
Latent Programmer: Discrete Latent Codes for Program Synthesis

Joey Hong 1 David Dohan 1 Rishabh Singh 1 Charles Sutton 1 Manzil Zaheer 1

Abstract
A key problem in program synthesis is searching
over the large space of possible programs. Human
programmers might decide the high-level struc-
ture of the desired program before thinking about
the details; motivated by this intuition, we con-
sider two-level search for program synthesis, in
which the synthesizer first generates a plan—a
sequence of symbols that describes the desired
program at a high level—before generating the
program. We propose to learn representations of
programs that can act as plans to organize such
a two-level search. Discrete latent codes are ap-
pealing for this purpose, and can be learned by
applying recent work on discrete autoencoders.
Based on these insights, we introduce the Latent
Programmer (LP), a program synthesis method
that first predicts a discrete latent code from in-
put/output examples, and then generates the pro-
gram in the target language. We evaluate the LP
on two domains, demonstrating that it yields an
improvement in accuracy, especially on longer
programs for which search is most difficult.

1. Introduction
Program synthesis is a longstanding grand challenge in ar-
tificial intelligence (Manna & Waldinger, 1971; Summers,
1977). The objective of program synthesis is to automati-
cally write a program given a specification of its intended
behavior, such as a natural language description or a small
set of input-output examples (Alur et al., 2013; Gulwani
et al., 2017). However, program synthesis requires solving
a difficult search problem over a large space of possible
programs. Search methods that have been explored include
top-down search (Lee et al., 2018), bottom up search (Udupa
et al., 2013; Odena et al., 2020; Barke et al., 2020), beam
search (Devlin et al., 2017), and many others (see Section 2).

Our work is motivated by an intuition about the way people

*Equal contribution 1Google Research, Mountain View, CA,
USA. Correspondence to: Joey Hong <jxihong@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

write programs. Synthesis methods often search through
programs in an order determined by the token sequence, by
a syntax tree, or by a logical solver. In contrast, we imagine
that a programmer often starts by thinking about the high-
level structure of the desired program — such as what library
functions to call, or the overall program structure — and
then fills in the details. For example, for a program that
processes a list of people’s names, a programmer might
first plan that the program should extract the person’s name
followed by the person’s last initial, and only then think
about details such as which library functions to use.

Based on this intuition, we propose two-level search for
program synthesis. In two-level search, the synthesizer first
produces a plan that describes the desired program, and
then synthesizes a program based on that plan. For us, a
plan is simply a sequence of symbols that describes the
code to be generated at a high level, without specifying
the syntactic and semantic details. The goal is that plans
can provide a way to organize search over programs. In
the name-processing example, suppose that an initial plan
incorrectly specifies to extract the first instead of the last
initial. Searching in plan space could easily find the small
change required to yield the correct plan, even if this would
correspond to a large change in the program. This allows
two-level search to explore a more diverse set of programs,
improving the chance of finding the correct one.

A key design decision is defining the space of possible plans.
For example, sketches could be used as plans (Nye et al.,
2019; Murali et al., 2018). In this work, we explore whether
it is possible to learn a representation of programs that is
useful for constructing plans that guide search. Instead of
having a deterministic heuristic for mapping programs to
plans, we let a model discover what plans are useful for rep-
resenting programs, and how to infer them from the specifi-
cation. To tackle this problem, we make use of recent work
in learning discrete unsupervised representations (van den
Oord et al., 2017; Roy et al., 2018; Kaiser et al., 2018).
These are self-supervised methods that given a dataset, as-
sign each data item to a discrete latent code (a sequence of
symbols from an arbitrary set) in such a way that the latent
code provides a good description of the data item. The main
hypothesis of our work is that discrete latent codes can be
used as plans for two-level search.

Latent Programmer: Discrete Latent Codes for Program Synthesis

This leads us to propose the Latent Programmer, a pro-
gram synthesis method that employs two-level beam search,
where the plans are based on discrete latent codes. At train-
ing time, a discrete autoencoder based on Kaiser et al. (2018)
is used to train three models: one that infers ground-truth
discrete latent codes to describe the programs in the train-
ing set, one that maps specifications to plans (i.e. discrete
latent codes), and one that maps plans to programs. At infer-
ence time, Latent Programmer uses a two level beam search,
first producing an L-best list of plans, then producing a
B/L-best list of programs for each plan. On two different
program synthesis domains, we find empirically that the La-
tent Programmer improves synthesis accuracy by over 10%
compared to several baseline synthesis methods, especially
on longer programs that are more difficult for search.

2. Background
The goal in program synthesis is to find a program in a
given language that is consistent with a specification. For-
mally, we are given a domain specific language (DSL)
which defines a space Y of programs. The task is de-
scribed by a specification X ∈ X and is solved by an
unknown program Y ∈ Y . For example, each specifica-
tion can be a set of input/output (I/O) examples denoted
X = {(I1, O1), . . . (IN , ON)}. Then, we have solved spec-
ification X if we found a program Y ′ (not necessarily Y)
which correctly solves all the examples: Y ′(Ii) = Oi, ∀i.
As another example, each specification can be a natural lan-
guage description of a task, and the corresponding program
implements said task. An example synthesis task in the
string transformation DSL is shown in Figure 1.

