
Chebyshev Polynomial Codes: Task Entanglement-based Coding
for Distributed Matrix Multiplication

Sangwoo Hong* 1 Heecheol Yang* 2 Yeongseok Yoon 1 Taehyeon Cho 1 Jungwoo Lee 1

Abstract

Distributed computing has been a prominent solu-
tion to efficiently process massive datasets in par-
allel. However, the existence of stragglers is one
of the major concerns that slows down the overall
speed of distributed computing. To deal with this
problem, we consider a distributed matrix multi-
plication scenario where a master assigns multiple
tasks to each worker to exploit stragglers’ comput-
ing ability (which is typically wasted in conven-
tional distributed computing). We propose Cheby-
shev polynomial codes, which can achieve order-
wise improvement in encoding complexity at the
master and communication load in distributed ma-
trix multiplication using task entanglement. The
key idea of task entanglement is to reduce the
number of encoded matrices for multiple tasks
assigned to each worker by intertwining encoded
matrices. We experimentally demonstrate that,
in cloud environments, Chebyshev polynomial
codes can provide significant reduction in overall
processing time in distributed computing for ma-
trix multiplication, which is a key computational
component in modern deep learning.

1. Introduction
Matrix multiplication is one of the most basic building
blocks in machine learning and deep learning. As the size of
data required for deep learning grows, distributed computing
is receiving significant attention due to its ability to handle
the large dataset in a parallel manner. However, many stud-
ies (Dean & Barroso, 2013), (Huang et al., 2017), (Tandon
et al., 2017) have reported that stragglers, which compute

*Equal contribution 1Communications and Machine Learn-
ing Lab., Department of Electrical and Computer Engineering,
Seoul National University, Seoul, 08826, South Korea 2Division
of Computer Convergence, Chungnam National University, Dae-
jeon, 34134, South Korea. Correspondence to: Jungwoo Lee
<junglee@snu.ac.kr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

a given task much slower than other workers, deteriorate
the computation capability of the system. Accordingly, the
existence of stragglers has arose as an important issue in dis-
tributed computing since it is a major bottleneck in overall
processing time.

To handle straggler issue in distributed computing, several
methods have been proposed, which are depicted in Fig.
1. One of the conventional methods (Wang et al., 2014)
is to replicate the computational tasks and allocate them
to several workers. On the other hand, (Lee et al., 2018)
were the first to suggest coded distributed computing, which
can effectively utilize redundancy in task allocation by a
coding theoretic approach, in order to alleviate the strag-
gler problem. Fig. 1(a) and Fig. 1(b) show examples of
distributed matrix multiplication on C = A× B, where a
master uses replication-based task allocation and coded task
allocation schemes with four workers. In Fig. 1(a), two
tasks are replicated and allocated to two workers under the
assumption that A is divided into two matrices A1 and A2

of the same size, i.e., A = [A1;A2]. In this scheme, the
master can tolerate one straggler per task to get the compu-
tation result C. However, if both workers responsible for
the same task compute and return their results slowly as in
Fig. 1(a), the master cannot decode the final computation
result. On the other hand, in Fig. 1(b), the master utilizes a
coded computation scheme which uses maximum distance
separable (MDS) codes for task allocation. In this case, the
master can decode the final computation result C from two
of the fastest computation returns, thus it can tolerate any
two stragglers among four workers.

For matrix multiplication, a coded computation scheme is
expanded into various ways with different matrix partition-
ing parameters. Polynomial codes have been suggested in
(Yu et al., 2017), which are designed to encode both input
matrices by polynomial functions. In (Dutta et al., 2019), the
authors have proposed a different matrix partitioning scheme
for distributed matrix multiplication, achieving significant
reduction in memory overhead at workers. Furthermore,
in (Dutta et al., 2019), polydot codes that generalize the
previously proposed schemes was introduced, which show
trade-offs between recovery threshold, communication load,
and computational load at workers. Finally, the authors







Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

From now on, we will introduce our coding scheme, and
show how task entanglement is realized. In our scheme, the
master divides input matrices A and B into sub-matrices of
equal size Aw ∈ F a

m×b for w ∈ [1 : m], and Bz ∈ Fb× c
n

for z ∈ [1 : n], which are given by

A =

 A1

...
Am

 , B =
[
B1 · · · Bn

]
. (1)

