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Abstract
Compared to ordinary function minimization
problems, min-max optimization algorithms en-
counter far greater challenges because of the ex-
istence of periodic cycles and similar phenom-
ena. Even though some of these behaviors can
be overcome in the convex-concave regime, the
general case is considerably more difficult. With
this in mind, we take an in-depth look at a com-
prehensive class of state-of-the art algorithms and
prevalent heuristics in non-convex / non-concave
problems, and we establish the following general
results: a) generically, the algorithms’ limit points
are contained in the internally chain-transitive
(ICT) sets of a common, mean-field system; b) the
attractors of this system also attract the algorithms
in question with arbitrarily high probability; and
c) all algorithms avoid the system’s unstable sets
with probability 1. On the surface, this provides a
highly optimistic outlook for min-max algorithms;
however, we show that there exist spurious attrac-
tors that do not contain any stationary points of
the problem under study. In this regard, our work
suggests that existing min-max algorithms may be
subject to inescapable convergence failures. We
complement our theoretical analysis by illustrat-
ing such attractors in simple, two-dimensional,
almost bilinear problems.

1. Introduction
Consider a min-max optimization – or saddle-point – prob-
lem of the form

min
x∈X

max
y∈Y

Φ(x, y). (SP)
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Given an algorithm for solving (SP), it is then natural to
ask:

Where does the algorithm converge to? (?)

The goal of our paper is to treat (?) in a general non-
convex / non-concave setting and to provide answers for
a comprehensive array of state-of-the-art algorithms.

Related work. This question has attracted significant in-
terest in the machine learning literature because of its poten-
tial implications to generative adversarial networks (Good-
fellow et al., 2014), robust reinforcement learning (Ka-
malaruban et al., 2020; Pinto et al., 2017), and other models
of adversarial training (Madry et al., 2018). In this broad set-
ting, it has become empirically clear that the joint training of
two neural networks (NNs) is fundamentally more difficult
than that of a single NN of similar size and architecture.
The latter task boils down to successfully finding a (good)
local minimum of a non-convex function, so it is instructive
to revisit (?) in the context of non-convex minimization.

In this case, the existing convergence theory for stochastic
gradient descent (SGD) – the “gold standard” for deep NN
training – can be informally summed up as follows:

1. SGD always converges to critical points.

2. SGD does not converge to strict saddle points or other
spurious solutions.

These results could be seen as plausible expectations for
algorithmic proposals to solve (SP). Unfortunately however,
there are well-known examples of simple bilinear min-max
games where stochastic gradient descent/ascent (SGDA),
the min-max analogue of SGD, leads to recurrent orbits
that do not contain any critical point of Φ. Such spurious
convergence phenomena arise from the min-max structure
of (SP) and have no counterpart in minimization problems.

This well-documented failure of SGDA has led to an exten-
sive literature that is impossible to survey here. As a purely
indicative – and highly incomplete – list, we mention the
works of Daskalakis et al. (2018), Gidel et al. (2019a), Mer-
tikopoulos et al. (2019) and Mokhtari et al. (2019a), who
studied how these failures can be overcome in deterministic
bilinear problems by means of an extra-gradient step (or an
optimistic proxy thereof). By contrast, in stochastic prob-
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lems, the convergence of optimistic / extra-gradient methods
is compromised unless additional, tailor-made mitigation
mechanisms are put in place – such as variance reduction
(Chavdarova et al., 2019; Iusem et al., 2017) or variable
step-size schedules (Hsieh et al., 2020). This shows that the
convergence of min-max training methods can be particu-
larly fragile, even in simple, bilinear problems.

Beyond the class of convex-concave problems analyzed
above, another vigorous thread of research has focused
on the local analysis of a min-max optimization algo-
rithm close to the game’s critical points – typically sub-
ject to a second-order sufficient condition; cf. Adolphs
et al. (2019); Daskalakis & Panageas (2018); Fiez & Ratliff
(2020); Grimmer et al. (2020a;b); Heusel et al. (2017); Hsieh
et al. (2019a); Mazumdar et al. (2020); Nagarajan & Kolter
(2017). The global analysis is much more challenging and
requires strong structural assumptions such as variational
coherence (Mertikopoulos & Zhou, 2019; Mertikopoulos
et al., 2019) and/or the existence of a Minty-type solution
(Liu et al., 2019a; Zhou et al., 2017; 2020). In the absence
of such conditions, Flokas et al. (2019; 2021) showed that
periodic and/or Poincaré recurrent behavior may persist in
deterministic, continuous-time min-max dynamics.

From a practical viewpoint, these studies have led to a broad
array of sophisticated algorithmic proposals for solving
min-max games; we review many of these algorithms in
Section 3. However, a central question that remains unan-
swered is whether it is theoretically plausible to expect a
qualitatively different behavior relative to SGDA in the full
spectrum of non-convex / non-concave games. Our work
aims to provide concrete answers to this question.

