
Learning Curves for Analysis of Deep Networks: Appendix

A. Implementation Details
We use Pytorch-Lightning (Falcon, 2019) for our implemen-
tation with various architectures, weight initializations, data
augmentation, and linear or fine-tuning optimization.

Training: We train models with images of size 224× 224
for all experiments (to facilitate use of pretrained models)
with a batch size of 64 (except for Wide-ResNet101 and
Wide-ResNeXt101, where we use a batch size of 32 and
performed one optimizer step every two batches). For each
experiment setting, we conduct a learning rate search on
a subset of the training data and choose the learning rate
with the highest validation accuracy, and use it for all other
subsets. We determine each fold’s training schedule on a
mini-train/mini-val split of 2:1 on the train set. Each time
the mini-val error stops decreasing for some epochs (“pa-
tience”), we revert to the best epoch and decrease the learn-
ing rate to 10%, and we perform this twice. Then we use this
optimal mini-train learning rate schedule and ending epoch
to train on the whole fold. The patience is∝ 1/

√
n, and is 5

at the n = 400 samples/class for CIFAR100/Places365 and
15 at the largest training size for other smaller datasets. We
use a weight decay value of 0.0001. We use the Ranger opti-
mizer (Wright, 2019), which combines Rectified Adam (Liu
et al., 2020), Look Ahead (Zhang et al., 2019), and Gradient
Centralization (Yong et al., 2020). In early experiments,
we found Ranger to lead to lower error and to reduce sen-
sitivity of hyperparameters, compared to vanilla SGD or
Adam (Kingma & Ba, 2015).

Backbone Architecture: We use the default Pytorch
implementations of all of the following architectures:
AlexNet (Krizhevsky et al., 2012), ResNet-18, ResNet-
50, ResNet-101 (He et al., 2016), ResNeXt-50, ResNeXt-
100 (Xie et al., 2017), VGG16 BN (Simonyan & Zisserman,
2015), Wide-ResNet-50, and Wide-ResNet-101 (Zagoruyko
& Komodakis, 2016). For each architecture, we modify the
last layer to match the same number of classes as the test
dataset with Kaiming initialization (He et al., 2015).

Number of Training Examples: To compute learning
curves for CIFAR and Places365, we vary the number of
training examples per class, partition the train set, and train
one model per partition. For CIFAR100 (Krizhevsky, 2012),
we use {25, 50, 100, 200, 400} training examples per class,
and the number of models trained for each respectively is
{16, 8, 4, 2, 1}. Similar to (Hestness et al., 2017), we find
training sizes smaller than 25 samples per class are strongly

influenced by bounded error and deviate from our model.
For Places365 dataset, we use {25, 50, 100, 200, 400, 1600}
training examples per class and {16, 8, 4, 3, 3, 1} models
each. For other datasets (Fig. 10), we use {20%, 40%, 80%}
of the full data and train {4, 2, 1} models each. We hold
out 20% of data from the original training set for testing (a
validation set could also be used if available) to discourage
meta-fitting on the test set. For example, we hold out 100
samples per class from the original CIFAR100 training set
and perform hyperparameter selection and training on the
remaining 400 samples.

Pretraining: When pretraining is used, we initialize mod-
els with pretrained weights learned through supervised train-
ing on ImageNet or Places365, or MOCO self-supervised
training on ImageNet (He et al., 2020). Otherwise, weights
are randomly initialized with Kaiming initialization.

Data Augmentation: For CIFAR, we pad by 4 pixels
and use a random 32 × 32 crop (test without augmenta-
tion), and for Places365 we use random-sized crop (Szegedy
et al., 2015) to 224×224 and random flipping (center crop
224×224 test time). For remaining datasets, we follow the
pre-processing in Zhai et al. (2020) that produced the best
results when training from scratch.

Linear vs. Fine-tuning: For “linear”, we only train the
final classification layer, with the other weights frozen to ini-
tialized values. All weights are trained when “fine-tuning”.

B. User’s Guide to Learning Curves
B.1. Uses for Learning Curves

• Comparison: When comparing two learners, measur-
ing the error and data-reliance provides a better under-
standing of the differences than evaluating single-point
error. We compare curves with eN and βN , rather than
directly using the curve parameters, because they are
more stable under data perturbations and do not de-
pend on the parameterization, instead corresponding to
error and rate of change about n = N . The difference
eN − βN can be used as a measure of large-sample
performance.

