 ă α ď s. Furthermore, α uniquely satisfies limkÑ8 }Ak ¨ ¨ ¨A0}
1{k
α “ 1.

A.3. The Grincevičius–Grey (heavy-tailed due to extrinsic factors) regime

Finally, consider the case where B is heavy-tailed, in particular, that B is β-RV. If }A}β ă 1, then the arguments seen in
the Kesten–Goldie regime can no longer hold, since }B}α would be infinite for any α such that }σminpAq}α “ 1. Instead,
by Buraczewski et al. (2016, Theorem 4.4.24), a limiting distribution of (5) is necessarily β-RV, provided that }A}β`δ is
finite for some δ ą 0. This was proved in the univariate case by Grincevičius (1975, Theorem 1), later updated by Grey
(1994) to include the converse result: if the limiting distribution of (5) is β-RV and }A}β ă 1, then B is β-RV.
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Contrary to the Kesten–Goldie regime, here neither A nor the recursion itself play much of a role. The optimization
procedure itself is fairly irrelevant: from Breiman’s lemma, the distribution of Wk is heavy-tailed after only the first
iteration, and the tail exponent remains constant, i.e., W8 is heavy-tailed. Therefore, in the Grincevičius–Grey regime, the
dynamics of the stochastic optimization are dominated by extrinsic factors.

B. The effect of dimension under the Wishart+Wigner model
At full generality, it is impossible to directly assess the effect of increasing dimension on the tail exponent of the stationary
distribution. This is true even in the linear case (5), as the spectral distribution of the multiplicative factorAk (and hence the
tail exponent, itself) is not wholly dependent on the dimension. Therefore, to investigate relative dependence on dimension,
some assumptions are necessary.

Focusing exclusively on SGD, from (7a), it will suffice to assume the form of the spectral distribution of the Hessian
H “ ∇2`pw,Xq. For neural network models, one natural approximation of this distribution can be found in Pennington
& Bahri (2017). Here, the Hessian decomposes into two pieces: a positive-semidefinite matrix H0 “ JJJ, where J is a
Jacobian matrix; and a matrix of second derivatives H1. Both J and H1 are assumed to be comprised of weakly dependent
entries, in line with universality laws for random matrices. Letting n denote the “effective size” of the data set (the product
of the number of classes with the batch size), and p the dimension of the weights w, the spectral distribution of H0 is
naturally modelled in the large n, p regime by the Marchenko–Pastur distribution:

ρMPpλq “

ˆ

1´
n

p

˙

`

δpλq `
n

2πλσp

a

pλ´ λ´qpλ` ´ λq, for λ P rλ´, λ`s,

where σ2 is the variance of the entries of J , λ˘ “ σp1 ˘
a

p{nq2 and δpλq is the Dirac delta distribution at the origin.
On the other hand, under the same large n, p regime, the spectral distribution of H1 can be modelled by the Wigner
semicircle law:

ρSCpλq “
1

2πσ2

a

4σ2 ´ λ2, for |λ| ď 2σ.

The spectral distribution of the sum of these two random matrices can be derived using the R transform — for further
details, see Pennington & Bahri (2017, §4.1).

To simplify matters, we shall focus on the underparameterized setting, where p ă n, and hence, H0 is non-singular. Under
the Wishart+Wigner model, only the Wishart component involves the dimension p, so we restrict our attention to that. If the
step size γ is sufficiently small (this also helps to ensure ergodicity of the SGD Markov chain model), the smallest singular
value of I ´ γH will decrease as the support of the Marchenko–Pastur distribution shifts towards the origin. Keeping all
else constant, this occurs when p is increased. Hence, kΨ is expected to grow with the dimension, and so the tail exponent
should decrease (revealing heavier tails).

Unfortunately, the situation becomes more complicated in the overparameterized setting p ą n, although we conjecture
that the same relationship holds as p{n becomes large. Ignoring the spectrum at zero (which might be justified through
a similar trick to that seen in the proof of Lemma 2), once p{n becomes sufficiently large, the spectrum of I ´ γH will
be entirely negative. Beyond this point, kΨ grows with the eigenvalue gap in the Marchenko–Pastur distribution, and
hence, with the dimension. Nevertheless, a rigorous proof of this relationship remains an open problem, and the subject of
future work.

