
Supplementary Material

A. GEM Algorithm in Tabular Case
In this section, we present the formal description of the GEM algorithm in tabular case, as shown in Algorithm 3.

Algorithm 3 Generalizable Episodic Memory in Tabular Case

Initialize table Q(1)(s, a), Q(2)(s, a) arbitrarily,
Initial learning step size αt, small ε > 0 and episode length l = 0
Set π to be the ε-greedy policy with respect to Q(1)(s, a) or Q(2)(s, a)
for t = 1, · · · , do

Initialize and store s0
Select action a0 ∼ π(·|s0)
Observe reward r and new state s′

Store transition tuple (s, a, r, s′)
l← l + 1
if an episode is ended then

for τ = t− l, · · · , t do
Compute R(1)

τ , R
(2)
τ according to Equation (7)

Uniformly choose i ∈ {1, 2}
Update Q(i)(sτ , aτ )← Q(i)(sτ , aτ ) + ατ (R

(i)
τ −Q(i)(sτ , aτ ))

end for
Set π to be the ε-greedy policy with respect to Q(1)(s, a) or Q(2)(s, a)
l← 0

end if
end for

B. Proofs of Theoremss
Theorem 1. Given unbiased and independent estimators Q(1,2)

θ (st+h, at+h) = Qπ(st+h, at+h) + ε
(1,2)
h , Equation (8) will

not overestimate the true objective, i.e.

Eτ,ε
[
R

(1,2)
t (st)

]
≤ Eτ

[
max

0≤h≤T−t−1
Qπt,h(st)

]
, (12)

where

Qπt,h(s, a) =



h∑
i=0

γirt+i + γh+1Qπ(st+h+1, at+h+1) if h < T − t,

h∑
i=0

γirt+i if h = T − t.

(13)

and τ = {(st, at, rt, st+1)t=1,··· ,T } is a trajectory.
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Proof. By unrolling and rewritten Equation (7), we have

R
(1,2)
t = Vt,h∗ =

h∗∑
i=0

γirt+i + γh
∗+1Q

(2,1)
θ (st+h∗+1, at+h∗+1),

Where h∗ is the abbrevation for h∗(1,2) for simplicity. Then we have

Eε
[
R

(1,2)
t −Qπt,h∗

(1,2)
(st)

]
= E

[
Vt,h∗

(1,2)
−Qπt,h∗

(1,2)
(st)

]
= E

[
γh

∗+1
(
Q

(2,1)
θ (st+h∗+1, at+h∗+1)−Qπ(st+h∗+1, at+h∗+1)

)]
= 0.

Then naturally

Eτ,ε[R(1,2)
t ] = Eτ [Qπt,h∗

(1,2)
(st)] ≤ Eτ

[
max

0≤h≤T−t
Qπt,h(st)

]
.

To prepare for the theorem below, we need the following lemma:

Lemma 1. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0, where ζ,∆t, Ft : X → R satisfy the equations

∆t+1(x) = (1− ζt(x))∆t(x) + ζt(x)Ft(x) (14)

Let {Pt} be a filter such that ζt and ∆t are Pt-measurable, Ft is Pt+1-measurable, t ≥ 0. Assume that the following hold:

• X is finite: |X| < +∞.

• ζt(x) ∈ [0, 1],
∑
t ζt(x) = +∞,

∑
t ζ

2
t (x) < +∞ a.s. for all x ∈ X .

• ‖E(Ft|Pt)‖∞ ≤ κ‖∆t‖∞ + ct, where κ ∈ [0, 1) and ct
a.s→ 0.

• Var(Ft|Pt) ≤ K(1 + ‖∆t‖∞)2, where K is some constant.

Then ∆t converge to zero w.p.1.

This lemma is also used in Double-Q learning (Van Hasselt, 2010) and we omit the proof for simplicity.
In the following sections, we use ‖·‖ to represent the infinity norm ‖·‖∞.

Theorem 2. Algorithm 3 converge to Q∗ w.p.1 with the following conditions:

1. The MDP is finite, i.e. |S × A| ≤ ∞

2. γ ∈ [0, 1)

3. The Q-values are stored in a lookup table

4. αt(s, a) ∈ [0, 1],
∑
t αt(s, a) =∞,

∑
t α

2
t (s, a) ≤ ∞

5. The environment is fully deterministic, i.e. P (s′|s, a) = δ(s′ = f(s, a)) for some deterministic transition function f

Proof. This is a sketch of proof and some technical details are omitted.

We just need to show that without double-q version, the update will be a γ-contraction and will converge. Then we need to
show that

∥∥Q1 −Q2
∥∥ converge to zero, which is similar with double-q learning.
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We only prove convergence of Q(1), and by symmetry we have the conclusion.