• Performance extrapolation: A 10x increase in train-
ing data can require a large investment, sometimes
millions of dollars. Learning curves can predict how
much performance will improve with the additional
data to judge whether the investment is worthwhile.



Learning Curves for Analysis of Deep Networks

• Model selection: When much training data is avail-
able, architecture, hyperparameters, and losses can be
designed and selected using a small subset of the data
to minimize the extrapolated error of the full training
set size. Higher-parameter models such as in (Kaplan
et al., 2020) and (Rosenfeld et al., 2020) may be more
useful as a mechanism to simultaneously select scale
parameters and extrapolate performance, though fitting
those models is much more computationally expen-
sive due to the requirement of sampling error/loss at
multiple scales and data sizes.

• Hyperparameter validation: A poor fitting learning
curve (or one with γ far from −0.5) is an indication
of poor choice of hyperparameters, as pointed out by
(Hestness et al., 2017).

B.2. Estimating and Displaying Learning Curves

Use validation set: We recommend computing learning
curves on a validation set, rather than a test set, according
to best practice of performing a single evaluation on the
test set for the final version of the algorithm. All of our
experiments are on a validation set, which is carved from
the official training set if necessary.

Generate at least four data points: In most of our ex-
periments on CIFAR100, we train a 31 models: 1 on 400
images, 2 on 200 images, 4 on 100 images, 8 on 50 images,
and 16 on 25 images. Each trained model provides one data
point, the average validation error. In each case, the training
data is partitioned so that the image sets within the same size
are non-overlapping. Training multiple models at each size
enables estimating the standard deviation for performing
weighted least squares and producing confidence bounds.
However, our experiments indicate that learning curves are
highly stable, so a minimal experiment of training four mod-
els on the full, half, quarter, and eighth-size training set may
be sufficient as part of a standard evaluation. See Fig. 9
It may be necessary to train more models if attempting to
distinguish fine differences.

Set hyperparameters: The learning rate and learning
schedule are key parameters to be set. We have not experi-
mented with changes to weight decay, momentum, or other
hyperparameters.

Fit learning curves: If more than one data point is avail-
able for the same training size, the standard deviation can
be estimated. As described in Sec. 3, we recommend fitting
a model of σ2

i = σ2
0 + σ̂2/n, where σ2

0 . σ2
0 is the variance

due to randomness in initialization and optimization. The
fitting is not highly sensitive to this parameter, so we rec-
ommend setting σ2

0 = 0.01 and fitting σ̂ to observations,
since estimating both from experiments to generate a single
learning curve introduces high variance and instability.

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

α, η, γ, δ (0.16, 0.9, 0.21)

α, η, δ (0.16, 0.54, 0.0)

α, η, γ (0.16, 0.72, 0.05)

α, η (0.15, 0.2, 0.0)

Figure 9: Stability under sparse measurements: Sampled
learning curves for Places365 fine-tuned without pretraining
are shown for four different learning curve parameteriza-
tions. In each case, means and standard deviations (shown
by error bars) are estimated for n = 50, n = 100, n = 200,
n = 400, using all the data points shown as white circles.
Then, 100 times, we sample one point each from a Guas-
sian distribution and fit a learning curve to the four points.
In parantheses, the legend shows the standard deviation of
eN , βN , and γ. Note that the parameterization of {α, η, γ}
extrapolates best to lower and higher data sizes while still
producing stable estimates of eN and βN . Asymptotic error,
however, varies widely.

Display learning curves or parameters: As in this paper,
learning curves can be plotted linearly with the x-axis as
n−0.5 and the y-axis as error. We choose this rather than
log-linear because it reveals prediction of asymptotic error
and yields a linear plot when γ = −0.5. Since space is often
a premium, the learning curve parameters can be displayed
instead, as illustrated in Table 2. Although γ is not useful
for direct comparison, including it enables recovery of α, η,
and γ to plot the original learning curve.