C. Numerical examinations of heavy tails
Power laws are notoriously treacherous to investigate empirically (Clauset et al., 2009), especially in higher dimensions
(Panigrahi et al., 2019), and this plays a significant role in our focus on establishing mathematical theory. Nevertheless,
due to the mystique surrounding heavy tails and our discussion in §4 concerning the impact of various factors on the tail
exponent being predominantly informal, we also recognize the value of empirical confirmation. Here, we shall conduct a
few numerical examinations to complement our main discussion. For further empirical analyses concerning non-Gaussian
fluctuations in stochastic optimization, we refer to (Şimşekli et al., 2019; Panigrahi et al., 2019).

As a quick illustration, in Figure 4, we contrast tail behaviour in the stationary distributions of the Markov chains induced
by optimizers (a) (additive) and (c) (multiplicative) introduced in §5. Three different step sizes are used, with constant
σ “ 10. To exacerbate multimodality in the stationary distribution, we consider an objective f with derivative f 1pxq “
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Figure 4: Estimated stationary distributions for optimizers (a) and (c) applied to a non-convex objective f with derivative
f 1pxq “ xp1´ 4 cosp2xqq, over varying step sizes γ.
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Figure 5: (Left) A trace plot of 107 iterations of (11) and (right) a corresponding probability density estimate of their
absolute values, with exponential, log-normal fits, and the power law predicted by Theorem 2.

xp1´ 4 cosp2xqq, visualized in the upper part of Figure 4. Accurately visualizing the stationary distribution, especially its
tails, is challenging: to do so, we apply a low bandwidth kernel density estimate to 109 steps. As expected, multiplicative
noise exhibits slowly decaying heavy tails in contrast to the rapidly decaying Gaussian tails seen with additive light noise.
Furthermore, the heaviness of the tails increases with the step size.

To estimate the power law from empirically obtained data, in the sequel, we shall make use of the powerlaw Python
package (Alstott & Bullmore, 2014), which applies a combination of maximum likelihood estimation and Kolmogorov-
Smirnov techniques (see (Clauset et al., 2009)) to fit a Pareto distribution to data. Recall that a Pareto distribution has
density pptq “ βtβmint

´β for t ě tmin, where tmin is the scale parameter (that is, where the power law in the tail begins),
and β is the tail exponent in the density. Note that this β is related to our definition of the tail exponent α by α “ β ´ 1.
Unbiased estimates of this tail exponent α obtained from the powerlaw package will be denoted by α̂.

C.1. The linear case with SGD

Let us reconsider the simple case discussed in §3 and illustrate power laws arising from SGD on ridge regression. As a
particularly simple illustration, first consider the one-dimensional case of (5) with n “ 1, γ “ 1

2 , λ “ 0, and standard
normal synthetic data. The resulting Markov chain is

Wk`1 “ p1´
1
2X

2
kqWk ´

1
2XkYk, (11)

where Xk, Yk
iid
„ N p0, 1q. Starting from W0 “ 0, Figure 5 shows a trace plot of 107 iterations of (11). One can observe

the sporadic spikes that are indicative of heavy-tailed fluctuations. Also in Figure 5 is an approximation of the probability
density of magnitudes of the iterations. Both exponential and log-normal fits are obtained via maximum likelihood estima-
tion and compared with the power law predicted from Theorem 2 (α « 2.90). Visually, the power law certainly provides
the best fit. Using the Python package powerlaw, a Pareto-distribution was fitted to the iterations. The theoretical tail
exponent falls within the 95% confidence interval for the estimated tail exponent: α̂ “ 2.95 ˘ 0.06. However, even for
this simple case where the stationary distribution is known to exhibit a power law and a significant number of samples are
available, a likelihood ratio test was found incapable of refuting a Kolmogorov-Smirnov lognormal fit to the tail.

