Appendix

This supplementary material contains

A. Encoding constraint of Chebyshev Polynomial codes.
B. Decoding procedure for Chebyshev Polynomial codes.

C. Experimental results in various settings including different matrix sizes and comparison with squeezed polynomial codes.

A. Encoding constraint

As mentioned earlier in Section 6, Chebyshev polynomial codes have an encoding constraint. The degrees of mn terms
of objective function pc(z), each of which consists of one of A;B; fori € [1 : m|, j € [1 : n] as coefficient, should
not overlap with each other. If the degree of more than two independent terms are equal, their coefficients A; B; will be
added together at the same degree in pc(z). Thus, a master cannot extract the required information (A;B; fori € [1 : m],
j € [1 : n]) from the computation results on pc(z). To satisfy this constraint, if the term fi(x) or ¢/ (z) can cause
overlapping problem, we need to skip them in the encoding function and use the next degree term, i.e., f*1(x) or g/+1(x),
for encoding A; 1 or Bj1. The details are explained in the following example.

A.1. Motivating example

We provide a motivating example of encoding Chebyshev polynomial codes when the parameters do not satisfy the
assumption in Section 4.2, m = n = Lo and L4 is a prime number, which were adopted for the sake of simplicity.

In this example, we determine the parameters as m = 3, n = 2, L; = 2, and Lo = 4. For encoding the tasks with é size of
the original task, each of the two input matrices A and B are divided into three and two pieces as

Ay
A= Ay , B:[Bl BQ}
A3z

In this case, the final product C' can be written as

A1B; AiB,
C=| A3By A3B,
AsB1 A3Bs

Using the divided sub-matrices as coefficients, the encoding functions and objective function can be made as

pa(r) = A + As f(2) + A3 f*(x),
pPB(z) = B1 + Bag(w),
pc(z) = pa(z) x p(x),
= A1B1 + A2 B1 f(z) + AsB1f? () + A1 Bag(a) + A2 Ba f(2)g(x) + A3 By f? () g ().
where x denotes the variable of the polynomials and f(x) = 222 — 1, which is a second order Chebyshev polynomial, and
g(x) is 82* — 822 + 1, a fourth order Chebyshev polynomial. However, since degf?¢° = degf’g! = 4, the degree of the
terms for A3 B; and A; B; are overlapped. Thus, the encoding functions above do not satisfy the encoding constraint. In

this case, we can avoid overlapping of coefficients in pc () by using ¢%(z) instead of g(z). The revised encoding functions
and objective function are determined as

pa(z) = A; + Asf(z) + Asf2(2),
pB(z) = By + Byg*(z),
pc(z) = A1 By + A By f(2) + A3 By f(x) + A1 Bag®(x) + AaBaf(2)g*(x) + A3Baf*(2)g* (2).

In pc(x), the degrees of all required sub-blocks of C, i.e., A;B; fori € [1: 3] and j € [1 : 2], are unique, thus a master
can decode the final product C' by using the matrix inversion of coefficient matrix in (10) or by interpolation.

As we have seen in the example, we can make adequate encoding functions for arbitrary combination of m, n, L1, and Lo
by skipping the term in the encoding functions that can cause overlapping problem in the objective function. However,
this method results in a larger degrees of encoding functions and objective function. Therefore, it may increase recovery
threshold at the master, i.e., deg pc(z) +1. To minimize this additional overhead, we can reduce the number of skipping
terms by determining L; and Ly as coprime integers.

B. Decoding procedure

Decoding of Chebyshev polynomial codes can be done by i) the inversion of coefficient matrix in (10) or ii) interpolation
and repeated divisions. In this section, we explain decoding procedure by interpolation and repeated divisions.

For the sake of simplicity, we assume that the skipping method explained in Appendix A is not happened in the encoding
functions. Nonetheless, decoding procedure introduced in this section can be easily extended to the case where skipping was
not used.

The objective function pc () is expressed as
pc(r) = AiBi+ -+ Ap By f" 7 (2) + A1Bag(a) + -+ A1 B f" 72 (2)g" 7 (@) + A Ba f™ 7 (2)g" 7 (2).

Since pc(z) is L1(m — 1) 4+ La(n — 1)th order polynomial, it can be interpolated from the Ly (m — 1) + Lao(n — 1) + 1
computation results. After interpolation, the master can get A,,, By, as the quotient by dividing pc(«) with the highest degree
term f™~1(z)g" ! (x). Similarly, A,, 1 B,, can be achieved as quotient by dividing the remainder of former division with
the highest degree term f™~2(z)g"~'(z). All the required results A;B; for i € [1 : m] j € [1 : n] can be achieved by
using repeated divisions by the highest degree term in the same way.