Our contributions. Our first contribution is to provide a
unified framework for a comprehensive selection of first-
and zeroth-order min-max optimization methods (including
SGDA, proximal point methods, optimistic / extra-gradient
schemes, their alternating variants, etc.). The principal in-
gredients of our approach are twofold: (i) a generalized
Robbins–Monro (RM) template that is wide enough to in-
clude all the above algorithms; and (ii) an analytic frame-
work leveraging the ordinary differential equation (ODE)
method of stochastic approximation (Benaïm, 1999; Kush-
ner & Yin, 1997). Based on these two elements, we prove a
precise version of the following general principle: the long-
run behavior of all generalized RM methods can be mapped
to the study of the same, mean-field dynamical system.

In more detail, we show that the limit points of all general-
ized RM schemes belong to an internally chain-transitive
(ICT) set of these mean dynamics. The notion of an ICT
set is central in the study of dynamical systems (Benaïm &
Hirsch, 1996; Bowen, 1975; Conley, 1978) and, in some
cases, they are easy to characterize: in minimization prob-

lems (and possibly up to a “hidden” transformation in the
spirit of Flokas et al., 2019), the dynamics’ ICT sets are the
function’s critical points. As such, in this case, we recover
exactly the min-min landscape of SGD – but for an entire
family of algorithms, not just SGD.

Moving on to general min-max problems, the structure of
the dynamics’ ICT sets could be considerably more compli-
cated, so we provide two further, complementing results:

1. With high probability, all generalized RM methods con-
verge locally to attractors of the mean dynamics.

2. With probability 1, all generalized RM methods avoid
the mean dynamics’ unstable invariant sets.

As far as we are aware, there are no results of comparable
generality in the min-max optimization literature. From
a high level, these theoretical contributions would seem
to be analogous to existing results for SGD in minimiza-
tion problems (i.e., that SGD converges to critical points
while avoiding strict saddles). However, this similarity is
only skin-deep: as we show by a range of concrete, almost
bilinear examples, min-max optimization algorithms may
encounter a series of immovable roadblocks. Specifically,

• An ICT set may contain a globally attracting limit cycle,
and the range of algorithms under consideration cannot
escape it – even though extra-gradient methods escape
recurrent orbits in exact bilinear problems. This suggests
that bilinear games may not be representative as a testbed
for GAN training algorithms and heuristics.

• There exist unstable critical points whose neighborhood
contains an (almost) globally stable ICT set. Therefore, in
sharp contrast to minimization, “avoiding unstable critical
points” does not imply “escaping unstable critical points”
in min-max problems.

• There exist stable min-max points whose basin of attrac-
tion is “shielded” by an unstable ICT set. As a result, if
run with non-negligible noise in the gradients, then, with
high probability, existing algorithms are repelled away
from the desirable solutions.

Our results indicate a steep, qualitative increase in diffi-
culty when passing from min-min to min-max problems,
in line with concurrent works by Daskalakis et al. (2020)
and Letcher (2020). In plain terms, Daskalakis et al. (2020)
proved the impossibility of attaining a critical point in poly-
nomial time in deterministic, constrained min-max games.
In a similar spirit, the concurrent work of Letcher (2020)
showed that there are min-max games where all “reason-
able” deterministic algorithms may fail to converge. By
contrast, our paper focuses on the occurrence of spurious
convergence phenomena with probability 1 in stochastic
algorithms. In addition, our avoidance result (Theorem 3)
can be seen as a stochastic counterpart of the “reasonable-
ness” requirement of Letcher (2020), thereby enriching the
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applicability of the results therein. Taken together, these
works and our own provide a complementing look into the
fundamental limits of min-max optimization algorithms.

2. Setup and preliminaries
Throughout our paper, we focus on general unconstrained
problems with X = RdX , Y = RdY , and Φ assumed C1

and Lipschitz. To simplify notation, we will let z = (x, y),
Z = X × Y and d = dX + dY . In addition, we will write

V (z) ≡ (Vx(x, y), Vy(x, y)) := (−∇xΦ(x, y),∇yΦ(x, y))

for the (min-max) gradient field of Φ, assumed here to be
Lipschitz; in some cases we may also require V to be C1

and write JV (z) for its Jacobian. Finally, we will assume
that V satisfies the weak asymptotic coercivity condition

〈V (z), z〉 ≤ 0 for all sufficiently large z. (1)

This condition is a weaker version of standard coercivity
conditions in the literature (Bauschke & Combettes, 2017),
it is satisfied by all convex-concave problems (including bi-
linear ones) and, importantly, it does not impose any growth
requirements on the elements of V (as standard coercivity
conditions do). We discuss it further in Appendix A.

A solution of (SP) is a tuple z∗ = (x∗, y∗) with Φ(x∗, y) ≤
Φ(x∗, y∗) ≤ Φ(x, y∗) for all x ∈ X , y ∈ Y; likewise, a
local solution of (SP) is a tuple (x∗, y∗) that satisfies this
inequality locally. Finally, a state z∗ with V (z∗) = 0 is said
to be a critical (or stationary) point of Φ.