As the dimension increases, the upper bound on the power law from Theorem 2 becomes increasingly less tight. To see
this, we conduct least-squares linear regression to the Wine Quality data set (Cortez et al., 2009) (12 attributes; 4898
instances) using vanilla SGD with step size γ “ 0.3, L2 regularization parameter λ “ 4, and minibatch size n “ 1. These
parameters are so chosen to ensure that the resulting sequence of iterates satisfying (5) is just barely ergodic, and exhibits
a profoundly heavy tail. Starting from standard normal W0, Figure 6 shows a trace plot of 2.5 million iterations, together
with an approximation of the probability density of magnitudes of the iterations. A Pareto-distribution fit obtained using
the powerlaw package is also drawn and can be seen to be an excellent match to the data; the corresponding estimated
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Figure 6: (Left) A trace plot of 2, 500, 000 iterations of (5) for the Wine Quality data set and (right) a corresponding
probability density estimate of their norms, with fitted Pareto distribution.

tail exponent is α̂ « 0.446˘ 0.008 to 95% confidence. However, applying Theorem 2 to the chain formed from every 12
iterations reveals a much larger upper bound on the tail exponent: α ď 22.

C.2. Factors influencing tail exponents

To help support the claims in §4 concerning the influence of factors on tail exponents, we conducted least-squares regression
to the Wine Quality data set (Cortez et al., 2009) (12 attributes; 4898 instances) using a two-layer neural network with four
hidden units and ReLU activation function. Our baseline stochastic optimizer is vanilla SGD with a constant step size
of γ “ 0.025, minibatch size n “ 1, and L2 regularization parameter λ “ 10´4. The effect of changing each of
these hyperparameters individually was examined. Three other factors were also considered: (i) the effect of smoothing
input data by adding Gaussian noise with standard deviation ε; (ii) the effect of adding momentum (and increasing this
hyperparameter); and (iii) changing the optimizer between SGD, Adagrad, Adam, and subsampled Newton (SSN).

In each case, we ran the stochastic optimizer for 500n epochs (roughly 2.5 million iterations). Instead of directly measuring
norms of the weights, we prefer to look at norms of the steps Wk`1´Wk. There are two reasons for this: (1) unlike steps,
the mode of the stationary distribution of the norms of the weights will not be close to zero, incurring a significant challenge
to the estimation of tail exponents; and (2) if steps at stationarity are heavy-tailed in the sense of having infinite αth moment,
then the stationary distribution of the norms of the weights will have infinite αth moment also. This is due to the triangle
inequality: assuming tWku

8
k“1 is ergodic with Wk

D
Ñ W8, }W8}α ě

1
2 lim supkÑ8 }Wk`1 ´Wk}α. Density estimates

for the steps of each run, varying each factor individually, are displayed in Figure 7. Using the powerlaw package,
tail exponents were estimated in each case, and are presented in Table 1 as 95% confidence intervals. As expected,
both increasing step size and decreasing minibatch size can be seen to decrease tail exponents, resulting in heavier tails.
Unfortunately, the situation is not as clear for the other factors; from Figure 7, we can see that this is possibly due in
part to the unique shapes of the distributions, preventing effective estimates of the scale parameter, upon which the tail
exponent (and its confidence intervals) are dependent. Nevertheless, there are a few comments that we can make. Firstly,
the inclusion of momentum does not seem to prohibit heavy-tailed behaviour, even though the theory breaks down in these
cases. On the other hand, as can be seen in Figure 7, Adam appears to exhibit very light tails compared to other optimizers.
Adagrad exhibits heavy-tailed behaviour despite taking smaller steps on average. SSN shows the strongest heavy-tailed
behaviour among all the stochastic optimizers considered. Increasing L2 regularization does increase variance of the steps,
but does not appear to make a significant difference to the tails in this test case. Similarly, the effect of adding noise to
the data is unclear, although our claim that increasing dispersion of the data (which the addition of large amounts of noise
would certainly do) results in heavier-tailed behaviour, is supported by the ε “ 1 case.
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Figure 7: Density estimates of the distributions of norms of steps in roughly 2.5 million stochastic optimization iterations.
Baseline hyperparameters are a step size of γ “ 0.025, minibatch size n “ 1, L2 regularization parameter λ “ 10´4, no
Gaussian perturbations to input data (ε “ 0), and using SGD with momentum parameter η “ 0. Each plot varies only
one of these parameters. For the last plot (bottom right), the Adagrad, Adam, and SSN optimizers are considered in place
of SGD, again using the same baseline hyperparameters (and β1 “ 0.9, β2 “ 0.999 for Adam). Darker colours indicate
smaller estimated tail exponents and heavier tails (from Table 1).
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step size minibatch size L2 regularization data smoothing
γ α̂ n α̂ λ α̂ ε α̂