Vector Quantization Our method relies on discrete autoen-
coders, which are unsupervised learning methods that assign
each data point to a sequence of symbols, called a discrete
latent code, in such a way that the code is a good descrip-
tion of the data item. In this section, we describe Vector
Quantized Variational Autoencoders (VQ-VAE) (van den
Oord et al., 2017; Roy et al., 2018). This will introduce
ideas that we use later in the discrete autoencoder for Latent
Programmer (Section 3.3). In a VQ-VAE, latent codes are
sequences drawn from a discrete set of tokens T of size
|T | = K. Each token with id k ∈ [K] is associated with
a learned embedding ck ∈ RD; these embeddings can be
stacked into a matrix c ∈ RK×D called a codebook. To gen-
erate a code for a data item x, first the data point is passed
through a neural network ecφ(x) called an encoder, and the
encoder output e is quantized via nearest-neighbor lookup
into the codebook. Formally, the quantized token id qk(e)
and embedding qc(e) are

qc(e) = cqk(e) where qk(e) = arg min
k∈[K]

||e− ck||2. (1)

For input x, the training loss for a VQ-VAE has three terms:

Algorithm 1 Program synthesis using two-level search
Input: Specification X , search functions S0, S1,

objective functions f, g
1: plan← S0(X, f)
2: Y ′ ← S1(plan, X, g)
3: return Y ′

a reconstruction loss, a codebook loss that encourages code-
book embeddings to be close to their associated encoded
inputs ec(x), and a commitment loss that encourages the
encoded input ec(x) to “commit” to codes i.e. to be close
to the discrete code it is quantized to. In total, the loss is

L(c, θ, φ) = log pθ (x | qc(ecφ(x))) + ||sg(ecφ(x))− c||22
+ β||sg(c)− ecφ(x)||22, (2)

where θ, φ are the parameters of the decoder and encoder,
respectively, sg(·) is the stop gradient operator that fixes the
operand from being updated by gradients, and β controls
the strength of the commitment loss. To stabilize training,
van den Oord et al. (2017) also proposed removing the code-
book loss and set the codebook to an exponential moving
average (EMA) of encoded inputs.

3. Synthesis with Discrete Latent Variables
Latent Programmer is an instance of a general framework for
two-level search in program synthesis (Section 3.1). After
presenting the general framework, we describe the specific
architecture (Section 3.2), training objective (Section 3.3),
and search method (Section 3.4) used in Latent Programmer.

3.1. Two-level Search
Our approach is based on the generic framework for defining
program synthesizers using two-level search in Algorithm 1.
This framework is agnostic to the search algorithm and DSL
used. The idea is that the algorithm generates a plan, which
intuitively, provides a high-level, coarse-grained description
of a program to organize the search procedure. For example,
in string editing, a token in a plan might indicate that the
program should extract the first numeric substring. Formally,
a plan is simply a sequence of tokens, each drawn from a
finite set T of size |T | = K. We denote tokens in T as
TOK_1, TOK_2, . . ., TOK_K.

To define a concrete synthesizer in this framework, we need
to specify concrete choices for the search algorithms S0

and S1 and objective functions f and g that should be used.
The first-level search function S0 returns plan ∈ T S that
approximately maximizes the objective f(plan, X) ∈ R.
Then, the second-level search function S1 returns a program
Y ′ ∈ Y using plan that maximizes g(Y ′,plan, X) ∈ R.

Several previous synthesis methods can be seen as examples
of this general framework. For example, SKETCHADAPT

Latent Programmer: Discrete Latent Codes for Program Synthesis

Inputs Outputs Program

“Mason Smith" “Smith M"
“Henry Myers" “Myers H" GetToken_PROP_CASE_2 | Const(“ ") |

“Barry Underwood" “Underwood B" GetToken_ALL_CAPS_1

“Sandy Jones" “Jones S"

Figure 1. A string transformation task with four input-output examples and a program in the DSL that is consistent with the examples.

(Nye et al., 2019) can be viewed as an instantiation of this
framework where the plans are program sketches, that is,
partial programs in which certain subtrees are replaced by a
special HOLE token. Also, BAYOU (Murali et al., 2018) can
be viewed as another instantiation where the plan is a sketch
that abstracts expressions and function calls by their types.
Our Latent Programmer approach is a new instantiation of
this framework, described next.

3.2. Architecture
Our synthesizer, Latent Programmer (LP), is a two-level
synthesizer that learns representations of plans using a dis-
crete autoencoder. Because programs are often modular,
with components that are reused across tasks, LP is based
on the hypothesis that this compositional structure can be
leveraged by learning plans as discrete latent codes. We use
neural networks to define distributions over both plans and
programs, which are then used within Algorithm 1 through
having f and g be the log-probabilities defined by those
networks. In this section, we describe the architecture of LP
at a high-level, deferring details to Appendix B.

Our proposed system consists of three main components:
a latent predictor, latent program decoder, and program
encoder. Components are parameterized as Transformers,
which we use instead of RNNs due to their impressive per-
formance on natural language tasks (Vaswani et al., 2017).

The pipeline of our LP model is summarized in Figure 2,
and an end-to-end example is shown in Figure 4. The latent
predictor lp(X) predicts a distribution over latent codes
lp(X) ∈ RS×K conditioned on the program specification
X . The latent program decoder d(Z,X) defines a distribu-
tion over programs, and is jointly conditioned on specifica-
tion X and latent code Z ∈ RS×K . The program encoder
is only used during training and learns useful meanings for
the latent tokens in the code. The program encoder ec(Y)
encodes the true program Y = [y1, y2, . . . , yT] into a dis-
crete latent code Z = [z1, z2, . . . , zS], where each zi ∈ T .
This latent code will then serve as the ground-truth plan
for Y , as described in the next section. In this work we
let S = dT/2`e, where ` is the latent length compression
factor and is tuned during training. This provides temporal
abstraction, where the high-level latent tokens roughly map
to 2` program tokens. We emphasize that the program en-
coder is only used in training. At test time, lp(X) is used

instead of ec(Y); the latent predictor is unaware of what
S is and autoregressively generates latent tokens until an
end-of-sequence token is reached.