Encoding functions pA and pB are constructed by using
the divided sub-matrices of A and B as coefficients, which
are given by

pA(x) =

m∑
w=1

Awf(x)w−1, (2)

pB(x) =

n∑
z=1

Bzg(x)z−1,

where x represents the variable of polynomials of encoding
functions pA and pB, and f(x) and g(x) denote the polyno-
mial basis for pA and pB, respectively. Using these encod-
ing functions, Ãi,j ∈ F a

m×b and B̃i,j ∈ Fb× c
n are encoded

from pA(x) and pB(x) at evaluation points x = xi,j , which
implicates Ãi,j = pA(xi,j) and B̃i,j = pB(xi,j). The
tasks assigned to Wi are represented as C̃i,j = Ãi,jB̃i,j ∈
F a

m× c
n for j ∈ [1 : L]. These results represent the values of

objective function pC(x), which is given by

pC(x) = pA(x)× pB(x), (3)

at x = xi,j . In this coding scheme, because pC is also
a polynomial function as pA and pB, the master aims to
decode the final product C = AB by interpolating objective
function pC(x) from received results on evaluation points
at x = xi,j .

To achieve task entanglement, we need to carefully choose
a pair of polynomial bases f(x) and g(x), that makes en-
coded matrices satisfying Lemma 1. We now provide the
conditions on f(x) and g(x) for task entanglement in our
scheme.

Lemma 2. For encoding functions pA(x) and pB(x) in
(2), to realize task entanglement, the polynomial bases f(x)
and g(x) need to satisfy the following conditions.

Condition I: There exist W sets of L points
x1,1, x1,2, ..., xW,L that satisfy f(xi,j+L2(k−1)) = αi,j

and g(xi,j+L2(k−1)) = βi,k for all i ∈ [1 : W ], j ∈ [1 :
L2], k ∈ [1 : L1], where L = L1L2.

Condition II: Each of f(x) and g(x) has at least L1 − 1
and L2 − 1 distinct local extremum points, respectively.

To satisfy Condition I in Lemma 2, f(x) and g(x) need to
satisfy Condition II. In addition, to satisfy Condition II, the

Figure 3. Choosing evaluation points in f(x) and g(x)

degrees of f(x) and g(x) need not to be less than L1 and
L2, respectively.

Fig. 3 shows an example of a pair of polynomial
bases f(x) and g(x) and a set of six evaluation points
{x1,1, x1,2, x1,3, x2,1, x2,2, x2,3}. According to Fig. 3, the
polynomial function f(x) has three different values, and
g(x) has two different values at six evaluation points, satisfy-
ing Condition I in Lemma 2. Therefore, encoding functions
pA(x) and pB(x) can generate encoded matrices required
for task entanglement using f(x), g(x), and six evaluation
points in the example.

Remark 1. By task entanglement, the number of encoded
matrices sent to each worker is reduced asymptotically from
O(2L) to O(L1 + L2) ' O(2

√
L) when the values of L1

and L2 are close to
√
L, while satisfying L = L1L2. This

results in order-wise improvements, from O(L) to O(
√
L),

on encoding complexity at the master, task-allocation com-
munication load, and memory usage at each worker.

In the following, we show that one can always find the
adequate pair of polynomial bases f(x) and g(x) satisfying
the conditions in Lemma 2 for arbitrary matrix partitioning
parameter m, n, and order of basis L1, L2. This can be
done by utilizing the property of Chebyshev polynomials.

4. Chebyshev Polynomial Codes
We dedicate this section to propose Chebyshev polyno-
mial codes, which enable task entanglement in a straggler-
exploiting distributed matrix multiplication. To apply task
entanglement in various distributed matrix multiplication
scenarios, it should be applicable for different number of
workers (W ) and number of tasks assigned to each workers
(L). Thus we need to find adequate polynomial bases and
their evaluation points satisfying Lemma 2 for various W
and L. Moreover, there should exist enough sets of evalua-
tion points and polynomial bases for arbitrary combinations
of L1 and L2 satisfying L = L1L2.3

3The number of the sets of evaluation points should be more
than the number of workers.



Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

4.1. The selection of evaluation points

We show that Chebyshev polynomials are well-suited for
task entanglement by suggesting an algorithm to find enough
sets of evaluation points for arbitrary system parameters W
and L.4 To begin with, we need to re-index the notations
for evaluation points and encoded matrices to avoid ambi-
guity. Using task entanglement, the master assigns L1 + L2

encoded matrices (not 2L) to each worker. Therefore we
change the notation for evaluation points as

xi,j,k = xi,j+L2(k−1), ∀j ∈ [1 : L2],∀k ∈ [1 : L1],

for i ∈ [1 : W ]. Following this re-indexed notations, we
also denote L tasks assigned to each worker and their en-
coded matrices as

C̄i,j,k = Āi,j × B̄i,k, ∀j ∈ [1 : L2],∀k ∈ [1 : L1],

for i ∈ [1 : W ].

We now demonstrate that required evaluation points xi,j,k
can be found by using commutative polynomial as polyno-
mial basis.

Lemma 3. We can always find xi,j,k for i ∈ [1 : W ], j ∈
[1 : L2], k ∈ [1 : L1] satisfying Lemma 2 by using commu-
tative polynomial for f(x) and g(x), each of which has L1

and L2 local extremum points, respectively.

Proof. Let us choose an arbitrary value ti between the great-
est local minimum value and smallest local maximum value
of f(x) and g(x). From f(x) = ti, we can find the L1 roots
x̃i,k for k ∈ [1 : L1] as

f(x̃i,k) = ti. ∀k ∈ [1 : L1].

If the values of L1 roots x̃i,k for k ∈ [1 : L1] also fall
between the greatest local minimum value and smallest
local maximum value of g(x) as ti, we can find L2 roots
xi,j,k for j ∈ [1 : L2] from g(x) = x̃i,k as

g(xi,j,k) = x̃i,k. ∀j ∈ [1 : L2],∀k ∈ [1 : L1]. (4)

For f(x) and g(x) are commutative polynomial, the follow-
ing equation holds.

f(g(xi,j,k)) = g(f(xi,j,k)) (5)
= ti, ∀j ∈ [1 : L2],∀k ∈ [1 : L1].

Since g(x) has L2 local extremum points and ti are choosen
between the greatest local minimum value and smallest
local maximum value, the equation g(x) = ti will have

4Chebyshev polynomials were first used for coded distributed
computing in (Fahim & Cadambe, 2021) to guarantee numerical
stability in decoding. In Chebyshev polynomial codes, Cheby-
shev polynomials are used to provide communication-efficient
distributed computing.

L2 different roots. Note that j is not included in the right-
hand-side term in (4), thereby we can rearrange the order of
xi,j,k on j. Thus, by denoting roots of g(x) = ti as x̄i,j and
rearranging the order of xi,j,k about k appropriately, we can
express it as

f(xi,j,k) = x̄i,j , ∀j ∈ [1 : L2],∀k ∈ [1 : L1].

Therefore, the commutative polynomial f(x) and g(x), and
a set of evaluation points xi,j,k for j ∈ [1 : L2], k ∈ [1 : L1]
satisfy Lemma 2. In addition, by choosing arbitrary values
ti for i ∈ [1 : W ], we can always find sets of evaluation
points xi,j,k for i ∈ [1 : W ], j ∈ [1 : L2], and k ∈ [1 : L1].
This completes the proof.

Corollary 1. A set of Chebyshev polynomials is an unique
solution for Lemma 3 among commutative polynomial func-
tions.

Proof. It is proved in (Block & Thielman, 1951) that the en-
tire sets of commutative polynomial functions are included
in one of the sets

(I) Pn(x) =
(Ax+B)n −B

A
, (6)

(II) Tn(x) = A−1cos(n× cos−1(Ax+B)−B), (7)
(A 6= 0; n = 1, 2, 3, . . .)

In set (I), dPn(x)
dx = 0 only if x = −B

A . Accordingly, the
commutative polynomial functions in (I) have at most one
local extremum points and they cannot satisfy Condition
II in Lemma 2. Thus, we can conclude that the set (II),
which corresponds to the set of Chebyshev polynomials, is
an unique solution satisfying Lemma 3. This completes the
proof.

Given Lemma 3 and Corollary 1, we now provide an algo-
rithm to find the sets of evaluation points for task entangle-
ment when f(x) and g(x) are Chebyshev polynomials.