0.001 4.12 ˘ 0.04 10 5.99 ˘ 0.05 10´4 2.97 ˘ 0.03 0 2.97 ˘ 0.03
0.005 3.70 ˘ 0.02 5 4.98 ˘ 0.07 0.01 3.02 ˘ 0.02 0.1 2.96 ˘ 0.05
0.01 3.71 ˘ 0.04 2 3.62 ˘ 0.03 0.1 2.77 ˘ 0.01 0.5 3.05 ˘ 0.02

0.025 2.97 ˘ 0.03 1 2.97 ˘ 0.03 0.2 2.55 ˘ 0.01 1 2.36 ˘ 0.13
momentum optimizer

η α̂ α̂
0.5 4.99 ˘ 0.03 Adagrad 3.2 ˘ 0.1

0.25 2.48 ˘ 0.02 Adam 2.119 ˘ 0.005
0.1 2.84 ˘ 0.02 SGD 2.93 ˘ 0.03
0 2.93 ˘ 0.03 SSN 0.79 ˘ 0.04

Table 1: Estimated tail exponents for the distributions of norms of steps in roughly 2.5 million stochastic optimization
iterations, varying only one hyperparameter from a baseline step size γ “ 0.025, minibatch size n “ 1, L2 regularization
parameter λ “ 10´4, no Gaussian perturbations to input data (ε “ 0), using SGD with momentum parameter η “ 0.
The Adagrad, Adam, and SSN optimizers are also considered, using the same baseline hyperparameters (and β1 “ 0.9,
β2 “ 0.999 for Adam).

C.3. Implementation details for the ResNet experiment

Four wide ResNet architectures were considered without batch normalization: resnet9, resnet18, resnet34, and
resnet68. Each model was first pretrained on (normalized) CIFAR10 (Krizhevsky & Hinton, 2009) with cross-entropy
loss for 200 epochs using SGD with batch size n “ 64, weight decay λ “ 5 ˆ 10´4, momentum parameter η “ 0.9, and
a cosine annealing step size schedule with a period of 200 epochs, starting with a step size of γ “ 0.1. Minibatches are
randomly shuffled at each epoch. After training, five epochs worth of iterations of SGD without momentum are performed
with a batch size of n “ 16, weight decay λ “ 5 ˆ 10´4, and a constant step size of γ “ 5 ˆ 10´4. Once again,
minibatches are randomly shuffled at each epoch. The norm of the difference in the weights wk`1 ´ wk between each
iteration is recorded. These norms are presented as histograms in each subplot of Figure 3. As in the previous section, the
powerlaw package was used to obtain estimates of the tail exponents for each of the SGD step distributions.

D. Proofs
Proof of Lemma 2. Observe that X̄k “ n´1

řn
i“1XikX

J
ik has full support on the space of square d ˆ d matrices when

n ě d, and full support on rank-n d ˆ d matrices otherwise. In the former (over)determined case, the spectrum of X̄k

has full support on R, implying that σminpAkq has full support on r0,8q, and hence the stationary distribution of (5)
decays as a power law by Theorem 2. The latter underdetermined case is not so straightforward: while σmaxpAkq still
has full support on r0,8q, σminpAkq ď |1 ´ λγ| almost surely. This is because zero is contained within the spectrum of
γn´1

řn
i“1XikX

J
ik, implying 1´ λγ is always contained in the spectrum of Ak. This is insufficient to prove the result if

λ, γ are sufficiently small. Instead, observe that the Markov chain that arises from taking d steps is also a random linear
recurrence relation with the same stationary distribution as (5):

Wk`d “ A
pdq
k Wk `B

pdq
k , where A

pdq
k “ Ak`d ¨ ¨ ¨Ak, B

pdq
k “

d´1
ÿ

l“0

Ak`d´1 ¨ ¨ ¨Ak`l`1Bk`l.