3.3. Training
To learn the plan representations, we use discrete latent
codes from an autoencoder, based on the work of Kaiser
et al. (2018) in natural language, which combines a VQ-
VAE with a sequence-to-sequence learning objective. The
loss function has three parts.

First, the autoencoder loss ensures that the latent codes
contain information about the program, and that the latent
program decoder can recover the true program given the
specification and the latent code. This loss is similar to
the loss function of a VQ-VAE as in equation 2, but also
depends on a specification X . Like in Roy et al. (2018),
the codebook is not trained but set to the EMA of encoder
outputs. Second, the latent prediction loss ensures that la-
tent codes can be predicted from specifications. This loss
treats the discrete latent sequence qk(ec(Y)) of the true pro-
gram as the ground-truth plan, and trains the latent predictor
lp(X) to generate it using just the program specification X .
Finally, the end-to-end loss ensures that programs can be
predicted from specifications. This is needed because when
computing the autoencoder loss, the latent code arises from
encoding the correct program ec(Y), but at test time, we
have only the specification X . This can result in mistakes
in the generated program since the decoder has never been
exposed to noisy results from the latent predictor. The end-
to-end loss alleviates this issue. To make this differentiable,
the end-to-end loss is probability of the correct program Y
when predicted from a soft-quantized latent code, given by
lp(X)T c. In summary, the full loss for a training instance is

L(c, θ, φ, ψ) (3)

= log pθ (Y | qc(ecφ(Y)), X) + β||sg(c)− ecφ(Y)||22︸ ︷︷ ︸
autoencoder

+ log p
(
qk(ecφ(Y)) | lpψ(X)

)︸ ︷︷ ︸
latent prediction

+ log pθ
(
Y | lpψ(X)T c,X

)︸ ︷︷ ︸
end-to-end

where we explicitly list out θ, φ, and ψ representing the
parameters of the latent program decoder, program encoder,
and latent program decoder respectively.

Finally, for the first 10K steps of training, we give embed-

Latent Programmer: Discrete Latent Codes for Program Synthesis

Figure 2. High-level architecture for the Latent Programmer system. The latent predictor generates probabilities over latent sequences,
which can be decoded into a predicted latent sequence Z′. Z′ is fitted to a ground-truth latent sequence Z generated by a program encoder,
and used during decoding to by the latent program decoder to generate programs.

dings of the ground-truth program Y , averaged over every 2`

tokens, as the latent code instead of ec(Y). This pre-training
ensures that when we start training on the full objective, the
latent code already contains information about the program
that can aid in training the latent program decoder. We found
empirically that this prevented the bypassing phenomenon
where the latent code is ignored by the decoder (Bahuleyan
et al., 2017).

3.4. Two Level Beam Search
During inference, we use two-level beam search, i.e., in
Algorithm 1, both S0, S1 are beam search, f is the log prob-
ability from the latent predictor, and g the log probability
from the latent program decoder. Standard beam search
returns the top-B most likely programs according to the
model, from which we return the first one (if any) that is
consistent with the specification (Parisotto et al., 2017; De-
vlin et al., 2017). In our case, S0 performs beam search to
return L sequences of discrete latent codes, then S1 returns
bB/Lc programs for each latent sequence. During infer-
ence, the latent predictor will continue to generate latent
tokens until an end-of-sequence token is produced, so the
generated latent sequence does not necessarily have length
dT/2`e as during training; however, we found the latent
sequence lengths during training and evaluation to be close
in practice. Setting L = B allows for the maximum ex-
ploration of the latent space, while setting L = 1 reduces
our method to standard beam search, or exploitation of the
most likely latent decoding. We choose L =

√
B in our

experiments, but explore the effect of L in Section 5.2.

4. Related Work
Program Synthesis Our work deals with program synthe-
sis, which involves combinatorial search for programs that
match a specification. Many different search methods have
been explored within program synthesis, including search
within a version-space algebra (Gulwani, 2011), bottom-
up enumerative search (Udupa et al., 2013), stochastic

search (Schkufza et al., 2013), genetic programming (Koza,
1994), or reducing the synthesis problem to logical satisfi-
ability (Solar-Lezama et al., 2006). Neural program syn-
thesis involves learning neural networks to predict function
distributions to guide a synthesizer (Balog et al., 2017),
or the program autoregressively in an end-to-end fashion
(Parisotto et al., 2017; Devlin et al., 2017). SKETCHADAPT
(Nye et al., 2019) combined these approaches by first gen-
erating a program sketch with holes, and then filling holes
using a conventional synthesizer. BAYOU (Murali et al.,
2018) trained on a different form of program sketches that
abstracted names and operations by their type. DreamCoder
(Ellis et al., 2020) iteratively built sketches using progres-
sively more complicated primitives though a wake-sleep
algorithm. Our work is closely related in spirit but funda-
mentally differs in two ways: (1) our sketches are comprised
of a general latent vocabulary that is learned in a simple, self-
supervised fashion, and (2) our method avoids enumerative
search, which is prohibitively expensive for large program
spaces. Another related avenue of research is using idiom
mining to learn high-level concepts of a program (Shin et al.,
2019; Iyer et al., 2019). However, the idioms considered
are always based on syntactic structure, i.e. subgraphs of
the AST of the program, whereas tokens of our latent codes
need not be so localized; also, idioms are extracted by a
preprocessing step, whereas our training method learns the
semantics of the latent tokens end-to-end. Finally, there is a
line of work that deals with learning to process partial pro-
grams in addition to the specification. In execution-guided
program synthesis, the model guides iterative extensions of
the partial programs until a matching one is found (Zohar
& Wolf, 2018; Chen et al., 2019; Ellis et al., 2019). Balog
et al. (2020) proposed training a differentiable fixer to edit
incorrect programs. We treat these works as complementary,
and can be combined with ours to refine predictions.