Algorithm 1 Selecting evaluation points
Input: Chebyshev polynomial f(x) and g(x) (deg f = L1,

deg g = L2)
Output: A set of evaluation points xi,j,k for i ∈ [1 : W ],

j ∈ [1 : L2], and k ∈ [1 : L1]
ti = 0 for i ∈ [1 : W ], i = 1 // Initialize
while i ∈W do

Pick an arbitrary constant ti between (−1, 1) that satis-
fies ta 6= tb if a 6= b
Calculate the roots of f(x) = ti and save them as x̃i,k
for k ∈ [1 : L1]
Calculate the roots of g(x) = x̃i,k for k ∈ [1 : L1] and
save them as xi,j,k for j ∈ [1 : L2] and k ∈ [1 : L1]
Rearrange xi,j,k about j to satisfy f(xi,j,k) = x̄i,j
i = i+ 1

end



Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

In the algorithm 1, we use constant ti in range (−1 : 1)
because local extremum values of Chebyshev polynomial
are either −1 or 1.

4.2. Encoding by Chebyshev polynomial codes

In Section 3, we proposed the conditions for task entangle-
ment in a distributed matrix multiplication. Furthermore,
we prove that Chebyshev polynomials can always satisfy
those conditions in 4.1. In this subsection, we will show
how to design the encoding functions pA(x) and pB(x) us-
ing Chebyshev polynomials as polynomial bases f(x) and
g(x).

Specifically, the encoding procedure by Chebyshev polyno-
mial codes is as follows.

Step 1. Determine matrix partitioning parameters m and
n for given input matrices A and B. Since the sizes of
encoded matrices are 1

m and 1
n of the original input matrices

A and B, respectively, the size of assigned tasks is a 1
mn of

the original task C = AB. Thus, we determine the size of
each task using m and n in this step.

Step 2. Determine L1 and L2, which are the degrees of
f(x) and g(x), for given m, n, and L. One important
consideration is that the degrees of f(x) and g(x) should be
determined carefully to guarantee decodability at the master
as

deg f i(x)gj(x) 6= deg fk(x)gl(x), if i 6= k or j 6= l, (8)
∀i, k ∈ [1 : m− 1],∀j, l ∈ [1 : n− 1].

The constraint on the degrees of f(x) and g(x) implies that
the degrees of the multiplications of Awf(x)w−1, w ∈ [1 :
m] and Bzg(x)z−1, z ∈ [1 : n] in (2) should be unique.
This is because the master needs to achieve the sub-blocks
AwBz, w ∈ [1 : m], z ∈ [1 : n] separately from the co-
efficients of pC(x) in order to decode the final product C.
Therefore, we should choose adequate values of L1 and L2

to satisfy this constraint. For example, if we set m = n,
this constraint is satisfied by choosing a prime number for
L2 = m and L1 smaller than L2.5.

Step 3. Generate encoding functions pA(x), pB(x) as in
(2), based on the divided sub-matrices of A, B in (1) and
L1, L2 degree Chebyshev polynomials f(x), g(x).

Step 4. Find adequate evaluation points for generating en-
coded matrices on L tasks for each worker by Algorithm 1
in 4.1.

Step 5. Generate encoded matrices Āi,j and B̄i,k for j ∈ [1 :
L2] and k ∈ [1 : L1] for i ∈ [1 : W ]. They can be generated
by values of encoding functions pA(x) and pB(x) in Step

5However, we can always find the adequate orders of f(x) and
g(x) even if m 6= n and L2 is not a prime number. Detailed
explanation is provided in Appendix A

3 using evaluation points xi,j,k for i ∈ [1 : W ], j ∈ [1 : L2],
and k ∈ [1 : L1] in Step 4.

4.3. Computing at workers

After receiving Āi,j and B̄i,k for j ∈ [1 : L2] and
k ∈ [1 : L1], each worker Wi starts to compute L tasks
by calculating C̄i,j,k = Āi,j × B̄i,k. Whenever each task is
finished, individual worker sends the completed computa-
tion results immediately to the master.

4.4. Decoding of Chebyshev polynomial codes

According to the divided sub-matrices of A and B in (1),
the final product C = AB can be represented as

C =

 A1B1 · · · A1Bn

...
. . .

...
AmB1 · · · AmBn

 . (9)

Thus, the master can get the final product C by obtaining
sub-blocks of C, i.e., A1B1 . . . AmBn. Let us denote the
fastest mn computation results as C̄t for t ∈ [1 : mn] and
denote the evaluation points of them as βt for t ∈ [1 : mn].
The fastest mn computation results can be represented as
(10).