From an algorithmic standpoint, we will focus exclusively
on the black-box optimization paradigm (Nesterov, 2004)
with stochastic first-order oracle (SFO) feedback. Algo-
rithms with a more complicated feedback structure, such
as a best-response oracle (Fiez et al., 2019; Jin et al., 2019;
Naveiro & Insua, 2019) or based on mixed-strategy sam-
pling (Domingo-Enrich et al., 2020; Hsieh et al., 2019b;
Kamalaruban et al., 2020), are not considered in this work.

Specifically, when called at z = (x, y) with random seed
ω ∈ Ω, an SFO returns a random vector V(z;ω) ≡
(Vx(z;ω),Vy(z;ω)) of the form

V(z;ω) = V (z) + U(z;ω) (SFO)

where the error term U(z;ω) captures all sources of uncer-
tainty in the model (e.g., the selection of a minibatch in
GAN training, system state observations in reinforcement
learning, etc.). As is standard in the literature, we require
U(z;ω) to be zero-mean and finite-variance:

∀z ∈ Z, E[U(z;ω)] = 0 and E[‖U(z;ω)‖2] ≤ σ2. (2)

These will be our blanket assumptions throughout.

3. Core algorithmic framework
3.1. The Robbins–Monro template

Much of our analysis will revolve around iterative algo-
rithms that can be cast as generalized Robbins–Monro algo-
rithms (Robbins & Monro, 1951) of the general form

Zn+1 = Zn + γn[V (Zn) +Wn], (RM)

where

1. Zn = (Xn, Yn) ∈ Z denotes the state of the algorithm
at each stage n = 1, 2, . . . ;

2. Wn is an abstract error term described in detail below;

3. γn is the method’s step-size hyperparameter, and is typi-
cally of the form γn ∝ 1/np for some p ≥ 0. Through-
out the paper, we will always assume

∑
n γn =∞ and

limn γn = 0.

In the above, the error term Wn is generated after Zn;
thus, by default, Wn is not adapted to the history Fn :=
H(Z1, . . . , Zn) of Zn. For concision, we will also write

Vn = V (Zn) +Wn (3)

so Vn can be seen as a noisy estimator of V (Zn). In more
detail, to differentiate between “random” (zero-mean) and
“systematic” (non-zero-mean) errors in Vn it will be conve-
nient to further decompose the error process Wn as

Wn = Un + bn (4)

where bn = E[Wn | Fn] represents the systematic compo-
nent and Un = Wn − bn captures the random, zero-mean
part. In view of all this, we will consider the following
descriptors for Wn:

a) Bias: Bn = E[‖bn‖ |Fn]. (5a)

b) Variance: σ2
n = E[‖Un‖2|Fn]. (5b)

Note that (conditioned on Fn) both Bn and σn are random;
this will play an important part in the sequel.

3.2. Specific algorithms

In the rest of this section, we discuss how a wide range
of algorithms used in the literature can be seen as special
instances of our general Robbins–Monro (RM) template.

H Algorithm 1 (Stochastic gradient descent/ascent). The
widely used stochastic gradient descent/ascent (SGDA) al-
gorithm – also known as the Arrow–Hurwicz method (Arrow
et al., 1958) – queries an SFO and proceeds as:

Zn+1 = Zn + γn V(Zn;ωn), (SGDA)

where ωn ∈ Ω (n = 1, 2, . . . ) is an independent and identi-
cally distributed (i.i.d.) sequence of oracle seeds. As such,
(SGDA) admits a straightforward RM representation by tak-
ing Wn = Un = U(Zn;ωn) and bn = 0. N
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H Algorithm 2 (Proximal point method). The (determinis-
tic) proximal point method (PPM) (Rockafellar, 1976) is an
implicit update rule of the form:

Zn+1 = Zn + γnV (Zn+1). (PPM)

The RM representation of (PPM) is obtained by taking
Wn = bn = V (Zn+1)− V (Zn) and Un = 0. N

H Algorithm 3 (Stochastic extra-gradient). Since (PPM)
is only implicitly defined, one can rarely run it in practice.
Nonetheless, it is possible to approximate (PPM) by locally
querying two (stochastic) gradients at each iteration (Ne-
mirovski, 2004b). This can be achieved by the stochastic
extra-gradient (SEG):

Z+
n = Zn + γn V(Zn;ωn),

Zn+1 = Zn + γn V(Z+
n ;ω+

n ).
(SEG)

To recast (SEG) in the Robbins–Monro framework, simply
take Wn = V(Z+

n ;ω+
n ) − V (Zn), i.e., Un = U(Z+

n ;ω+
n )

and bn = V (Z+
n )− V (Zn). N

H Algorithm 4 (Optimistic gradient / Popov’s extra-gra-
dient). Compared to (SGDA), the scheme (SEG) involves
two oracle queries per iteration, which is considerably more
costly. An alternative iterative method with a single oracle
query per iteration was proposed by Popov (1980):

Z+
n = Zn + γn V(Z+

n−1;ωn−1),

Zn+1 = Zn + γn V(Z+
n ;ωn).