Table 2: Results: model1 and model2 have similar percent
test error when training on the full set. Fitting a learning
curve on the validation set, we see that model2 has higher
data-reliance, so may outperform for larger training sets.
This is a hypothetical example to illustrate use of learning
curves in a table.

eN βN γ

model1 25.3 % 4.6 -0.36
model2 25.2 % 8.4 -0.47



Learning Curves for Analysis of Deep Networks

0
(∞)

0.005
(40000)

0.01
(10000)

0.015
(4445)

0.02
(2500)

0.025
(1600)

0.03
(1112)

0.035
(817)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Caltech101 Pretr; Lin (e10k = 11.18; β10k = 5.45; γ = −0.5)

Caltech101 Pretr; Ft (e10k = 7.74; β10k = 5.77; γ = −0.5)

Pets Pretr; Lin (e10k = 8.01; β10k = 2.97; γ = −0.5)

Pets Pretr; Ft (e10k = 5.34; β10k = 3.96; γ = −0.5)

Sun397 Pretr; Lin (e10k = 71.22; β10k = 4.84; γ = −0.5)

Sun397 Pretr; Ft (e10k = 52.4; β10k = 19.82; γ = −0.5)

Figure 10: Additional datasets

C. Additional Results
Additional datasets: In Fig. 10, we verify that our learning
curve model fits to multiple other datasets (chosen from
natural tasks in (Zhai et al., 2020)), comparing fine-tuned
vs. linear with Resnet-18. For these plots only, n is the
total number of samples. The γ values are estimated from
data, but the prior has more effect here due to fewer error
measurements. We see fine-tuning consistently outperforms
linear, though the difference is most dramatic for Sun397.

D. Table of Learning Curves
Table 3 shows experimental settings and fit parameters for
learning curves under two parameterizations. We can see
that similar e400 and β400 values are obtained when fixing
γ = −0.5 and fitting to errors with only three training
sizes (RMS difference in e400 and γ400 are 0.42 and 0.95,
respectively). This means that learning curves can be fit
and compared without training a large number of additional
models.



Learning Curves for Analysis of Deep Networks

Table 3: Experiment settings and parameters: We show the datasets, architectures, settings, and learning rate (set by
mini-train/val) used to train and test our classifiers. Next, we show the parameters fit using the extended power law model
e(n) = α+ ηn−γ . Next to that, we show the model resulting from setting γ = −0.5 and fitting to only the three training
sizes with highest n.

extended power law n−0.5 linear fit to last 3 points
dataset arch # param pretrain/init fine-tune? data aug? lrnRate α η γ e400 β400 α η e400 β400

PRETRAIN IN2CIFAR
No Pretr; Linear CIFAR Resnet-18 51K Random No Yes 0.01 78.51 120.13 -0.84 79.29 1.32 78.06 26.12 79.36 1.31
No Pretr; Finetune CIFAR Resnet-18 11.7M Random Yes Yes 0.01 5.68 259.29 -0.41 27.91 18.23 11.21 336.13 28.02 16.81
Pretr; Linear CIFAR Resnet-18 51K ImageNet No Yes 0.0003 24.4 65.28 -0.35 32.42 5.61 27.33 102.16 32.44 5.11
Pretr; Finetune CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54

PRETRAIN IN2PLACES
No Pretr; Linear Places Resnet-18 187K Random No Yes 0.03 91.84 19.13 -0.5 92.79 0.96 91.09 29.31 92.55 1.47
No Pretr; Finetune Places Resnet-18 11.7M Random Yes Yes 0.001 33.16 117.45 -0.26 57.89 12.86 44.39 263.63 57.57 13.18
Pretr; Linear Places Resnet-18 187K ImageNet No Yes 0.0003 54.43 53.39 -0.38 59.91 4.16 56.11 76.95 59.95 3.85
Pretr; Finetune Places Resnet-18 11.7M ImageNet Yes Yes 0.0003 40.92 70.04 -0.28 54 7.33 44.82 174.69 53.55 8.73

PRETRAIN IN PLACES MOCO2CIFAR
No Pretr CIFAR Resnet-50 25.6M Random Yes Yes 0.01 -2.23 243.44 -0.35 27.66 20.93 9.18 372.11 27.79 18.61
Pretr on Imagenet CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
Pretr on Places CIFAR Resnet-50 25.6M Places Yes Yes 0.001 -5.61 109.92 -0.24 20.49 12.53 9.05 195.43 18.82 9.77
Pretr on Imagenet with MOCO CIFAR Resnet-50 25.6M ImageNet (MOCO) Yes Yes 0.0003 0.07 112.69 -0.3 18.74 11.21 10.07 210.67 20.61 10.53

DEPTH FT
Resnet-18 CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54
Resnet-34 CIFAR Resnet-34 21.8M ImageNet Yes Yes 0.001 15.76 237.19 -0.73 18.75 4.36 13.51 104.15 18.72 5.21
Resnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
Resnet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86