Therefore, decoding at the master can be done by inversion
of the coefficient matrix in (10). However, the existence
of the inverse of the coefficient matrix is not guaranteed
in general. If the coefficient matrix is singular, the master
can decode by interpolation (Kedlaya & Umans, 2011) of
pC(x) and extracting AiBj using repeated division of f(x)
and g(x) instead.

pC(x) = pA(x)× pB(x)

= A1B1 + . . .+AmBnf
m−1(x)gn−1(x). (11)

pC(x) is a (L1(m− 1) + L2(n− 1))-th order polynomial
function, hence it can be interpolated from the values at the
L1(m− 1) + L2(n− 1) + 1 evaluation points, which can
be obtained from the computation results of the tasks from
workers. Detailed decoding procedure is provided in the
Appendix B.

5. Related Work
In (Yu et al., 2017), the authors have suggested polynomial
codes, which use polynomial bases f(x) = x and g(x) =
xm. Polynomial codes achieve optimal recovery threshold
in aspect of computation load at workers.

On the other hand, Matdot has been introduced in (Dutta
et al., 2019) to reduce memory usage at workers and com-
munication load from the master to workers. It can be ac-
complished by column-wise and row-wise division of input



Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

 C̄1

...
C̄mn

 =

 pC(β1)
...

pC(βmn)

 =


 β1

0 f(β1) . . . g(β1) . . . f(β1)m−1g(β1)n−1

...
. . .

...
βmn

0 f(βmn) . . . g(βmn) . . . f(βmn)m−1g(βmn)n−1

⊗ I a
m

× a
m

×
 A1B1

...
AmBn


(10)

matrices A and B, respectively, which corresponds to the
opposite division direction of polynomial codes. However,
it require higher computation load than polynomial codes
under the same recovery threshold.

In (Dutta et al., 2019), (Yu et al., 2020), and (Soto et al.,
2019), general coding schemes dividing the input into both
row-wise and column-wise have been proposed, which are
termed as Polydot, entangled polynomial codes, and dual
entangled polynomial codes, respectively. Dual entangled
polynomial codes reduce the number of required task results
at the master by executing two matrix multiplications for a
single task. As a result, computation-return communication
overhead from workers to the master is mitigated.

These codes have been originally considered in the scenario
where only a single task is allocated to each worker. How-
ever, they can be easily extended to straggler-exploiting
scenario by assigning multiple tasks to a single worker.

Straggler-exploiting scenario was first suggested in (Kiani
et al., 2018). In order to allocate multiple tasks to each
worker, the authors have proposed product codes, which
apply different MDS codes to each input matrix. However,
product codes require stricter decoding conditions than other
codes (which use only one MDS code), since they use two
MDS codes for encoding, thus their decodability can not
be guaranteed by the fixed number of results, i.e., recovery
threshold. To reduce the communication load for task alloca-
tion in straggler-exploiting scenario, (Hong et al., 2020) has
suggested squeezed polynomial codes. Each worker com-
putes L tasks by multiplying L encoded matrices of A and 1
encoded matrix of B. This can be regarded as a special case
(L1 = 1) of Chebyshev polynomial codes. However, be-
cause they perform task entanglement for only one input B,
they cannot provide comparable gain on encoding complex-
ity, communication load, and memory usage compared to
Chebyshev polynomial codes. Specifically, their asymptotic
gains on encoding complexity, communication load, and
memory usage are O(L+ 1), whereas those of Chebyshev
polynomial codes are O(2

√
L).

6. Evaluation
In this section, we provide the performance of Chebyshev
polynomial codes (denoted as CC in this section), and com-
pare with following: i) polynomial codes (PC) (Yu et al.,
2017), ii) entangled polynomial codes (EP) (Yu et al., 2020),
iii) dual entangled polynomial codes (DEP) (Soto et al.,

2019), and iv) Matdot (MD) (Dutta et al., 2019).

The distributed matrix multiplication proceeds in a cluster
of Amazon EC2 cloud, while one t2.Xlarge node is used as
the master and twelve t2.micro nodes are used as workers.
Implementation of distributed computing system is done by
using MPI4py (Dalcı́n et al., 2005). To simulate stragglers in
the large-scale distributed computing scenario, we randomly
pick stragglers among workers with straggler-probability
0.2, and run background thread at the stragglers which slows
them down than other workers.