Discrete Autoencoders. Variational autoencoders (VAE)
were first introduced using continuous latent representations
(Kingma & Welling, 2014; Rezende et al., 2014). Several ap-

Latent Programmer: Discrete Latent Codes for Program Synthesis

proaches were proposed to use discrete latent codes instead,
such as continuous relaxations of categorical distributions
i.e. the Gumbel-Softmax reparametrization trick (Jang et al.,
2017; Maddison et al., 2017). VQ-VAEs (see Figure 2 for
more details) achieved impressive results almost matching
continuous VAEs (van den Oord et al., 2017; Roy et al.,
2018). In natural language processing, discrete bottlenecks
have also been used for sentence compression (Miao & Blun-
som, 2016) and text generation (Puduppully et al., 2019), but
these works do not use an autoencoder to learn the semantics
of the latent codes, like our work does. Within the domain of
synthesis of chemical molecules, (Gómez-Bombarelli et al.,
2018) have applied Bayesian optimization within a continu-
ous latent space to guide this structured prediction problem.
Learning to search has also been considered in the structured
prediction literature (Daumé et al., 2009; Chang et al., 2015;
Ross et al., 2011), but to our knowledge, these works do not
consider the problem of learning a discrete representation
for search. Notably, VQ-VAE methods have been success-
fully used to encode natural language into discrete codes for
faster decoding in machine translation (Kaiser et al., 2018).
The key novelty behind our work is in proposing two-level
search over a learned latent discrete space; using a VQ-VAE
as Kaiser et al. (2018) did enabled us to do so.

5. Experiments
We now present the results of evaluating our Latent Pro-
grammer model in two test domains: synthesis of string
transformation programs from examples and code genera-
tion from natural language descriptions. We compare our
LP model against several strong baselines.

RobustFill [LSTM] is a seq-to-seq LSTM with attention
on the input specification, and trained to autoregressively
predict the true program. The architecture is comparable
to the RobustFill model designed originally for the string
transformation tasks in our first domain (Devlin et al., 2017),
but easily generalizes to all program synthesis domains. We
detail the architecture in Appendix A.

RobustFill [Transformer] alternatively uses a Transformer
architecture, equivalent in architecture to the latent planner
in our LP model, also trained to autoregressively predict the
program. Transformers were found to perform much better
than LSTMs in language tasks because they process the
entire input as a whole, and have no risk of forgetting past
dependencies (Vaswani et al., 2017). This baseline can be
also be considered an ablation of LP without latent codes.

To test the hypothesis that the discrete latent code is help-
ing to organize search, rather than simply increasing the
capacity of the model, we compare to two ablations that use
continuous autoencoders rather than discrete ones. Because
for these methods the latent space is continuous, combina-

Method Accuracy

B = 1 10 100

RobustFill [LSTM] 45% 49% 61%
RobustFill [Transformer] 47% 51% 61%
Latent RobustFill [AE] 47% 50% 60%
Latent RobustFill [VAE] 46% 51% 62%
Latent Programmer 51% 57% 68%

Table 1. Accuracy on string transformation domain.

torial search algorithms such as beam search cannot search
over the latent space.

Latent RobustFill [AE] replaces the VQ-VAE component
of our LP model with a generic autoencoder. This makes
the latent code a sequence of continuous embeddings. The
latent prediction loss in equation 3 is simply replaced by
a squared error between the output of the autoencoder and
the latent predictor. Performing beam search over the con-
tinuous latent space is intractable, so during inference we
generate only one latent code per task; this is equivalent to
two-level beam search described earlier with L = 1. In ad-
dition, because we cannot define an end-of-sequence token
in the latent space, this baseline must be given knowledge of
the true program length even during inference, and always
generates a latent code of length dT/2`e.

Latent RobustFill [VAE] substitutes the VQ-VAE compo-
nent with a VAE (Kingma & Welling, 2014). This again
produces a continuous latent space, but regularized to be
distributed approximately as a standard Gaussian. Perform-
ing beam search is still intractable, but we can sample L
latent codes from the output of the VAE, and perform beam
search on the programs afterwards. Again, we assume that
the true program length is known during inference.

5.1. String Transformation
The first test domain is a string transformation DSL fre-
quently studied in the program synthesis literature (Parisotto
et al., 2017; Devlin et al., 2017; Balog et al., 2020). Tasks
in this domain involve finding a program which maps a set
of input strings to a corresponding set of outputs. Programs
in the DSL are a concatenation of expressions that perform
regex-based string transformations (see Appendix A).