(OG/PEG)

Popov’s extra-gradient has been rediscovered several times
and is more widely known as the optimistic gradient (OG)
method in the machine learning literature (Chiang et al.,
2012; Daskalakis et al., 2018; Hsieh et al., 2019a; Rakhlin
& Sridharan, 2013). In unconstrained problems, (OG/PEG)
turns out to be equivalent to a number of other existing
methods, including “extrapolation from the past” (Gidel
et al., 2019a) and reflected gradient (Malitsky & Tam, 2020).
Its Robbins–Monro representation is obtained by setting
Wn = V(Z+

n ;ωn) − V (Zn), i.e., Un = U(Z+
n ;ωn) and

bn = V (Z+
n )− V (Zn). N

H Algorithm 5 (Kiefer–Wolfowitz). When first-order feed-
back is unavailable, a popular alternative is to obtain gra-
dient information of Φ via zeroth-order observations (Liu
et al., 2019b). This idea can be traced back to the semi-
nal work of Kiefer & Wolfowitz (1952) and the subsequent
development of the simultaneous perturbation stochastic ap-
proximation (SPSA) method by Spall (1992). In our setting,
this leads to the recursion:

Vn = ±(d/δn) Φ(Zn + δnωn)ωn,

Zn+1 = Zn + γnVn,
(SPSA)

where δn ↘ 0 is a vanishing “sampling radius” parameter,
ωn is drawn uniformly at random from the composite basis

Ω = EX ∪ EY of Z = X × Y , and the “±” sign is equal
to −1 if ωn ∈ EX and +1 if ωn ∈ EY . Viewed this way,
the interpretation of (SPSA) as a Robbins–Monro method
is immediate; furthermore, a straightforward calculation
(that we defer to Appendix B.3) shows that the sequence
of gradient estimators Vn in (SPSA) has Bn = O(δn) and
σ2
n = O(1/δ2n). N

Further examples that can be cast in the RM framework in-
clude the negative momentum method (Gidel et al., 2019b),
generalized OG schemes (Mokhtari et al., 2019b), the
Chambolle-Pock algorithm (Chambolle & Pock, 2011), the
“prediction method” of Yadav et al. (2017), and centripetal
acceleration (Peng et al., 2020); the analysis is similar and
we omit the details. Certain scalable second-order methods
can also be viewed as RM schemes, but the driving vector
field V is no longer the gradient field of Φ; we discuss this
in the supplement.

3.3. Alternating updates and moving averages

There are two extremely common heuristics for practitioners
in applying min-max algorithms to real applications: alter-
nating and averaging. An alternating algorithm for (SP)
updates the x and y variables sequentially (instead of simul-
taneously as in Section 3.2). An averaged algorithm takes
the next state as a convex combination of Zn and Zn+1 in
(RM), cf. Karras et al. (2018).

An important feature of our framework is that it captures
alternating and averaged algorithms in a seamless manner.
Indeed, introducing alternating updates or a moving average
in RM schemes results in another RM scheme:

Lemma 1. Let Zn+1 = Zn + γn[V (Zn) +Wn] be an RM
scheme whereWn = Un+bn as in (4). Then its α-averaged
version (where 0 < α < 1), defined as

Z ′n+1 = Zn + γn[V (Zn) +Wn],

Zn+1 = αZ ′n+1 + (1− α)Zn,
(avg-RM)

is also an RM scheme: Zn+1 = Zn + αγn[V (Zn) +Wn].

Remark 3.1. Lemma 1 can be easily adapted to the scenario
where one only averages either the Xn or Yn variable.

Lemma 2. Let Zn+1 = Zn + γn[V (Zn) +Wn] be an RM
scheme where Wn = Un + bn as in (4). Then its alternating
version, defined as

Xn+1 = Xn + γn[Vx(Xn, Yn) +Wx,n],

Yn+1 = Yn + γn [Vy(Xn+1, Yn) +Wy,n],
(alt-RM)

is also an RM scheme: Zn+1 = Zn +γn[V (Zn)+Un +b′n]
where

b′n = bn +

[
0

Vy(Xn+1, Yn)− Vy(Xn, Yn)

]
.
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Figure 1: Comparison of different RM schemes for bilinear games Φ(x, y) = xy, x, y ∈ R. From left to right: (a) gradient descent/ascent;
(b) the mean dynamics (MD); (c) extra-gradient.

Remark 3.2. One can easily generalize Lemma 2 to the
“(k1, k2)-RM schemes” where one performs k1 updates for
x and then k2 updates for y (here k1, k2 ∈ N are arbi-
trary but fixed). The resulting scheme will still be an RM
scheme. In particular, our framework captures the popu-
lar (k1, k2) = (1, 5) variant of (SGDA) used in the semi-
nal works of Goodfellow et al. (2014) and Arjovsky et al.
(2017). In view of Lemmas 1–2, Remark 3.2, and a sim-
ple calculation (see (B.18)), all of our results on first-order
methods (e.g., Algorithms 1–4) also apply to their averag-
ing/alternating and the more general (k1, k2) versions.