Three metrics are evaluated to estimate the performance of
coding schemes: overall processing time, recovery threshold
at the master, and memory usage at each worker. Further-
more, we measure processing times for every stage of the
distributed computing procedure. To do so, we divide over-
all processing time into i) encoding time, ii) task-allocation
time from the master to workers, iii) computation and task-
return time from workers to the master, and iv) decoding
time. Computation and task-return time denotes the elapsed
time from the moment every worker receive encoded matri-
ces to the moment the master receives required number of
computation results to obtain the final product.

We run the experiments to multiply two input matrices A
andB, each of which has the size of 2100 by 1800 and 1800
by 2100, respectively. Matrices are randomly generated as
two Numpy matrices, and each experiment is repeated 20
times. We indicate the average results on the Figure 4 and 5.

Table 1. Parameter setting for Case 1, 2, and 3
CC PC EP DEP MD

Case 1. L = 2 m 2 2 2 2 1
L1 = 1 n 2 2 1 1 1
L2 = 2 p 1 1 2 2 3
Case 2. L = 6 m 3 3 2 2 1
L1 = 2 n 3 3 2 2 1
L1 = 3 p 1 1 2 2 9
Case 3. L = 12 m 4 4 2 2 1
L1 = 3 n 4 4 2 2 1
L2 = 4 p 1 1 4 4 10

Experiments are performed for three cases, which have
different parameter value L (number of the tasks allocated
at each worker). Parameter setting of the coding schemes
for three cases are is in Table 1. In the setting, p denotes the
division parameter that decides column-wise division of A



Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

(a) overall processing time (b) recovery threshold (c) memory usage at each worker

Figure 4. Comparison of overall processing time, recovery threshold at the master, and memory usage at each worker

Figure 5. Processing times for every stage of distributed computing
procedure in Case 2.

and row-wise division of B. Since CC and PC do not divide
the matrix in this way, we use fixed value p = 1 for CC
and PC. More experimental results including other types of
matrices are provided in Appendix C.

In Fig. 4, we compare the performance in terms of (a) over-
all processing time, (b) recovery threshold, and (c) memory
usage at each worker. We can see that CC achieves the
smallest overall processing time in all three cases. It is re-
markable that CC requires relatively higher recovery thresh-
old compared to other coding schemes in several cases, but
it does not lead to an increase in overall processing time.
This is due to the fact that CC efficiently reduces encoding
complexity and task-allocation communication load. Ad-
ditionally, although the number of tasks assigned to each
worker increases in Case 1, 2 and 3, CC achieves similar
level of memory usage and overall processing time for all
cases, while others show increasing memory usage and over-
all processing time. It can be achieved by task entanglement
of CC, reducing the number of encoded matrices for each
worker. As a result, CC achieves similar level of memory us-
age with MD, i.e., the memory efficient coding scheme, for
Cases 1 and 2. Furthermore, CC even accomplishes lower
memory usage for Case 3, while achieving significantly
smaller overall processing time than MD in all cases.

We show processing times for every stage of distributed
computing procedure of Case 2 in Fig. 5. The master gen-
erates L1 + L2 = 5 encoded matrices to assign 6 tasks to
each worker in CC, while other coding schemes generates
2L = 12 encoded matrices for 6 tasks. Accordingly, it
achieves the smallest encoding time, and task-allocation
time comparable to that of the smallest. In addition, CC

and PC require the smallest computation and task-return
time, and decoding time. This is because CC and PC use
p = 1, while EP, DEP, and MD use p > 1, which increases
computation load at workers and computation-return com-
munication load from workers to the master under the same
recovery threshold. Although MD achieves smaller task-
allocation time than CC, CC attains smaller encoding, com-
putation and task-return, and decoding time by the proposed
task entanglement scheme. Therefore, it requires smaller
overall processing time in a distributed computing. More-
over, DEP is the only scheme that achieves smaller decoding
time than CC in this case. Decoding complexity depends
on the size of computation results from workers to the mas-
ter and recovery threshold. Since DEP achieves small size
of computation results and requires the smallest recovery
threshold, it achieves the smallest decoding time. However,
DEP requires a larger number of encoded matrices for each
task than CC, which results in larger encoding time and
task-allocation time.