One may verify that Apdqk has full support on the space of all square dˆ d matrices, and hence, σminpA
pdq
k q has full support

on r0,8q. Indeed, for any c ą 0, one could take X1,k`j “
?
cej where ej is the unit vector with 1 in the j-th coordinate,

and Xi,k`j “ 0 for i ą 1. In this case,

A
pdq
k “ p1´ λγqI ´

d
ÿ

j“1

γn´1ceje
J
j “ p1´ λγ ´ γn

´1cqI,

implying that σminpA
pdq
k q “ |1 ´ λγ ´ γn´1c|. Choosing c appropriately, σminpA

pdq
k q can be made to take any value in

r0,8q. Full support for the distribution of σminpA
pdq
k q then follows from this special case by continuity of eigenvalues
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(Bhatia, 2013, Corollary VI.1.6). Hence, by Theorem 2, (5) will exhibit a stationary distribution with heavy tails.

Before proceeding to the proofs of results in Section 4, we shall recall a few essential results from the literature on ergodic
Markov chains. In the sequel, we let pS, } ¨ }q be a separable Banach space and Ψ : S ˆ Ω Ñ S a random function on S.
Whenever Ψ is assumed to be almost surely Lipschitz continuous, we let KΨ denote the random variable such that KΨpωq
is the Lipschitz constant of Ψp¨, ωq for each ω P Ω. Our focus is the Markov chain Wk`1 “ ΨkpWkq, k “ 0, 1, . . . ,
where each Ψk is an independent and identically distributed copy of Ψ. This is known as an iterated function system
(IFS) corresponding to Ψ. First, we have the following geometric ergodicity result for Lipschitz IFS, which follows by
combining Alsmeyer (2003, Theorems 2.1 & 3.2). See also Diaconis & Freedman (1999, Theorem 1.1) for a slightly
different formulation.

Theorem 3 (Geometric Ergodicity of Lipschitz IFS). Assume that Ψ is a.s. Lipschitz and has probability measure with
a positively supported absolutely continuous component with respect to a σ-finite non-null probability measure on S. If
KΨ and }Ψpwq ´ w} are integrable for some w˚ P S, and E logKΨ ă 0, then tWku

8
k“0 is geometrically ergodic. In

particular, there exists η P p0, 1q and an invariant measure π of tWku such that for fpwq “ 1` }w ´ w˚}η ,

8
ÿ

n“0

r´n sup
|g|ďf

ˇ

ˇ

ˇ

ˇ

ErgpWkq|W0 “ ws ´

ż

gpwqdπpwq

ˇ

ˇ

ˇ

ˇ

ă 8,

for all w P S and some r P p0, 1q not depending on w.

Next is Letac’s principle, which asserts the intuitive fact that any limit of a continuous IFS must satisfy a distributional
fixed point. The version shown here is that seen in Goldie (1991, Theorem 2.1).

Theorem 4 (Letac’s Principle). Assume Ψ is a.s. continuous and that W8 “ limkÑ8Wk exists almost surely and is
independent of W0. Then the law of W8 satisfies the distributional fixed point equation W8

D
“ ΨpW8q.

Last is the f -norm ergodic theorem, which provides arguably the most useful tool for us. Here, we present only the parts
of the result seen in Meyn & Tweedie (2012, Theorem 14.0.1) that will be useful to us.

Theorem 5 (f -Norm Ergodic Theorem). Suppose that a Markov chain tWku
8
k“0 is geometrically ergodic. Let W8 be

a random variable with law given by the limiting distribution of tWku
8
k“0. If fpW8q is integrable, then EfpWkq Ñ

EfpW8q ă 8. Equivalently, if EfpWkq is unbounded, then fpW8q is not integrable.

For the general case, our strategy is to prove that, for some α ą 0, E|fpWkq|
α diverges as k Ñ 8. If we assume that W

is ergodic with limiting distribution W8, then the f -norm ergodic theorem implies that E|fpWkq|
α converges if and only

if E|fpW8q|
α is finite, hence the divergence of E|fpWkq|

α implies |fpW8q| has infinite α-th moment. In particular, here
is the proof of Lemma 3.

Proof of Lemma 3. It suffices to show that }fpW8q}β “ `8 for any β ą α, where

α :“ inf
εą0

1

logp1` εq

ˇ

ˇ

ˇ

ˇ

log inf
wPS

P
ˆ

|fpΨpwqq|

|fpwq|
ą 1` ε

˙
ˇ

ˇ

ˇ

ˇ

.