Let ∆t = Q
(1)
t −Q∗, and Ft(st, at) = R

(1)
t −Q∗(st, at),

Then the update rule can be written exactly as Equation (14):

∆t+1 = (1− αt)∆t + αtFt.

We define
Gt = R̃

(1)
t −Q∗(st, at) = Ft + (R̃

(1)
t −R

(1)
t ),

where R̃(1) = R
(1)
t,h∗

(1)
,and the notation is kept the same as in Equation (7)(8).

To use Lemma 1, we only need to prove that Gt is a γ-contraction and ct = R̃
(1)
t −R

(1)
t converge to zero.

On the one hand,

R̃
(1)
t −Q∗(st, at) ≥ rt + γQ̃(1)(st+1, ã

∗)−Q∗(st, at)
= rt + γQ̃(1)(st+1, ã

∗)− rt + γQ∗(st+1, a
∗)

= γ(Q̃(1)(st+1, ã
∗)−Q∗(st+1, a

∗))

≥ −γ ‖∆t‖ .

On the other hand,

R̃
(1)
t −Q∗(st, at) =

h∗
(1)∑
i=0

γirt+i + γh
∗
(1)+1Q̃(1)(st+h∗

(1)
+1, ã

∗)−Q∗(st, at)

≤
h∗
(1)∑
i=0

γirt+i + γh
∗
(1)+1Q̃(1)

π (st+h∗
(1)

+1)

− (

h∗
(1)∑
i=0

γirt+i + γh
∗
(1)+1Q∗(st+h∗

(1)
+1, a

∗))

= γh
∗
(1)+1(Q̃(1)(st+h∗

(1)
+1, ã

∗)−Q∗(st+h∗
(1)

+1, a
∗))

≤ γ(Q̃(1)(st+h∗
(1)

+1, ã
∗)−Q∗(st+h∗

(1)
+1, a

∗))

≤ γ ‖∆t‖ .

Thus Gt is a γ-contraction w.r.t ∆t.

Finally we show ct = R̃(1) −R(1)
t converges to zero.

Note that ct = γh
∗
(1)(Q̃(1) − Q̃(2)), it suffices to show that ∆1,2 = Q̃(1) − Q̃(2) converge to zero.

Depending on whether Q̃(1) or Q̃(2) is updated, the update rule can be written as

∆1,2
t+1 = ∆1,2

t + αtF
(2)
t (st, at),

or
∆1,2
t+1 = ∆1,2

t − αtF
(1)
t (st, at),

where F (1)
t = R

(1)
t − Q̃

(2)
t and F (2)

t = R
(2)
t − Q̃

(1)
t .
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Now let ζt = 1
2αt, we have

E[∆1,2
t+1|Pt] =

1

2
(∆1,2 + αt E[F

(2)
t ]) +

1

2
(∆1,2 − αt E[F

(1)
t ])

= (1− ζt)∆1,2
t + ζt E[R

(2)
t −R

(1)
t ]

when E[R
(2)
t ] ≥ E[R

(1)
t ], by definition we have E[R

(2)
t ] ≤ E[R̃

(2)
t ].

Then

|E[R
(2)
t −R

(1)
t ]| ≤ E[R̃

(2)
t −R

(1)
t ]

≤ γh
∗
(2)+1(Q(1)(st+h∗

(2)
+1, a

∗
(1))−Q

(2)(st+h∗
(2)

+1, a
∗
(1)))

≤ γ
∥∥∥∆1,2

t

∥∥∥ .

Similarly, E[R
(2)
t ] < E[R

(1)
t ],, we have

|E[R
(2)
t −R

(1)
t ]| ≤ E[R̃

(1)
t −R

(2)
t ]

≤ γh
∗
(1)+1(Q(2)(st+h∗

(1)
+1, a

∗
(2))−Q

(1)(st+h∗
(1)

+1, a
∗
(2)))

≤ γ
∥∥∥∆1,2

t

∥∥∥ .

Now in both scenairos we have |E{F (1,2)
t |Pt}| ≤ γ

∥∥∥∆1,2
t

∥∥∥ holds. Applying Lemma 1 again we have the desired results.

The theorem apply only to deterministic scenairos. Nevertheless, we can still bound the performance when the environment
is stochastic but nearly deterministic.

Theorem 3. Q̃(s, a) learned by Algorithm 3 satisfy the following inequality:

∀s ∈ S, a ∈ A, Q∗(s, a) ≤ Q̃(s, a) ≤ Qmax(s, a), (15)

w.p.1 with condition 1-4 in Theorem 2.

