
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Appendix
This supplementary material contains

A. Encoding constraint of Chebyshev Polynomial codes.

B. Decoding procedure for Chebyshev Polynomial codes.

C. Experimental results in various settings including different matrix sizes and comparison with squeezed polynomial codes.

A. Encoding constraint
As mentioned earlier in Section 6, Chebyshev polynomial codes have an encoding constraint. The degrees of mn terms
of objective function pC(x), each of which consists of one of AiBj for i ∈ [1 : m], j ∈ [1 : n] as coefficient, should
not overlap with each other. If the degree of more than two independent terms are equal, their coefficients AiBj will be
added together at the same degree in pC(x). Thus, a master cannot extract the required information (AiBj for i ∈ [1 : m],
j ∈ [1 : n]) from the computation results on pC(x). To satisfy this constraint, if the term f i(x) or gj(x) can cause
overlapping problem, we need to skip them in the encoding function and use the next degree term, i.e., f i+1(x) or gj+1(x),
for encoding Ai+1 or Bj+1. The details are explained in the following example.

A.1. Motivating example

We provide a motivating example of encoding Chebyshev polynomial codes when the parameters do not satisfy the
assumption in Section 4.2, m = n = L2 and L2 is a prime number, which were adopted for the sake of simplicity.

In this example, we determine the parameters as m = 3, n = 2, L1 = 2, and L2 = 4. For encoding the tasks with 1
6 size of

the original task, each of the two input matrices A and B are divided into three and two pieces as

A =

 A1

A2

A3

 , B =
[
B1 B2

]
.

In this case, the final product C can be written as

C =

 A1B1 A1B2

A2B1 A2B2

A3B1 A3B2

 .

Using the divided sub-matrices as coefficients, the encoding functions and objective function can be made as

pA(x) = A1 +A2f(x) +A3f
2(x),

pB(x) = B1 +B2g(x),

pC(x) = pA(x)× pB(x),

= A1B1 +A2B1f(x) +A3B1f
2(x) +A1B2g(x) +A2B2f(x)g(x) +A3B2f

2(x)g(x).

where x denotes the variable of the polynomials and f(x) = 2x2 − 1, which is a second order Chebyshev polynomial, and
g(x) is 8x4 − 8x2 + 1, a fourth order Chebyshev polynomial. However, since degf2g0 = degf0g1 = 4, the degree of the
terms for A3B1 and A1B2 are overlapped. Thus, the encoding functions above do not satisfy the encoding constraint. In
this case, we can avoid overlapping of coefficients in pC(x) by using g2(x) instead of g(x). The revised encoding functions
and objective function are determined as

pA(x) = A1 +A2f(x) +A3f
2(x),

pB(x) = B1 +B2g
2(x),

pC(x) = A1B1 +A2B1f(x) +A3B1f
2(x) +A1B2g

2(x) +A2B2f(x)g
2(x) +A3B2f

2(x)g2(x).

In pC(x), the degrees of all required sub-blocks of C, i.e., AiBj for i ∈ [1 : 3] and j ∈ [1 : 2], are unique, thus a master
can decode the final product C by using the matrix inversion of coefficient matrix in (10) or by interpolation.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

As we have seen in the example, we can make adequate encoding functions for arbitrary combination of m,n,L1, and L2

by skipping the term in the encoding functions that can cause overlapping problem in the objective function. However,
this method results in a larger degrees of encoding functions and objective function. Therefore, it may increase recovery
threshold at the master, i.e., deg pC(x) +1. To minimize this additional overhead, we can reduce the number of skipping
terms by determining L1 and L2 as coprime integers.

B. Decoding procedure
Decoding of Chebyshev polynomial codes can be done by i) the inversion of coefficient matrix in (10) or ii) interpolation
and repeated divisions. In this section, we explain decoding procedure by interpolation and repeated divisions.

For the sake of simplicity, we assume that the skipping method explained in Appendix A is not happened in the encoding
functions. Nonetheless, decoding procedure introduced in this section can be easily extended to the case where skipping was
not used.