Let ε ą 0 be arbitrary. For w P S, let Eεpwq be the event that |fpΨpwqq| ą p1 ` εq|fpwq|. Also, let pε “
infwPS PpEεpwqq ą 0 from the hypotheses. Since Ψ is independent of Wk, by laws of conditional expectation, for
any β ą 0,

}fpWk`1q}
β
β “ ErEr|fpWk`1q|

β |Wkss

ě ErPpEεpWkq|WkqEr|fpWk`1q|
β |Wk, EεpWkqss

ě ErPpEεpWkq|Wkqp1` εq
α|fpWkq|

βs

ě pεp1` εq
β}fpWkq}

β
β .

For any β ą α, pεp1 ` εqβ ą 1, and hence }fpWkq}β diverges as k Ñ 8. By the f -norm ergodic theorem, |fpW8q|
β

cannot be integrable; if it were, then }fpWkq}β would converge to }fpW8q}β ă `8.
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The arguments of (Alsmeyer, 2016) almost imply Theorem 1, but are incompatible with the conditions that MΨ is non-
negative, and kΨ can be zero. Instead, more subtle arguments are required; for these, we draw inspiration from (Goldie,
1991; Goldie & Grübel, 1996).

Proof of Theorem 1. From Theorem 3, geometric ergodicity of tWku
8
k“0 is immediate. Similarly, Letac’s principle implies

that W8 satisfies the distributional fixed point equation W8
D
“ ΨpW8q.

We shall begin by proving (2). Recall that3 log x “ limsÑ0` s
´1pxs ´ 1q, and so

lim
sÑ0`

EKs
Ψ ´ 1

s
“ E logKΨ ă 0.

Therefore, there exists some s ą 0 such that }KΨ}s ă 1. Using Hölder’s inequality, one finds that }KΨ}β´ε ă 1 for any
ε ą 0. Likewise, since KΨ ă 1 with positive probability, kΨ ă 1 with positive probability also. Since both kΨ ă 1 and
kΨ ą 1 occur with positive probability, there exists r ą 0 such that }kΨ}r ą 1, and so }kΨ}α`ε ą 1 for any ε ą 0. We
now consider similar arguments to the proof of Lemma 3. Since tWku

8
k“0 is geometrically ergodic, by the f -norm ergodic

theorem, for any γ ą 0, }W8}γ is finite if and only if }Wk}γ is bounded in k. Letting 0 ă ε ă δ, for each k “ 0, 1, . . . ,

}Wk`1}β´ε ď }KΨ}β´ε}Wk}β´ε ` }KΨ}β´ε}w
˚} ` }Ψpw˚q}β´ε.

Note that β ă α, since kΨ ď KΨ almost surely. Therefore, }Ψpw˚q}β´ε ă 8, and since }KΨ}β´ε ă 1, }Wk}β´ε is
bounded and }W8}β´ε is finite. By Markov’s inequality, Pp}W8} ą tq ď }W8}

β´ε
β´εt

´β`ε for all t ą 0. On the other
hand, for each k “ 0, 1, . . . ,

}Wk`1}α` 1
2 ε
ě }kΨ}α` 1

2 ε
}Wk}α` 1

2 ε
´ }kΨ}α` 1

2 ε
}w˚} ´ }Ψpw˚q}α` 1

2 ε
,

and so }W8}α` 1
2 ε

is necessarily infinite. By Fubini’s theorem,

}W8}
α` 1

2 ε

α` 1
2 ε
“ pα` 1

2εq

ż 8

0

tα`
1
2 ε´1Pp}W8} ą tqdt.

Therefore, we cannot have that lim suptÑ8 t
α`εPp}W8} ą tq “ 0, since this would imply

}W8}
α` 1

2 ε

α` 1
2 ε
ď pα` 1

2εq

ż 8

0

t´1´ 1
2 εdt ă `8,

and hence lim suptÑ8 t
α`εPp}W8} ą tq ą 0. Repeating these arguments for p in place of β ´ ε and α ` 1

2ε implies
statement (3).