We perform experiments on a synthetic dataset generated by
sampling programs from the DSL, then the corresponding
I/O examples using an heuristic similar to the one used
in NSPS (Parisotto et al., 2017) and RobustFill (Devlin
et al., 2017) to ensure nonempty output for each input. We
consider programs comprising of a concatenation of up to 10
expressions and limit the lengths of strings in the I/O to be at
most 100 characters. All models have an embedding size of
128 and hidden size of 512, and the attention layers consist
of 3 stacked layers with 4 heads each. For the LP model,

Latent Programmer: Discrete Latent Codes for Program Synthesis

Method Accuracy

DeepCoder (Balog et al., 2017) 40%
SketchAdapt (Nye et al., 2019) 62%
Latent Programmer 67%

Table 2. Accuracy on string transformation domain of Nye et al.
(2019) using B = 100. SKETCHADAPT and DEEPCODER results
are from Nye et al. (2019) using 3, 000 and 300, 000 synthesized
programs, respectively (similar wall clock time).

we used a latent compression factor ` = 2 and vocabulary
size K = 40. The models are trained on roughly 25M tasks,
and evaluated on 1K held-out ones.

In Table 1, we report the accuracy — the number of times a
program was found conforming to the I/O examples — of
our method against the baselines. Across all beam sizes, our
LP model performed 5-7 percentage points better (over 10%
of baseline accuracy) than the next best model. From our
ablative study, we see that having two-level using discrete
latent codes was important, as the baselines over continuous
latent spaces performed comparably to baseline RobustFill.

SketchAdapt As alluded to earlier, two-level search was
also proposed by Nye et al. (2019) as SKETCHADAPT,
which learned programs with a HOLE token, then filled
in the holes using enumerative search. To compare our pro-
posed method with SKETCHADAPT, we evaluate our LP
model on samples generated according to Nye et al. (2019),
which slightly modifies the DSL to improve the performance
of synthesizers. We report results in Table 2. Since enumer-
ation can be done more quickly than beam search, we let
SKETCHADAPT synthesize 3, 000 programs usingB = 100
top-level beams, whereas our LP model can only generate
B programs. We also reported results for DEEPCODER
(Balog et al., 2017), which synthesizes 300, 000 programs
without the high-level beam search. We chose the number
of synthesized programs so that all methods have similar
wall clock time. Our LP model is able to outperform both
methods in this modified DSL.

5.2. Analysis
We conduct extensive analysis to better understand our LP
model, the ability to generate long programs, and diversity in
the beams. All results are reported with beam size B = 10.

Model Size Our LP model uses an additional latent code
for decoding, which introduces additional parameters into
the model than the baseline RobustFill model. To make a fair
comparison, we vary the embedding and hidden dimension
of all of our evaluated methods, and compare the effect of
the number of trainable parameters on the accuracy. Figure 3
shows that all methods respond well to an increase in model
size. Nevertheless, we see that even when normalized for
size, our LP model significantly outperforms baselines.

Figure 3. Influence of hidden size on beam-10 accuracy.

Length RobustFill Acc. LP Acc.

1 94.5% 94.0%
2 83.9% 84.6%
3 72.8% 72.2%
4 63.1% 66.1%
5 47.1% 49.8%
6 40.6% 43.0%
7 30.2% 34.6%
8 22.7% 28.4%
9 18.6% 27.0%

10 14.4% 25.6%

Table 3. Beam-10 accuracy of baseline transformer and LP by
ground truth program length

Program Length Prior work has shown that program
length is a reasonable proxy measure of problem difficulty.
We hypothesize that using latent codes is most beneficial
when generating long programs. Table 3 shows how ground-
truth program length affects the accuracy of our LP model
compared to RobustFill, which lacks latent codes. As ex-
pected, accuracy decreases with problem complexity. Per-
haps surprisingly, though, we see a large improvement in our
LP model’s ability to handle more complex problems. This
supports our hypothesis two-level search can organize and
improve search over more complex tasks, because we see a
greater improvement in accuracy precisely for the examples
in which traditional search is most difficult.

Latent Beam Size In two-level beam search of beam size
B, first L latent beams are decoded, then bB/Lc programs
per latent code. The latent beam size L controls how much
search is performed over latent space. We theorize that
higher L will produce more diverse beams; however, too
high L can be harmful in missing programs with high joint
log-probability. We show the effect of latent beam size on
both the beam-10 accuracy and a proxy measure for diver-
sity. Diversity is important to measure because increased di-

Latent Programmer: Discrete Latent Codes for Program Synthesis

Inputs Outputs Program

“Jacob,Ethan,James 11" “11:J.E.J." GetToken_NUMBER_1 | Const(:) |

“Elijah,Daniel,Aiden 3162" “3162:E.D.A" GetToken_ALL_CAPS_1 | Const(.) |

“Rick,Oliver,Mia 26" “26:R.O.M." GetToken_ALL_CAPS_2 | Const(.) |

“Mark,Ben,Sam 510" “510:M.B.S." GetToken_ALL_CAPS_3 | Const(.)

RobustFill GetAll_NUMBER | Const(:)| GetToken_ALL_CAPS_2 | Const(.)

LP GetAll_NUMBER | Const(:) | GetToken_ALL_CAPS_1 | Const(.) |
GetToken_ALL_CAPS_2 | Const(.) | GetToken_ALL_CAPS_-1 | Const(.)

LP Latent TOK_14 | TOK_36 | TOK_36 | TOK_36

Figure 4. Illustrative string transformation problem where the ground-truth program was long but had repetitive structure. The baseline
Transformer was unable to generate the program but our LP model, which first predicts a coarse latent code, was able to.