DEPTH LINEAR
Resnet-18 CIFAR Resnet-18 51K ImageNet No Yes 0.001 24.4 65.28 -0.35 32.42 5.61 27.33 102.16 32.44 5.11
Resnet-34 CIFAR Resnet-34 51K ImageNet No Yes 0.001 21.77 59.56 -0.33 30.02 5.44 25.11 98.33 30.03 4.92
Resnet-50 CIFAR Resnet-50 205K ImageNet No Yes 0.0003 13.5 56.54 -0.22 28.63 6.66 23.05 112.08 28.65 5.6
Resnet-101 CIFAR Resnet-101 205K ImageNet No Yes 0.0003 11.17 51.7 -0.21 25.86 6.17 20.98 99.32 25.95 4.97

WIDTH FT
Resnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
2xWide-Resnet-50 CIFAR Wide Resnet-50 2 68.9M ImageNet Yes Yes 0.0003 8.78 160.14 -0.57 14.04 6 7.83 124.55 14.06 6.23
Resnet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86
2xWide-Resnet-101 CIFAR Wide Resnet-101 2 126.9M ImageNet Yes Yes 0.0003 7.56 116.21 -0.5 13.37 5.81 7.55 116.26 13.36 5.81

WIDTH LINEAR
Resnet-50 CIFAR Resnet-50 205K ImageNet No Yes 0.0003 13.5 56.54 -0.22 28.63 6.66 23.05 112.08 28.65 5.6
2xWide-Resnet-50 CIFAR Wide Resnet-50 2 205K ImageNet No Yes 0.0001 21.78 56.88 -0.35 28.77 4.89 24.45 87.19 28.81 4.36
Resnet-101 CIFAR Resnet-101 205K ImageNet No Yes 0.0003 11.17 51.7 -0.21 25.86 6.17 20.98 99.32 25.95 4.97
2xWide-Resnet-101 CIFAR Wide Resnet-101 2 205K ImageNet No Yes 0.0003 16.95 48.35 -0.25 27.76 5.41 23.27 90.85 27.81 4.54

AUG NO PRETR FT
Resnet-18 w/ Data-Aug Places Resnet-18 11.7M Random Yes Yes 0.001 35.79 118.94 -0.28 58.01 12.44 44.39 263.63 57.57 13.18
Resnet-18 w/o Data-Aug Places Resnet-18 11.7M Random Yes No 0.003 36.62 114.2 -0.24 63.73 13.01 48.84 288.46 63.26 14.42

AUG PRETR FT
Resnet-18 w/ Data-Aug Places Resnet-18 11.7M ImageNet Yes Yes 0.0003 35.72 67.85 -0.22 53.88 7.99 44.82 174.69 53.55 8.73
Resnet-18 w/o Data-Aug Places Resnet-18 11.7M ImageNet Yes No 0.001 39.43 68.44 -0.23 56.68 7.94 47.34 183.99 56.53 9.2

AUG PRETR LINEAR
Resnet-18 w/ Data-Aug Places Resnet-18 187K ImageNet No Yes 0.0003 55.55 58.56 -0.43 60.01 3.83 56.11 76.95 59.95 3.85
Resnet-18 w/o Data-Aug Places Resnet-18 187K ImageNet No No 0.001 54.2 54.27 -0.36 60.48 4.52 55.62 96.08 60.42 4.8

ARCHITECTURES IN2CIFAR
AlexNet CIFAR AlexNet 61.1M ImageNet Yes Yes 0.001 7.52 131.77 -0.32 26.89 12.4 15.97 219.36 26.94 10.97
VGG-16(bn) CIFAR VGG-16BN 138.4M ImageNet Yes Yes 0.0003 6.21 125.57 -0.38 19.1 9.79 10.07 181.1 19.13 9.06
ResNet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
ResNeXt-50(32x4d) CIFAR ResNeXt-50(32x4d) 25.0M ImageNet Yes Yes 0.001 12.67 185.51 -0.65 16.45 4.91 11.37 102.91 16.52 5.15
ResNet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86

ENSEMBLE
1xResnet-18 CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54
6xResnet-18 CIFAR Resnet-18 70.1M ImageNet Yes Yes 0.001 8.73 136.26 -0.49 15.96 7.09 8.55 147.16 15.91 7.36
1xResnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
3xResnet-50 CIFAR Resnet-50 76.7M ImageNet Yes Yes 0.001 12.72 150.13 -0.64 15.96 4.15 11.43 90.59 15.96 4.53