While decoding by inversion of coefficients matrix in (10) requires only mn computation results at a master, decoding by
interpolation and repeated divisions requires more than L (m — 1) + La(n — 1) 4+ 1 computation results. (More results are
needed if skipping happens in encoding functions.) A master should use decoding by interpolation and repeated divisions
when the coefficient matrix is singular, requiring more than mn computation results. However, the notable point is that the
probability that coefficient matrix in (10) is singular is quite small.

Remark 1. The probability that a master needs more than mn computation results to obtain the final product C'is quite
small, therefore the additional overhead in recovery threshold caused by Chebyshev polynomial codes is negligible.

We experimentally demonstrate that by choosing the evaluation points in Algorithm 1 with uniform intervals, the probability
of singular coefficient matrix in (10) is small enough.

For experiment, we generate 144 evaluation points using W = 12, L; = 3, L, = 4, and randomly choose 16 of them for
coefficient matrix in (10). Since we do not impose any constraints on the order of calculation at each worker, we can say
that random selection of evaluation points is reasonable.

After generating coefficient matrix, we use np.linalg. cond to get the condition number of coefficient matrix and use
1/sys.float_info.epsilon as a criterion to check the singularity of a matrix and possible erroneous cases that
can be caused by an ill-conditioned coefficient matrix. If np.linalg.cond < 1/sys.float_info.epsilon, we
consider a coefficient matrix as singular. We repeat singularity check for 100, 000 times, and only 21 of them are came out
to be singular. This result implies that the probability of singular coefficient matrix is quite small. Furthermore, the master
can make (m;::l) = mn + 1 possible coefficient matrices (size of mn by mn) from mn + 1 results and (m;:k) possible

coefficient matrices from mn + k results. Thus the master is highly likely to find invertible coefficient matrix and decode
final output using mn and only few additional results, instead of all the Ly (m — 1) + La(n — 1) 4 1 results.

Therefore, by generating a coefficients matrix with various combinations of received computation results and its matrix
inversion, the master can decode the final product with significantly lower number than the degree of pc(x). Thus, the
additional overhead in recovery threshold is negligible.

C. Experimental results

We first provide experimental results of matrix multiplication using three types of matrices: square, tall, and fat matrices.
The sizes of the input matrices are specified in Table 1. The other experimental settings (type of instances, number of

workers, matrix division parameters, and straggler probability) for three cases are the same as in Section 6. However, for the
sake of clarity, we provide the detailed conditions in Table 2 again.

Table 1. Matrix size setting

’ matrix A € Foxb B ¢ Fbxe \ a \ b \ c ‘
square matrix 1800 | 1800 | 1800
tall matrix 4500 | 540 | 4500
fat matrix 300 | 5400 | 300

Table 2. Parameter setting for Case 1, 2, and 3
’ ‘ ‘CC‘PC‘EP‘DEP‘MD‘

Casel. L =2 m 2 2 2 2 1
L =1 n 2 2 1 1 1
Ly=2 P 1 1 2 2 3
Case2. L =6 m 3 3 2 2 1
Li=2 n 3 3 2 2 1
Ly=3 P 1 1 2 2 9
Case3. L =12 | m 4 4 2 2 1
Li=3 n 4 4 4 4 1
Ly=4 P 1 1 2 2 10

To begin with, let us explain the relation between encoding, decoding complexities, and the size of input & output matrices.
Encoding complexity depends on the size of input matrices and decoding complexity depends on the size of the output
matrices (computation results). Therefore, the encoding complexity can be expressed as O(ab + bc), and the decoding
complexity can be expressed as O(ac). This implies that decoding complexity is much larger than encoding complexity
for tall matrix multiplication, and the encoding complexity is much larger than the decoding complexity for fat matrix
multiplication.

Fig. 1(a), 1(b), and 1(c) show the processing times for each stage of square matrix multiplication in three cases, and Fig.
1(d) shows the overall processing time of three cases. We can observe that the experimental results for square matrix
multiplication are similar to those of experiments in Section 6.

However, the processing time of tall matrix multiplication shows different tendency. The processing times for each stage and
the overall processing time are shown in Fig. 2. As can be seen in Fig. 2(a), 2(b), 2(c), the decoding time of MD is much
larger than other codes. Since MD has the highest decoding complexity than other codes and decoding is major bottleneck
in tall matrix multiplication, MD requires the largest overall processing times in all the three cases, as denoted in Fig. 2(d).
We note that CC achieves the lowest overall processing time because CC requires low decoding and encoding complexity.

The processing times for fat matrix multiplication is described in Fig. 3, and it shows different tendency compared to
previous results. In fat matrix multiplication, the encoding complexity is much higher than the decoding complexity. Since
encoding complexity is a major bottleneck for fat matrix multiplication, CC achieves the lowest overall processing time
except Case 1, where MD requires the smallest processing time by different matrix partitioning.