The objective function pC(x) is expressed as

pC(x) = A1B1 + · · ·+AmB1f
m−1(x) +A1B2g(x) + · · ·+Am−1Bnf

m−2(x)gn−1(x) +AmBnf
m−1(x)gn−1(x).

Since pC(x) is L1(m− 1) + L2(n− 1)th order polynomial, it can be interpolated from the L1(m− 1) + L2(n− 1) + 1
computation results. After interpolation, the master can get AmBn as the quotient by dividing pC(x) with the highest degree
term fm−1(x)gn−1(x). Similarly, Am−1Bn can be achieved as quotient by dividing the remainder of former division with
the highest degree term fm−2(x)gn−1(x). All the required results AiBj for i ∈ [1 : m] j ∈ [1 : n] can be achieved by
using repeated divisions by the highest degree term in the same way.

While decoding by inversion of coefficients matrix in (10) requires only mn computation results at a master, decoding by
interpolation and repeated divisions requires more than L1(m− 1) + L2(n− 1) + 1 computation results. (More results are
needed if skipping happens in encoding functions.) A master should use decoding by interpolation and repeated divisions
when the coefficient matrix is singular, requiring more than mn computation results. However, the notable point is that the
probability that coefficient matrix in (10) is singular is quite small.

Remark 1. The probability that a master needs more than mn computation results to obtain the final product C is quite
small, therefore the additional overhead in recovery threshold caused by Chebyshev polynomial codes is negligible.

We experimentally demonstrate that by choosing the evaluation points in Algorithm 1 with uniform intervals, the probability
of singular coefficient matrix in (10) is small enough.

For experiment, we generate 144 evaluation points using W = 12, L1 = 3, L2 = 4, and randomly choose 16 of them for
coefficient matrix in (10). Since we do not impose any constraints on the order of calculation at each worker, we can say
that random selection of evaluation points is reasonable.

After generating coefficient matrix, we use np.linalg.cond to get the condition number of coefficient matrix and use
1/sys.float info.epsilon as a criterion to check the singularity of a matrix and possible erroneous cases that
can be caused by an ill-conditioned coefficient matrix. If np.linalg.cond < 1/sys.float info.epsilon, we
consider a coefficient matrix as singular. We repeat singularity check for 100, 000 times, and only 21 of them are came out
to be singular. This result implies that the probability of singular coefficient matrix is quite small. Furthermore, the master
can make

(
mn+1
mn

)
= mn+ 1 possible coefficient matrices (size of mn by mn) from mn+ 1 results and

(
mn+k
mn

)
possible

coefficient matrices from mn+ k results. Thus the master is highly likely to find invertible coefficient matrix and decode
final output using mn and only few additional results, instead of all the L1(m− 1) + L2(n− 1) + 1 results.

Therefore, by generating a coefficients matrix with various combinations of received computation results and its matrix
inversion, the master can decode the final product with significantly lower number than the degree of pC(x). Thus, the
additional overhead in recovery threshold is negligible.

C. Experimental results
We first provide experimental results of matrix multiplication using three types of matrices: square, tall, and fat matrices.
The sizes of the input matrices are specified in Table 1. The other experimental settings (type of instances, number of



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

workers, matrix division parameters, and straggler probability) for three cases are the same as in Section 6. However, for the
sake of clarity, we provide the detailed conditions in Table 2 again.

Table 1. Matrix size setting
matrix A ∈ Fa×b B ∈ Fb×c a b c

square matrix 1800 1800 1800
tall matrix 4500 540 4500
fat matrix 300 5400 300

Table 2. Parameter setting for Case 1, 2, and 3
CC PC EP DEP MD

Case 1. L = 2 m 2 2 2 2 1
L1 = 1 n 2 2 1 1 1
L2 = 2 p 1 1 2 2 3
Case 2. L = 6 m 3 3 2 2 1
L1 = 2 n 3 3 2 2 1
L1 = 3 p 1 1 2 2 9
Case 3. L = 12 m 4 4 2 2 1
L1 = 3 n 4 4 4 4 1
L2 = 4 p 1 1 2 2 10

To begin with, let us explain the relation between encoding, decoding complexities, and the size of input & output matrices.
Encoding complexity depends on the size of input matrices and decoding complexity depends on the size of the output
matrices (computation results). Therefore, the encoding complexity can be expressed as O(ab + bc), and the decoding
complexity can be expressed as O(ac). This implies that decoding complexity is much larger than encoding complexity
for tall matrix multiplication, and the encoding complexity is much larger than the decoding complexity for fat matrix
multiplication.