Beam Size Accuracy Distinct n-Grams

n = 1 2 3 4

L = 1 52% 0.13 0.23 0.26 0.28
2 55% 0.13 0.24 0.26 0.28
3 57% 0.14 0.25 0.28 0.31
5 57% 0.14 0.26 0.29 0.32

10 56% 0.14 0.26 0.30 0.33

Table 4. Effect of latent beam size on beam-10 accuracy and num-
ber of distinct n-grams (normalized by total number of tokens).

versity suggests that two-level search is better exploring the
space of possible programs. Following prior work, we mea-
sure diversity by counting the number of distinct n-grams
in the beams, normalized by the total number of tokens to
bias against long programs (Vijayakumar et al., 2018). We
report the results varying L for B = 10 in Table 4. As ex-
pected, increasing the latent beam size L improves diversity
of output programs, but excessively large L harms the final
accuracy. An important observation is that the L = 1 case
effectively corresponds to single-level search, and performs
similarly to baseline RobustFill. This is further evidence
that explicitly having two-level search is critical to the LP
model’s improved performance.

2` Accuracy

2 52%
4 55%
8 49%

K Accuracy

10 48%
40 55%
100 51%

Figure 5. Effect of `,K.

Latent Code Dimension We
also measured the effect of the
expressiveness of our latent code,
specifically by varying the latent
length compression factor `, and
size of latent vocabulary K, on
overall performance. If c is too
small, the latent space becomes too
large to search; on the other hard,
too large c can mean individual
latent tokens cannot encode enough
information to reconstruct the
program. Similarly, we expect that

too small of a vocabulary K can limit the expressiveness of
the latent space, but too large K can make the latent space
too complex, and predicting the correct latent code difficult.
Figure 5 confirms this.

Latent Interpretability A key hypothesis of our work
is that searching over latent codes organizes search over
programs; it is crucial that the latent codes be informative
of the synthesized program. In Figure 4, we also show
an illustrative example in the domain where our LP model
found a valid program whereas the RobustFill model did not
(more examples are in Appendix D). In the example, the
ground-truth program was long but had a repetitive underly-
ing structure. Our LP model correctly detected this structure,
as evidenced by the predicted latent code. However, due
to the complexity of our DSL and size of latent space, it is
difficult to find explicit meaning behind individual tokens.

Thus, to better investigate interpretability, we created a toy
DSL using only the GetSpan expression from the Ro-
bustFill DSL. This expression allows us to grab arbitrary
ranges defined by a regex and its index of appearance, so
sufficiently complex programs can still be generated (see
Appendix C for full DSL). We trained a LP model with
` = 2 and K = 10 on the toy DSL, and recorded examples
of predicted programs and their corresponding latent codes
in Appendix C. From these examples, we can see a pattern
of LP associating particular latent tokens with high-level op-
erations. For example, TOK_7 and TOK_4 were extracting
the first and last number in the string, and TOK_6, TOK_3
the first and last word. As further evidence, in Figure 6, we
chose six high-level operations and recorded the percentage
of times each was mapped to a specific latent token. Specific
high-level operations were clearly biased towards particular
latent tokens, further suggesting that the latent codes were
specifying high-level components of the program. In addi-
tion, since there are multiple syntactic ways of expressing
the same operation, latent tokens were more likely capturing
high-level semantics over syntax.

Latent Programmer: Discrete Latent Codes for Program Synthesis

TOK_3 TOK_4 TOK_5 TOK_6 TOK_7 TOK_8 TOK_9

Get First Number 12% 5% 0% 9% 70% 6% 0%
Get Last Number 22% 49% 0% 11% 8% 8% 0%
Get First Word 10% 20% 0% 56% 7% 9% 0%
Get Last Word 75% 4% 0% 6% 9% 6% 0%
Get First Alphanum 11% 3% 0% 35% 42% 9% 0%
Get Last Alphanum 45% 29% 0% 22% 0% 4% 0%

Figure 6. Percentage of time each high-level operation was associated with a particular latent token on toy DSL. Note that tokens 0, 1, 2
are reserved for padding, and start and end of sequences, respectively.

Method BLEU

B = 1 10 100

Base (Wei et al., 2019) 10.4 - -
Dual (Wei et al., 2019) 12.1 - -

RobustFill [LSTM] 11.4 14.8 16.0
RobustFill [Transformer] 12.1 15.5 17.2
Latent Programmer 14.0 18.6 21.3

Table 5. BLEU score on code generation task.

5.3. Python Code Generation
Our next test domain is a Python code generation (CG)
task, which involves generating code for a function that
implements a natural-language specification. The dataset
used consists of 111K python examples, which consist of a
docstring and corresponding code snippet, collected from
Github (Wan et al., 2018). An example docstring and pro-
gram from the dataset is shown in Figure 7.

We used a language-independent tokenizer jointly on data
(Kudo & Richardson, 2018), and processed the dataset into
a vocabulary of 35K sub-word tokens. Furthermore, fol-
lowing Wei et al. (2019), we set the maximum length of
the programs to be 150 tokens resulting in 85K examples.
Across all models, we set the embedding size to be 256 and
hidden size to be 512, and the attention layers consist of 6
stacked layers with 16 heads each, similar to in neural ma-
chine translation (Vaswani et al., 2017). For the LP model,
we used a latent compression factor c = 2 and vocabulary
size K = 400 after a hyperparameter search. The models
are evaluated on 1K held-out examples. We initially found
that it was difficult for the program encoder to find a latent
structure in the ground-truth programs due to the wide vari-
ety of variable names. To remedy this, we replace the i-th
function argument and variable appearing the program with
the token ARG_i and VAR_i, respectively. This was only
used in training the program encoder.