Turning now to a proof of (1), since we have already shown the upper bound, it remains to show that Pp}W8} ą tq “
Ωpt´µq for some µ ą 0; by Lemma 6 this implies the claimed lower bound. We shall achieve this with the aid of
Lemmas 7, 8, and 9. First, since PpkΨ ą 1q ą 0 and x ÞÑ PpX ą xq is right-continuous, there exists ε ą 0 such that
PpkΨ ą p1 ` εq2q ą 0. In the sequel, we let Cα,ε denote a constant dependent only on α, ε, not necessarily the same on
each appearance. We may perform the following sequence of steps:

}Wk`1}
α ě p1` εq´αp}Wk`1} ` }Ψpw

˚q}qα ´ Cα,ε}Ψpw
˚q}α (12)

ě p1` εq´α}Wk`1 ´Ψpw˚q}α ´ Cα,ε}Ψpw
˚q}α (13)

ě p1` εq´αpkΨ}Wk} ´ kΨ}w
˚} ´MΨq

α
` ´ Cα,ε}Ψpw

˚q}α (14)

ě p1` εq´2αkαΨ}Wk}
α ´ Cα,εpp1` εq

´αpkΨ}w
˚} `MΨq

α ` }Ψpw˚q}αq (15)

Inequality (12) follows from the first inequality of Lemma 7 with z “ }Wk`1} and y “ }Ψpw˚q}, while (13) follows from
reverse triangle inequality. The next inequality (14) involves the assumption (6), followed by an application of the reverse
triangle inequality. Finally, (15) follows from an application of the second inequality of Lemma 7 with x “ kΨ}Wk} and

3This is readily shown using L’Hôpital’s rule.
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y “ kΨ}w
˚} `MΨ. To simplify further, let BΨ “ kΨ}w

˚} `MΨ ` }Ψpw
˚q}. Now, bounding the second term of (15)

from above, since p1` εq´α ď 1 and xα ` yα ď px` yqα for α ě 1, there is

}Wk`1}
α ě p1` εq´2αkαΨ}Wk}

α ´ Cα,εB
α
Ψ.

For α ą 1 and k “ 0, 1, . . . , let fαk ptq “ Er}Wk}
α1}Wk}ďts. Then

fαk`1ptq ě ErkαΨp1` εq´2α1t}Wk}ďt{KΨ´}w˚}´}Ψpw˚q}{KΨu}Wk}
αs ´ Cα,εEBαΨ.

Let Ec be the event that mintKΨ, }Ψpw
˚q}u ď c, and take c ą 1 to be some constant sufficiently large so that PpkΨ ą

p1` εq2|Ecq ą 0. We may now choose α ą 1 such that ErkαΨp1` εq´2α|EcsPpEcq “: a ą c. Doing so, we find that

fαk`1pctq ě afkpt´ 1´ }w˚}q ´ Cα,εEBαΨ, for any t ą 0, k ě 0.

This is because, subject to the constraints KΨ ď c and }Ψpw˚q} ď c, the quantity pt ´ }Ψpw˚q}q{KΨ ´ }w
˚} seen in

the indicator is bounded below by t{c ´ 1 ´ }w˚} when t ě c, and is negative if t ă c. By the f -norm ergodic theorem,
fαk ptq Ñ fαptq pointwise as k Ñ8, where fαptq “ Er}W8}

α1}W8}ďts. Therefore,

fαpctq ě afpt´ 1´ }w˚}q ´ Cα,εEBαΨ, for any t ą 0.

By Lemma 8, this implies that there exists some 0 ă γ ă α such that lim inftÑ8 t
´γfαptq ą 0, which from Lemma 9,

implies that Pp}W8} ě tq “ Ωpt´αpα´γq{γq.

Lemma 6. Suppose that PpX ą xq ě Cx´α for all x ě x0. Then there exists c ą 0 such that PpX ą xq ě cp1` xq´α

for all x ě 0.

Proof. Evidently, PpX ą xq ě Cp1` xq´α for x ě x0. Treating the x ď x0 setting, let

C0 “ inf
xďx0

PpX ą xq

p1` xqα
.

Assume C0 “ 0. Since p1 ` xqα is bounded for all x ě 0, there exists a sequence txnu8n“1 Ă r0, x0s such that
PpX ą xnq Ñ 0. But since txnu8n“1 is bounded, there exists some subsequence converging to a point x ď x0, which must
satisfy PpX ą xq “ 0, contradicting our hypotheses. Therefore, C0 ‰ 0 and the result is shown for c “ mintC0, Cu.