Table 3. Parameter setting for Squeezed polynomial codes and Chebyshev polynomial codes

’ A ¢ F2I00XI800_ 3 ¢ [pI800% 2100 ‘ ‘ cC ‘ SQ ‘
Case2.L =6 m 3 3
L1 = 2,L2 =3 n 3 3
Case3. L =12 m 4 4
L1 = 37 L2 =4 n 4 4

We now provide comparison results with squeezed polynomial codes (SQ). As we have mentioned in Section 5, SQ can be
regarded as a special case of CC, where L; = 1 and Ly = L. In the following experiment, we show that CC can improve

B CC (proposed)
. PC
. EP
6| mmm DEP
s MD

encoding time task-allocation computation and decoding time

time task-return time

(a) square matrix multiplication in Case 1

CC (proposed)
PC

EP
DEP
MD

time (s)

encoding time

task-allocation computation and decoding time
time task-return time

(c) square matrix multiplication in Case 3

CC (proposed)
pPC

EP
DEP
MD

a
P
£
2
encoding time task-allocation computation and decoding time
time task-return time
(b) square matrix multiplication in Case 2
25
I CC (proposed)
B pC
201 mmm EP
I DEP
s MD

case 1

case 2 case 3

(d) overall processing time for square matrix multiplication

Figure 1. Comparison of processing time for square matrix multiplication

the performance for overall processing time than SQ by comparing them in two different scenarios. One t2.Xlarge node is
used as a master and 8 t2.micro nodes are used as workers. We perform the experiments for Case 2 and 3 in Section 6. Since
CC and SQ can be regarded as same codes in Case 1, where L; = 1, Ly = L, we do not perform the experiment for Case 1
here. The detailed settings including parameter values and matrix size are given in Table 3, and we use straggler probability
0.3. Each experiment is repeated 20 times and the average results are indicated on the figure.

As we can see in Fig. 4(a) and 4(b), the decoding time and the computation and task-return time of CC and SQ are almost the
same since matrix division parameters are the same. However, because CC improves order-wise improvement in encoding
complexity and task-allocation communication load, it shows a substantial gain in encoding time and task-allocation time.

It should be noted that CC shows superior performance in most of the cases in overall processing time for all the matrix
shapes (square, fat, and tall) in all three cases with different parameter settings. This results clearly demonstrate the

superiority of the proposed codes.

CC (proposed)
PC

EP
DEP
MD

encoding time task-allocation computation and decoding time
time task-return time

(a) tall matrix multiplication in Case 1

B CC (proposed)
. PC

. EP

. DEP

== MD

80

time (s)

encoding time task-allocation computation and decoding time
time task-return time

(c) tall matrix multiplication in Case 3

CC (proposed)
PC

EP

DEP

MD

encoding time task-allocation computation and decoding time
time task-return time

(b) tall matrix multiplication in Case 2

140
CC (proposed)
PC

EP

DEP

MD

120

100

80

60

time (s)

case 1l case 2 case 3

(d) overall processing time for tall matrix multiplication

Figure 2. Comparison of processing time for tall matrix multiplication

B CC (proposed)
. pC
41 mmm EP
s DEP
s MD

time (s)

encoding time task-allocation computation and decoding time
time task-return time

(a) fat matrix multiplication in Case 1

101 MMM CC (proposed)
. pC
. EP
.| === DEP
s MD

time (s)

- |
encoding time task-allocation computation and decoding time
time task-return time

(c) fat matrix multiplication in Case 3

CC (proposed)
PC

DEP

-
|
. EP
-_—
. MD

time (s)

encoding time task-allocation computation and decoding time
time task-return time

(b) fat matrix multiplication in Case 2

CC (proposed)
PC

EP

DEP

MD

time (s)

case 1l case 2 case 3

(d) overall processing time for fat matrix multiplication

Figure 3. Comparison of processing time for fat matrix multiplication

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290 s = ;g(pmposed) 7 = (s:(C)(pmposed)
291
292
293
294
295 '
296

297

(0 o
298 encoding time task-allocation computation and decoding time encoding time task-allocation computation and decoding time
299 time task-return time time task-return time

300 (a) comparison with squeezed polynomial codes in Case 2 (b) comparison with squeezed polynomial codes in Case 3
301

302 BN CC (proposed)
303)

304
305
306
307
308
309

310
311 case 2 case 3

time (s)

312 (c) comparison of overall processing time
313

314 Figure 4. Comparison of processing time between Chebyshev polynomial codes and squeezed polynomial codes
315
316
317
318
319
320

(98]
[\
W