7. Conclusion
The existence of stragglers are considered as a major bot-
tleneck delaying the overall processing time in distributed
computing. As a solution, coded distributed computing has
been proposed to handle the straggler issue. However, ex-
isting coding schemes have only considered a single task
allocation to each worker, or have not efficiently leveraged
the property of multi-task allocation. In this paper, we pro-
pose Chebyshev polynomial codes, which can achieve dra-
matic order-wise improvement (from L to

√
L) in encoding

complexity and communication load by task entanglement.
We propose the concept of task entanglement in a straggler-
exploiting scenario, and show that it can be accomplished
by using Chebyshev polynomial as a polynomial basis in
encoding function. Consequently, Chebyshev polynomial
codes are shown to provide significant reduction in overall
processing time in a distributed computing for matrix multi-
plication, which is key computational operation in modern
deep learning.



Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

Acknowledgements
This work is in part supported by National Re-
search Foundation of Korea (NRF) grant funded by
the Korea government(MSIT) (No.2021R1A2C2014504,
2021R1A4A1030898, 2020R1G1A1003759), Bio-Mimetic
Robot Research Center Funded by Defense Acquisition Pro-
gram Administration, Agency for Defense Development
(UD190018ID), INMAC, and BK21-plus.

References
Block, H. D. and Thielman, H. P. Commutative polynomi-

als. The quarterly journal of mathematics, 2(1):241–243,
1951.

Dalcı́n, L., Paz, R., and Storti, M. Mpi for python. Journal
of Parallel and Distributed Computing, 65(9):1108–1115,
2005.

Das, A. B. and Ramamoorthy, A. Coded sparse matrix com-
putation schemes that leverage partial stragglers. CoRR,
abs/2012.06065, 2020. URL https://arxiv.org/
abs/2012.06065.

Dean, J. and Barroso, L. A. The tail at scale. Commun.
ACM, 56(2):74–80, 2013.

Dutta, S., Fahim, M., Haddadpour, F., Jeong, H., Cadambe,
V., and Grover, P. On the optimal recovery threshold
of coded matrix multiplication. IEEE Transactions on
Information Theory, 66(1):278–301, 2019.

Fahim, M. and Cadambe, V. R. Numerically stable polyno-
mially coded computing. IEEE Transactions on Informa-
tion Theory, 67(5):2758–2785, 2021.

Hong, S., Yang, H., and Lee, J. Squeezed polynomial codes:
Communication-efficient coded computation in straggler-
exploiting distributed matrix multiplication. IEEE Access,
8:190516–190528, 2020.

Huang, P., Guo, C., Zhou, L., Lorch, J. R., Dang, Y., Chinta-
lapati, M., and Yao, R. Gray failure: The achilles’ heel
of cloud-scale systems. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems, HotOS 2017,
Whistler, BC, Canada, May 8-10, 2017, pp. 150–155.
ACM, 2017.

Kedlaya, K. S. and Umans, C. Fast polynomial factorization
and modular composition. SIAM Journal on Computing,
40(6):1767–1802, 2011.

Kiani, S., Ferdinand, N., and Draper, S. C. Exploitation
of stragglers in coded computation. In 2018 IEEE Inter-
national Symposium on Information Theory (ISIT), pp.
1988–1992. IEEE, 2018.

Kim, M., Yang, H., and Lee, J. Private coded matrix multi-
plication. IEEE Transactions on Information Forensics
and Security, 15:1434–1443, 2019.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D. S.,
and Ramchandran, K. Speeding up distributed machine
learning using codes. IEEE Trans. Inf. Theory, 64(3):
1514–1529, 2018.

Soto, P., Li, J., and Fan, X. Dual entangled polynomial
code: Three-dimensional coding for distributed matrix
multiplication. In International Conference on Machine
Learning, pp. 5937–5945. PMLR, 2019.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N.
Gradient coding: Avoiding stragglers in distributed learn-
ing. In International Conference on Machine Learning,
pp. 3368–3376. PMLR, 2017.

Wang, D., Joshi, G., and Wornell, G. Efficient task replica-
tion for fast response times in parallel computation. In
The 2014 ACM international conference on Measurement
and modeling of computer systems, pp. 599–600, 2014.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Poly-
nomial codes: an optimal design for high-dimensional
coded matrix multiplication. In Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pp. 4406–4416, 2017.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Straggler
mitigation in distributed matrix multiplication: Funda-
mental limits and optimal coding. IEEE Transactions on
Information Theory, 66(3):1920–1933, 2020.

https://arxiv.org/abs/2012.06065
https://arxiv.org/abs/2012.06065