In this domain, we are not given I/O examples as specifica-
tion. In addition, the programs in the dataset are often not
executable due missing dependencies, or having complex

objects as arguments. Hence, we cannot measure accuracy
by evaluating programs on test cases as before. Instead, we
evaluate performance by computing the best BLEU score
among the output beams (Papineni et al., 2002). This is a
natural metric, as we can imagine that in practice, a user
would examine the candidate programs to select one that
best matches their intent. We computed BLEU as the ge-
ometric mean of n-gram matching precision scores up to
n = 4. Table 5 shows that our LP model outperforms the
baselines. From the results, it can be seen that this is a diffi-
cult task, which may be due to the ambiguity in specifying
code from a short docstring description. As evidence, we ad-
ditionally include results from a recent work that proposed
seq-to-seq CG models on the same data that performed sim-
ilar to our baselines (Wei et al., 2019). These results show
that improvements due to the LP model exist even in dif-
ficult CG domains. For example docstrings and generated
code, refer to Appendix D.

Finally, we investigated interpretability in this domain. For
each latent token, we collected the set of programs associ-
ated with that token, and for each of those sets, we ranked
the program tokens by TF-IDF (Salton & McGill, 1986).
In Figure 8, we list several latent tokens where the top-5
program tokens have a common semantic interpretation. For
example, the first one seems to exhibit a latent state learning
high-level concepts about file manipulation. However, due
to the scale and noisiness of the dataset, it was difficult to
see strong semantic clustering among all latent tokens.

6. Conclusion
In this work we proposed the Latent Programmer (LP), a
novel neural program synthesis technique that leverages a
structured latent sequences to guide search. The LP model
consists of a latent predictor, which maps the input specifi-
cation to a sequence of discrete latent variables, and a latent
program decoder that generates a program token-by-token
while attending to the latent sequence. The latent predictor
was trained via a self-supervised method in which a discrete
autoencoder of programs was learned using a discrete bot-
tleneck, specifically a VQ-VAE (van den Oord et al., 2017),

Latent Programmer: Discrete Latent Codes for Program Synthesis

Docstring Program

return a list of the words def split(s, sep=None, maxsplit=-1):

in the string s return s.split(sep, maxsplit)

Figure 7. Example problem from the Python code generation dataset.

0 _files dirname glob isdir makedir
1 server _port _socket _password host
2 pip package wheel install sudo
3 dt interval seconds time timestamp
4 timeout _timeout handle future notifier

Figure 8. Example latent tokens and top-5 program tokens ranked by TF-IDF score.

and the latent predictor tries to predict the autoencoded se-
quence as if it were the ground-truth. During inference, the
LP model first searches in latent space for discrete codes,
then conditions on those codes to search over programs.
Empirically, we showed that the Latent Programmer outper-
forms state-of-the-art baselines as Robustfill (Devlin et al.,
2017), which ignore latent structure. Exciting future av-
enues of investigation include achieving better performance
by grounding the latent vocabulary and generalizing our
method to other tasks in structured prediction.

References
Alur, R., Bodík, R., Juniwal, G., Martin, M. M. K.,

Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design,
FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pp. 1–8. IEEE, 2013.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
International Conference on Learning Representations
(ICLR), 2016.

Bahuleyan, H., Mou, L., Vechtomova, O., and Poupart, P.
Variational attention for sequence-to-sequence models.
CoRR, abs/1712.08207, 2017.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
In International Conference on Learning Representations
(ICLR), 2017.

Balog, M., Singh, R., Maniatis, P., and Sutton, C. Neu-
ral program synthesis with a differentiable fixer. CoRR,
abs/2006.10924, 2020. URL https://arxiv.org/
abs/2006.10924.

Barke, S., Peleg, H., and Polikarpova, N. Just-in-Time
learning for Bottom-Up enumerative synthesis. In Object-

oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), 2020.

Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daume
III, and Langford, J. Learning to search better than your
teacher. In International Conference on Machine Learn-
ing (ICML), 2015.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations (ICLR), 2019.

Daumé, III, H., Langford, J., and Marcu, D. Search-based
structured prediction. Machine Learning Journal, 2009.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A., and Kohli, P. Robustfill: Neural program learning
under noisy I/O. CoRR, abs/1703.07469, 2017. URL
http://arxiv.org/abs/1703.07469.

Ellis, K., Nye, M. I., Pu, Y., Sosa, F., Tenenbaum, J., and
Solar-Lezama, A. Write, execute, assess: Program syn-
thesis with a REPL. In Neural Information Processing
Systems (NeurIPS), 2019.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, in-
terpretable knowledge with wake-sleep bayesian pro-
gram learning. CoRR, abs/2006.08381, 2020. URL
https://arxiv.org/abs/2006.08381.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a Data-Driven continuous representation of
molecules. ACS Cent Sci, 4(2):268–276, February 2018.

Gulwani, S. Automating string processing in spreadsheets
using input-output examples. In PoPL’11, January 26-28,
2011, Austin, Texas, USA, 2011.

https://arxiv.org/abs/2006.10924
https://arxiv.org/abs/2006.10924
http://arxiv.org/abs/1703.07469
https://arxiv.org/abs/2006.08381

Latent Programmer: Discrete Latent Codes for Program Synthesis

Gulwani, S., Polozov, O., and Singh, R. Program synthesis.
Foundations and Trends in Programming Languages, 4
(1-2):1–119, 2017. doi: 10.1561/2500000010. URL
https://doi.org/10.1561/2500000010.