4. Convergence analysis
4.1. Overview: Continuous vs. discrete time

The key in providing a unified treatment of all algorithms in
Section 3 is the reduction of (RM) to the mean dynamics

ż(t) = V (z(t)). (MD)

To see why (MD) can capture the limiting behavior of a vast
family of RM schemes beyond GDA, let us illustrate the
high-level intuition on the deterministic version of Algo-
rithm 3 (Un = 0).

Since Φ and V are assumed to be Lipschitz (say with con-
stants M and L), we see that the bias term in Algorithm 3
satisfies

‖bn‖ = ‖V (Z+
n )− V (Zn)‖ ≤ L‖Z+

n − Zn‖
= γnL‖V (Zn)‖ ≤ γnLM = O(γn).

As a result, we can rewrite Algorithm 3 as

Zn+1 − Zn

γn
= V (Zn) +O(γn). (6)

If γn ↘ 0, we should then expect (6) to converge to (MD).
More generally, if the error term Wn in (RM) is sufficiently
well-behaved, we should expect the iterates of (RM) and the
solutions of (MD) to eventually come together.

Connecting (RM) to (MD) has proved very fruitful when
the latter comprises a gradient system, i.e., V = −∇f
for some (possibly non-convex) f : Z → R: Modulo mild
assumptions, the systems (RM) and (MD) are known to
both converge to the critical set of f (Benveniste et al.,
1990; Bertsekas & Tsitsiklis, 2000; Kushner & Clark, 1978;
Kushner & Yin, 1997; Ljung, 1977).

On the other hand, bona fide min-max problems are consid-
erably more involved. The most widely known illustration
is given by the bilinear objective Φ(x, y) = xy: in this case
(see Fig. 1), the trajectories (MD) comprise periodic orbits
of perfect circles centered at the origin (the unique critical
point of Φ; cf. Mertikopoulos et al., 2018). However, the
behavior of different RM schemes can vary wildly, even in
the absence of noise (σ = 0): trajectories of (SGDA) spiral
outwards, each converging to an initialization-dependent
periodic orbit; instead, (SEG) trajectories spiral inwards,
eventually converging to the solution z∗ = (0, 0).

This particular difference between gradient and extra-
gradient schemes has been well-documented in the literature
(Daskalakis et al., 2018; Gidel et al., 2019a; Mertikopoulos
et al., 2019). More pertinent to our theory, it also raises
several key questions:

1. What is the precise link between RM methods and the
mean dynamics (MD)?

2. When does (MD) yield accurate predictions for the long-
run behavior of an RM method?

Below, we devote Sections 4.2–4.3 to the first question, and
Section 4.4 to the second.

4.2. Connecting (RM) to (MD)

We begin by introducing a measure of “closeness” between
the iterates of (RM) and the solution orbits of (MD). To
do so, let τn =

∑n
k=1 γk denote the “effective time” that

has elapsed at the n-th iteration of (RM), and define the
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continuous-time interpolation Z(t) of Zn as

Z(t) = Zn +
t− τn

τn+1 − τn
(Zn+1 − Zn) (7)

for all t ∈ [τn, τn+1], n ≥ 1. To compare Z(t) to the
solution orbits of (MD), we will further consider the flow
Θ: R+ × Z → Z of (MD), which is simply the orbit of
(MD) at time t ∈ R+ with an initial condition z(0) =
z ∈ Z . We then have the following notion of “asymptotic
closeness”:

Definition 1. Z(t) is an asymptotic pseudotrajectory (APT)
of (MD) if, for all T > 0, we have:

limt→∞ sup0≤h≤T ‖Z(t+ h)−Θh(Z(t))‖ = 0. (8)

This comparison criterion is due to Benaïm & Hirsch (1996)
and it plays a central role in our analysis. In words, it simply
posits that Z(t) eventually tracks the flow of (MD) with
arbitrary accuracy over windows of arbitrary length; as a
result, if Zn is an APT of (MD), it is reasonable to expect
its behavior to be closely correlated to that of (MD).

Our first result below makes this link precise. Consider an
RM scheme which satisfies

Bn → 0 (a.s.) and
∑∞

n=1 E[γnBn] <∞, (A1)∑∞
n=1 E[γ2n(1 +B2

n + σ2
n)] <∞. (A2)

We then have:

Theorem 1. Suppose that Assumptions (A1)–(A2) hold.
Then Zn is an APT of (MD) w.p.1.

4.3. Applications and examples

Of course, applying Theorem 1 to a specific algorithm
(e.g., as in Section 3) would first require verifying Assump-
tions (A1)–(A2). However, even though the noise U(z;ω)
in (SFO) is assumed zero-mean and finite-variance, this
does not imply that the error term Wn = Un + bn in Algo-
rithms 2–5 enjoys the same guarantees. For example, the
RM representation of Algorithms 2–4 has non-zero bias,
while Algorithm 5 has non-zero bias and unbounded vari-
ance (the latter behaving as O(1/δ2n) with δn → 0).