Fig. 1(a), 1(b), and 1(c) show the processing times for each stage of square matrix multiplication in three cases, and Fig.
1(d) shows the overall processing time of three cases. We can observe that the experimental results for square matrix
multiplication are similar to those of experiments in Section 6.

However, the processing time of tall matrix multiplication shows different tendency. The processing times for each stage and
the overall processing time are shown in Fig. 2. As can be seen in Fig. 2(a), 2(b), 2(c), the decoding time of MD is much
larger than other codes. Since MD has the highest decoding complexity than other codes and decoding is major bottleneck
in tall matrix multiplication, MD requires the largest overall processing times in all the three cases, as denoted in Fig. 2(d).
We note that CC achieves the lowest overall processing time because CC requires low decoding and encoding complexity.

The processing times for fat matrix multiplication is described in Fig. 3, and it shows different tendency compared to
previous results. In fat matrix multiplication, the encoding complexity is much higher than the decoding complexity. Since
encoding complexity is a major bottleneck for fat matrix multiplication, CC achieves the lowest overall processing time
except Case 1, where MD requires the smallest processing time by different matrix partitioning.

Table 3. Parameter setting for Squeezed polynomial codes and Chebyshev polynomial codes
A ∈ F2100×1800, B ∈ F1800×2100 CC SQ
Case 2.L = 6 m 3 3
L1 = 2, L2 = 3 n 3 3
Case 3. L = 12 m 4 4
L1 = 3, L2 = 4 n 4 4

We now provide comparison results with squeezed polynomial codes (SQ). As we have mentioned in Section 5, SQ can be
regarded as a special case of CC, where L1 = 1 and L2 = L. In the following experiment, we show that CC can improve



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

(a) square matrix multiplication in Case 1 (b) square matrix multiplication in Case 2

(c) square matrix multiplication in Case 3 (d) overall processing time for square matrix multiplication

Figure 1. Comparison of processing time for square matrix multiplication

the performance for overall processing time than SQ by comparing them in two different scenarios. One t2.Xlarge node is
used as a master and 8 t2.micro nodes are used as workers. We perform the experiments for Case 2 and 3 in Section 6. Since
CC and SQ can be regarded as same codes in Case 1, where L1 = 1, L2 = L, we do not perform the experiment for Case 1
here. The detailed settings including parameter values and matrix size are given in Table 3, and we use straggler probability
0.3. Each experiment is repeated 20 times and the average results are indicated on the figure.

As we can see in Fig. 4(a) and 4(b), the decoding time and the computation and task-return time of CC and SQ are almost the
same since matrix division parameters are the same. However, because CC improves order-wise improvement in encoding
complexity and task-allocation communication load, it shows a substantial gain in encoding time and task-allocation time.

It should be noted that CC shows superior performance in most of the cases in overall processing time for all the matrix
shapes (square, fat, and tall) in all three cases with different parameter settings. This results clearly demonstrate the
superiority of the proposed codes.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

(a) tall matrix multiplication in Case 1 (b) tall matrix multiplication in Case 2

(c) tall matrix multiplication in Case 3 (d) overall processing time for tall matrix multiplication

Figure 2. Comparison of processing time for tall matrix multiplication

(a) fat matrix multiplication in Case 1 (b) fat matrix multiplication in Case 2

(c) fat matrix multiplication in Case 3 (d) overall processing time for fat matrix multiplication

Figure 3. Comparison of processing time for fat matrix multiplication



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

(a) comparison with squeezed polynomial codes in Case 2 (b) comparison with squeezed polynomial codes in Case 3

(c) comparison of overall processing time

Figure 4. Comparison of processing time between Chebyshev polynomial codes and squeezed polynomial codes