Iyer, S., Cheung, A., and Zettlemoyer, L. Learning program-
matic idioms for scalable semantic parsing. In EMNLP-
IJCNLP, 2019.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations (ICLR), 2017.

Kaiser, Ł., Roy, A., Vaswani, A., Parmar, N., Bengio, S.,
Uszkoreit, J., and Shazeer, N. Fast decoding in sequence
models using discrete latent variables. In International
Conference on Machine Learning (ICML), 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations (ICLR), 2014.

Koza, J. R. Genetic programming as a means for program-
ming computers by natural selection. Statistics and com-
puting, 4(2):87–112, 1994.

Kudo, T. and Richardson, J. SentencePiece: A simple and
language independent subword tokenizer and detokenizer
for neural text processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 66–71, Novem-
ber 2018.

Lee, W., Heo, K., Alur, R., and Naik, M. Accelerating
search-based program synthesis using learned probabilis-
tic models. In Conference on Programming Language
Design and Implementation (PLDI), pp. 436–449, June
2018.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations (ICLR), 2017.

Manna, Z. and Waldinger, R. J. Toward automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

Miao, Y. and Blunsom, P. Language as a latent variable:
Discrete generative models for sentence compression.
CoRR, abs/1609.07317, 2016. URL http://arxiv.
org/abs/1609.07317.

Murali, V., Qi, L., Chaudhuri, S., and Jermaine, C. Neural
sketch learning for conditional program generation. In
International Conference on Learning Representations
(ICLR), 2018.

Nye, M. I., Hewitt, L. B., Tenenbaum, J. B., and Solar-
Lezama, A. Learning to infer program sketches. In
International Conference on Machine Learning (ICML),
2019.

Odena, A., Shi, K., Bieber, D., Singh, R., Sutton, C., and
Dai, H. BUSTLE: Bottom-Up program synthesis through
learning-guided exploration. In International Conference
on Learning Representations (ICLR), September 2020.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
A method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318.
Association for Computational Linguistics, 2002.

Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. In
International Conference on Learning Representations
(ICLR), 2017.

Puduppully, R., Dong, L., and Lapata, M. Data-to-text gen-
eration with content selection and planning. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019, pp. 6908–6915. AAAI Press, 2019.
doi: 10.1609/aaai.v33i01.33016908. URL https://
doi.org/10.1609/aaai.v33i01.33016908.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. CoRR, abs/1401.4082, 2014. URL
https://arxiv.org/abs/1401.4082.

Ross, S., Gordon, G., and Bagnell, D. A reduction of im-
itation learning and structured prediction to No-Regret
online learning. In Gordon, G., Dunson, D., and Dudík,
M. (eds.), Conference on Artificial Intelligence and Statis-
tics (AISTATS), volume 15 of Proceedings of Machine
Learning Research, pp. 627–635, Fort Lauderdale, FL,
USA, 2011. PMLR.

Roy, A., Vaswani, A., Neelakantan, A., and Parmar, N. The-
ory and experiments on vector quantized autoencoders.
arXiv, May 2018.

Salton, G. and McGill, M. J. Introduction to modern infor-
mation retrieval. 1986.

Schkufza, E., Sharma, R., and Aiken, A. Stochastic su-
peroptimization. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’13, pp. 305–316, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450318709.

https://doi.org/10.1561/2500000010
http://arxiv.org/abs/1609.07317
http://arxiv.org/abs/1609.07317
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
https://arxiv.org/abs/1401.4082

Latent Programmer: Discrete Latent Codes for Program Synthesis

doi: 10.1145/2451116.2451150. URL https://doi.
org/10.1145/2451116.2451150.

Shin, R., Allamanis, M., Brockschmidt, M., and Polozov,
O. Program synthesis and semantic parsing with learned
code idioms. In Neural Information Processing Systems
(NeurIPS), 2019.

Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S. A.,
and Saraswat, V. A. Combinatorial sketching for finite
programs. In Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2006, San Jose, CA, USA, October 21-25, 2006, pp.
404–415. ACM, 2006.

Summers, P. D. A methodology for lisp program construc-
tion from examples. Journal of the ACM (JACM), 24(1):
161–175, 1977.

Udupa, A., Raghavan, A., Deshmukh, J. V., Mador-Haim,
S., Martin, M. M. K., and Alur, R. TRANSIT: Speci-
fying protocols with concolic snippets. In Conference
on Programming Language Design and Implementation
(PLDI), pp. 287–296. Association for Computing Ma-
chinery, 2013.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. In Neural Information
Processing Systems (NeurIPS), 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Neural Information Processing Systems
(NeurIPS), 2017.

Vijayakumar, A. K., Cogswell, M., Selvaraju, R. R., Sun,
Q., Lee, S., Crandall, D. J., and Batra, D. Diverse beam
search: Decoding diverse solutions from neural sequence
models. In AAAI, 2018.

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., and
Yu, P. S. Improving automatic source code summarization
via deep reinforcement learning. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pp. 397–407, 2018.

Wei, B., Li, G., Xia, X., Fu, Z., and Jin, Z. Code gener-
ation as a dual task of code summarization. In Neural
Information Processing Systems (NeurIPS), 2019.

Zohar, A. and Wolf, L. Automatic program synthesis of
long programs with a learned garbage collector. In Neural
Information Processing Systems (NeurIPS), 2018.

https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150