In the following proposition we prove that Algorithms 1–5
generate asymptotic pseudotrajectories of (MD) for the typ-
ical range of hyperparameters used to ensure almost sure
convergence of stochastic first-order methods.

Proposition 1. Let Zn be a sequence generated by any of
the Algorithms 1–5. Assume further that

a) For first-order methods (Algorithms 1–4), the algo-
rithm is run with SFO feedback satisfying (2) and a
step-size γn such thatA/n ≤ γn ≤ B/

√
n(log n)1+ε

for some A,B, ε > 0.

b) For zeroth-order methods (Algorithm 5), the algorithm
is run with parameters γn and δn such that limn(γn +
δn) = 0,

∑
n γn = ∞, and

∑
n γ

2
n/δ

2
n < ∞ (e.g.,

γn = 1/n, δn = 1/n1/3).

Then Zn is almost surely an APT of (MD).

4.4. The limit sets of RM schemes

The APT results in Sections 4.2–4.3 can be heuristically
interpreted as: “RM schemes eventually behave as some or-
bits of (MD).” We now further ask: What are the candidate
limit orbits of (MD) for RM schemes?

To shed some light on the question, let us recall that, in non-
convex minimization problems, stochastic gradient descent
(SGD) enjoys the following properties:

(I) SGD converges to the function’s set of critical points
(Bertsekas & Tsitsiklis, 2000; Ljung, 1977).

(II) SGD avoids unstable critical points (Ge et al., 2015;
Mertikopoulos et al., 2020; Pemantle, 1990).

This leads to the following “law of the excluded middle”:
generically, the only solution candidates left for SGD are sta-
ble critical points, i.e., the local minimizers of the problem’s
minimization objective.

In the remaining of this section, we will assimilate (I)
and (II) in the context of RM schemes applied to (SP).

4.4.1. THE LONG-RUN LIMIT OF RM SCHEMES

We first focus on generalizing (I) for min-max optimiza-
tion. To proceed, recall first that critical points alone cannot
capture the broad spectrum of algorithmic behaviors when
(MD) is not a gradient system: already in Fig. 1 we see
a critical point surrounded by spurious periodic orbits. In
addition, in dynamical systems many other spurious con-
vergence phenomena are known, such as homoclinic loops,
limit cycles, or chaos. To account for this considerably
richer landscape, we will need some definitions from the
theory of dynamical systems.

Definition 2 (Benaïm, 1999). Let S be a nonempty compact
subset of Z . Then:

a) S is invariant if Θt(S) = S for all t ∈ R.

b) S is attracting if it is invariant and there ex-
ists a compact neighborhood K of S such that
limt→∞ dist(Θt(z),S) = 0 uniformly in z ∈ K.

c) S is internally chain-transitive (ICT) if it is invariant
and Θ|S admits no proper attractors in S.

Remark. Equivalently, ICT sets can be viewed as “minimal
connected periodic orbits up to arbitrarily small numerical
errors”, cf. Benaïm (1999, Prop. 5.3). The definition above
is more convenient to work with because it provides the key
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insights in Section 4.4.3 below.

Our next result shows that, with probability 1, all limit
points of (RM) lie in these “approximate periodic orbits”:
Theorem 2. If Assumptions (A1)–(A2) hold, then Zn con-
verges almost surely to an ICT set of Φ.
Corollary 1. Let Zn be a sequence generated by any of the
Algorithms 1–5 with parameters as in Proposition 1. Then
Zn converges almost surely to an ICT set of Φ.

4.4.2. AVOIDANCE OF UNSTABLE POINTS AND SETS

Our next result provides an avoidance result for RM
schemes in min-max optimization. In analogy with function
minimization problems, we will focus on unstable invari-
ant sets of (MD), i.e., invariant sets that admit a nontrivial
unstable manifold (for an in-depth discussion and precise
definition, see Shub, 1987 and Appendix C.1).

In generic minimization problems, these are precisely the
sets of strict saddle points of the function being minimized.
However, since general min-max problems do not comprise
a gradient system, (MD) could exhibit a plethora of unstable
sets, not containing any stationary points of Φ (e.g., periodic
orbits, heteroclinic networks, etc.). On account of the above,
our result below is stated in terms of invariant sets – and not
only points. For convenience, we will assume that V is C2

and γn is as in Proposition 1.
Theorem 3. Let K be an unstable invariant set of (MD)
(e.g., an unstable critical point or unstable periodic or-
bit). Assume further that the noise in (RM) satisfies:
(i) supn‖Un‖ < ∞ with probability 1; and (ii)
infz:‖z‖=1 E[〈Un, z〉+ | Fn] > 0. Then the sequence Zn

generated by any of the Algorithms 1–4 satisfies

P (limn→∞ dist(Zn,K) = 0) = 0.