Proof. We just need to prove that (Q∗ −Q(1,2))+ and (Q(1,2) −Qmax)+ converge to 0 w.p.1, where (·)+ = max(0, ·).

On the one hand, similar from the proof of Theorem 2 and let ∆t = (Q∗(st, at)−Q(1,2)(st, at))+.

Q∗(st, at)− R̃(1,2)
t ≤ Q∗(st, at)− (rt + γQ̃(1,2)(st+1, ã

∗))

= rt + γQ∗(st+1, a
∗)− rt − γQ̃(1,2)(st+1, ã

∗)

= γ(Q̃(st+1, ã
∗)−Q∗(st+1, a

∗))

≤ γ ‖∆t‖ .

The rest is the same as the proof of Theorem 2, and we have (Q∗ −Q(1,2))+ converge to zero w.p.1.

On the other hand, let ∆t = (Qmax(st, at)−Q(1,2)(st, at))+,
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We have

Ft+1 = R̃
(1,2)
t −Qmaxt

≤
h∗
(2,1)∑
i=0

γirt+i + γh
∗+1Q̃

(1,2)
t+h∗

(2,1)+1
− (

h∗
(2,1)∑
i=0

γirt+i + γh
∗+1Qmaxt+h∗

(2,1)+1
)

≤ γh
∗+1(Q̃

(1,2)
t+h∗

(2,1)+1
−Qmaxt+h∗

(2,1)+1
)

≤ γ ‖∆t‖ .

The rest is the same as the proof of Theorem 2, and we have (Q(1,2) −Qmax)+ converge to zero w.p.1.

When the enironment is nearly-deterministic, we can bound the performance of Q despite its non-convergence:

Theorem 4. For a nearly-deterministic environment with factor µ, in limit, GEM’s performance can be bounded by

V π̃(s) ≥ V ∗(s)− 2µ

1− γ
,∀s ∈ S. (16)

Proof. since we have
∥∥∥Q̃−Q∗∥∥∥ ≤ µ, It is easy to show that

V ∗(s)− Vπ̃(s)

= Q∗(s, a∗)−Qπ̃(s, ã)

= Q∗(s, a∗)− Q̃(s, a∗) + Q̃(s, a∗)−Qπ̃(s, ã)

≤ ε+ Q̃(s, ã)−Qπ̃(s, ã)

= ε+ (Q̃(s, ã)−Q∗(s, ã)) + (Q∗(s, ã)−Qπ̃(s, ã))

≤ 2ε+ γ(V ∗(s)− Vπ̃(s)).

So we have the conclusion.

C. Hyperparameters
Here we listed the hyperparameters we used for the evaluation of our algorithm.

Task HalfCheetah Ant Swimmer Humanoid Walker Hopper

Maximum Length d 1000 1000 1000 5 5 5

Table 1. Maximum length of rollouts used in GEM across different tasks
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Hyper-parameter GEM

Critic Learning Rate 1e-3
Actor Learning Rate 1e-3

Optimizer Adam
Target Update Rate(τ ) 0.6

Memory Update Period(u) 100
Memory Size 100000

Policy Delay(p) 2
Batch Size 100

Discount Factor 0.99
Exploration Policy N (0, 0.1)

Gradient Steps per Update 200

Table 2. List of Hyperparameters used in GEM across different tasks

The hyper-parameters for Atari games are kept the same as in the continuous domain, and other hyper-parameters are kept
the same as Rainbow (Hessel et al., 2018).

D. Additional Ablation Results
Here we include more ablation results of GEM. To verify the effectiveness of our proposed implicit planning, we compare
our method with simple n-step Q learning combined with TD3. For a fair comparison, we include all different rollout lengths
used in GEM’s result. The result is shown in Figure 6. We can see that GEM significantly outperform simple n-step learning.

To understand the effects of rollout lengths, we also compare the result of different rollout lengths on Atari games. The
result is shown below in Figure 7. We can see that using short rollout length greatly hinders the performance of GEM.

To verify the effectiveness of GEM on the stochastic domain, we conduct experiments on Atari games with sticky actions, as
suggested in (Machado et al., 2018). As illustrated in Figure 5, GEM is still competitive on stochastic domains.
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Figure 5. Comparison on 3 Atari games, with sticky actions to make the environment stochastic.
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Figure 6. Comparison with simple n-step learning. The shaded region represents half a standard deviation of the average evaluation.
Curves are smoothed uniformly for visual clarity.
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Figure 7. Ablation study on 6 Atari games. Limiting rollout lengths greatly affects the performance of GEM, which proves that GEM can
use long rollout trajectories effectively.