Lemma 7. For any α ą 1 and ε ą 0, there exists Cα,ε ą 0 such that for any x, y, z ě 0,

zα ě p1` εq´αpy ` zqα ´ Cα,εy
α

px´ yqα` ě p1` εq
´αxα ´ Cα,εy

α.

Proof. The second of these two inequalities follows from the first by taking px ´ yq` “ z. Since the first inequality is
trivially the case when y “ 0, letting ρ “ p1` εqα, it suffices to show that

sup
zě0, yą0

py ` zqα ´ ρzα

ρyα
ă 8.

Equivalently, parameterizing z “ Ly where L ě 0, it suffices that supLě0rp1` Lq
α ´ ρLαs ă 8, which is evidently the

case since p1` L´1qα ´ ρ ă 0 for sufficiently large L ą 0.

Lemma 8. Let fptq be an unbounded non-decreasing function. If there exists some a ě c ą 1 and b, x, t0 ě 0 such that
for t ě t0,

fpctq ě afpt´ xq ´ b, (16)

then lim inftÑ8 t
´γfptq ą 0 for any γ ă log a

log c .
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Proof. First, consider the case x “ 0. Iterating (16), for any n “ 1, 2, . . . , and t ą t0,

fpcntq ě

ˆ

fptq ´
b

a´ 1

˙

an `
b

a´ 1
.

Let t1 be sufficiently large so that t1 ą t0 and fptq ą b
a´1 for all t ą t1. Then for any α ą 0, letting rαs denote the largest

integer less than or equal to α,

fpcαt1q ě

ˆ

fpcα´rαst1q ´
b

a´ 1

˙

arαs `
b

a´ 1
,

ě

ˆ

fpt1q ´
b

a´ 1

˙

aα´1 `
b

a´ 1
.

In particular, by choosing α “ log t´log t1
log c , cαt1 “ t, and so for any t ą t1,

fptq ě a´
log t1
log c ´1

ˆ

fpt1q ´
b

a´ 1

˙

t
log a
log c `

b

a´ 1
.

Now, let t2 be sufficiently large so that t2 ě t1 and

a´
log t1
log c ´1

ˆ

fpt1q ´
b

a´ 1

˙

t
log a
log c

2 ě
b

a´ 1
.

Then for t ě t2 and C “ 2a´
log t1
log c ´1

pfpt1q ´
b

a´1 q, fptq ě Ct
log a
log c , and the result follows. Now, suppose that x ą 0. Let

0 ă ε ă 1 and take t1 “ maxtt0, x{εu so that t´ x ě p1´ εqt for all t ě t1. Then, for all t ě t1,

f

ˆ

c

1´ ε
¨ t

˙

ě afptq ´ b.

If we can show the conclusion for the case where x “ 0, then for γ ă log a
log c ,

lim inf
tÑ8

t´γ¨
log c

log c`| logp1´εq| fptq ą 0.

Since ε ą 0 was arbitrary, the result follows.

Lemma 9. Let X be a non-negative random variable and α ą 0. If there exists some 0 ă γ ă α such that

lim inf
tÑ8

t´γErXα1Xďts ą 0,

then there is some C, t0 ą 0 such that for t ě t0,

PpX ě tq ě Ct´
α
γ pα´γq.

Proof. By taking t to be sufficiently large, there exists c1 ą 0 such that

c1t
γ ď ErXα1Xďts “ α

ż 8

0

ˆ
ż 8

0

1uďtdPXpuq
˙

1vďuv
α´1dv

“ α

ż t

0

Ppv ď X ď tqvα´1dv ď α

ż t

0

PpX ě vqvα´1dv.

On the other hand, observe that for any b, t ą 1,

α

ż bt

0

PpX ě vqvα´1dv ď α

ż t

0

vα´1dv ` αPpX ě tq

ż bt

t

vα´1dv

“ tαr1` PpX ě tqpbα ´ 1qs.

Therefore,
cbγtγ´α ´ 1

bα ´ 1
ď PpX ě tq.

Choosing b “ p2{cqtpα´γq{γ such that cbγtγ´α ´ 1 “ 1, the lemma follows.
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