Remark 4.1. We note that Assumptions (i) and (ii) above
are standard in the literature for avoidance results of SGD
(Benaïm, 1999; Mertikopoulos et al., 2020; Pemantle, 1990),
and are significantly lighter than other “isotropic noise” as-
sumptions that are common in the literature (Ge et al., 2015).
Specifically, even though Assumption (ii) looks somewhat
obscure, it only posits that the noise is not degeneratively
equal to zero along certain directions in space; for a more
detailed discussion, see Appendix C.1. We also stress that
neither of these assumptions is required for the rest of our
paper.

4.4.3. WHEN DO RM SCHEMES BEHAVE THE SAME?

So far, we have successfully generalized (I) and (II) to the
context of (SP) as follows:1

1To see why this is really a generalization, simply note that the
only ICT sets of V = −∇ f are connected critical points of f ; cf.
Proposition C.1.

(I-SP) RM schemes always converge to ICT sets, and

(II-SP) RM schemes always avoid invariant sets.

Nonetheless, (I-SP) and (II-SP) still fail to explain the dis-
tinct behaviors of RM schemes in bilinear objectives: Why
does SGDA converge only to periodic orbits, while deter-
ministic SEG only to critical points? Or, more generally,

Are different RM schemes more likely to exhibit
different convergence topologies – e.g., cycles vs.
critical points – in generic min-max problems?

Our next result takes a closer look at attracting ICT sets and
provides a generically negative answer to this question. To
set the stage, suppose we want to apply (I-SP) to the bilinear
objective Φ(x, y) = xy. Stricto sensu, (I-SP) does not apply
in this case since Φ is not Lipschitz. However, Fig. 1(b)
shows (and we rigorously prove in Appendix C.2) that any
tuple (x, y) ∈ R2 belongs to an ICT set of Φ, so Theorem 2
holds trivially. This in turn implies that the only attractor
for Φ is trivially the whole space R2, since Definition 2-b)
is never satisfied for any S ( R2.

Importantly, the celebrated Kupka-Smale theorem (Kupka,
1963; Smale, 1963) asserts that systems with degenerate
periodic orbits (such as bilinear games) occur “almost never”
in the Baire category sense. More precisely, an arbitrarily
small perturbation can fundamentally destroy the topolog-
ical properties of their ICT sets and give rise to proper,
non-trivial attractors; cf. Example 5.1. In contrast, systems
with nontrivial attractors are known to be robust under per-
turbations (Shub, 1987), and our final result in the section
shows that it is precisely the existence of nontrivial attrac-
tors that makes the discrepancy of RM schemes disappear
(at least locally).

Theorem 4. Let S be an attractor of (MD) and fix
some confidence level α > 0. If γn is small enough
(cf. Appendix C.3 for the precise bound) and Assump-
tions (A1)–(A2) hold, there exists a neighborhood U of
S, independent of α, such that

P(Zn converges to S | Z1 ∈ U) ≥ 1− α. (9)

Corollary 2. Let Zn be a sequence generated by any
of the Algorithms 1–5 with sufficiently small γn satisfy-
ing the conditions of Proposition 1. If Z1 ∈ U , then
P(Zn converges to S) ≥ 1− α.

In short, Theorem 4 asserts that any non-degenerate ICT set
dictates the local convergence of all RM schemes under the
general Assumptions (A1)–(A2).

On a positive note, since the Hartman-Grobman Theorem
(Robinson, 1998) implies that all critical points of Φ with
<{λ(JV (z∗))} < 0 for all engenvalues λ are attractors of
(MD), Theorem 4 immediately yields:
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Corollary 3. Let z∗ be a critical point of Φ such that
<{λ(JV (z∗))} < 0 for all engenvalues of JV (z∗). Then
all RM schemes satisfying Assumptions (A1)–(A2) locally
converge to z∗ with high probability.

Corollary 3 generalizes the local convergence of determin-
istic SGDA and SEG studied by Daskalakis & Panageas
(2018). It also extends (Hsieh et al., 2019a, Theorem 5)
from (OG/PEG) to all generalized RM schemes.

On the flip side, however, Theorem 4 also bears an un-
desirable consequence: it implies that many RM schemes
designed to improve SGDA (e.g., Algorithms 2–4) may in
fact be trapped by spurious ICT sets in exactly the same
way as SGDA. Thus, even though many of these algorithms
have been motivated by their appealing properties in bilin-
ear games, it is not clear whether they offer any significant
advantages beyond the convex-concave case. We examine
this issue in detail in the next section.

5. Spurious attractors: Illustrations and
examples

In this last section, we provide a range of simple examples
that exhibit spurious attractors – i.e., attractors that consist
entirely of non-critical points. For illustration purposes, we
focus on the simple case X = Y = R with polynomial
objectives. In doing this, our goal is to highlight a number
of issues that can arise in min-max optimization problems;
whether limit cycles of this type occur in actual large-scale
experiments – e.g., in GANs – is an open research question
(Letcher, 2020).

H Example 5.1 (Almost bilinear 6≈ bilinear, instability 6≈
escape). Consider an arbitrarily small perturbation of a
bilinear game:

Φ(x, y) = xy + εφ(y), (10)

where ε > 0 and φ(y) = 1
2y

2 − 1
4y

4. There is an unstable
critical point at the origin; further, Lemma D.1 asserts, for
small ε, the existence of an attracting ICT set S in a neigh-
borhood of the circle {z : ‖z‖2 = 4/3}. By Corollary 2,
any RM scheme of Section 3 thus gets trapped by S; see
Fig. 2(a) for an illustration for (SEG).

This example brings two issues of existing studies to light.
First, it shows that “almost bilinear games” can still trap
many methods for solving exact bilinear games. Second,
in contrast to minimization problems, the region around an
unstable critical point can in fact be fully stable. Thus, one
has to be careful when interpreting algorithms that “locally
avoid unstable critical points”, since they might be incapable
of escaping their neighborhoods. N

H Example 5.2 (“Forsaken” min max solutions). Suppose

we apply Algorithms 1–5 to the objective

Φ(x, y) = x(y − 0.45) + φ(x)− φ(y) (11)

where φ(z) = 1
4z

2 − 1
2z

4 + 1
6z

6. This problem has a de-
sirable (x∗, y∗) ' (0.08, 0.4). However, as we show in
Appendix D.2, there exist two spurious limit cycles that do
not contain any critical point of Φ. Worse, the limit cycle
closer to the solution is unstable and repels any trajectory
that comes close to the solution; see Fig. 2(b) for an il-
lustration for (SEG). As a result, the “shielded” solution
is highly unlikely to be discovered by existing algorithms,
even though it is perfectly stable. N

We conclude the paper by further examining several impor-
tant settings that are not covered by our theory:

Ergodic averages. Instead of the “moving average” in
Lemma 1, one can take the ergodic average (Z ′n =
1
n

∑n
k=1 Zk) as is customary in convex-concave problems

(Juditsky et al., 2011; Nemirovski, 2004a). We plot one
such trajectory in Fig. 2 (the blue curves). Evidently, we
see that ergodic average can force the algorithms to halt at
non-critical points, and this convergence is by no means
min-max optimal.

Scalable second-order methods. Many recent works at-
tempt to address the cycling issues of min-max algorithms
via incorporating second-order oracles. For completeness,
we also study a range of popular second-order methods in
Appendix D.3. Our analysis shows that these algorithms suf-
fer similar symptoms as first-order schemes in our examples,
cf. Figs. 5–6 in the supplement.

Constant step-size implementations. In addition to the
diminishing step-size policies studied here, another common
strategy in practice is to simply set γn to a constant step-size.
While our analysis does not cover this setting, there exist
several techniques in stochastic approximation to boost from
our “almost surely” statements for γn ↘ 0 to concentration
or high-probability results when γn ≡ γ is small (Borkar,
2008; Kushner & Huang, 1981; Kushner & Yin, 1997).

For completeness, in Section D.4 we examine various con-
stant step-size RM schemes applied to (10) and (11). The
outcome coincides with our intuition that these schemes
should concentrate around the spurious attracting ICT sets,
and hence exhibit similar behaviors as RM schemes with
γn ↘ 0; see Fig. 7.

Adaptive methods. Adaptive methods such as Adam
(Kingma & Ba, 2014) are ubiquitous in GAN training. We
study such methods in Section D.5 and provide an illustra-
tion in Fig. 3: our results show that they fail to solve the
simple objectives (10) and (11). Moreover, some methods
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Figure 2: Spurious limits of min-max optimization algorithms. From left to right: (a) (SEG) for (10) with ε = 0.01; (b) “forsaken
solutions” of (SEG); The red curves present trajectories with different initialization; non-critical ICT sets are depicted in white; the blue
curves represent an time-averaged sample orbit.

Figure 3: The limits of adaptive algorithms in (a) almost bilinear games, as per (10); and (b) games with a forsaken solution, as per (11).

even show a potentially detrimental tendency of converging
to max-min points, the exact opposite of desirable solutions;
see Fig. 3.

6. Concluding remarks
The generalized RM template captures a wide array of ex-
isting min-max algorithms, and the machinery of stochastic
approximation allows us to derive a series of new conver-
gence results, both desirable and undesirable. Our numerical
experiments suggest that spurious limits also arise in a range
of other algorithms and practical tweaks that are not covered
by our theory; providing a rigorous theoretical statement and
proof of these last observations would be a fruitful direction
for future research.

In closing, we should also clarify that these illustrations are
not meant to suggest that the algorithms and practical tweaks
discussed above are always doomed, or that they comprise
the principal cause of failure in GAN training. However, we
do believe that they constitute an important cautionary tale

to the effect that, in min-max problems, convergence does
not imply optimality – or even stationarity.
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