
A Proofs

Proof of Theorem 1. Consider a node X with parents UX . We first show the following,
where Equation (1) below follows since the state-abstraction is harmless.

Pr(x|
∨

uX∈ua
X

uX)

=
Pr(x ∧

∨
uX∈ua

X
uX)

Pr(
∨

uX∈ua
X
uX)

=

∑
uX∈ua

X
Pr(x,uX)∑

uX∈ua
X
Pr(uX)

=

∑
uX∈ua

X
Pr(x|uX)Pr(uX)∑

uX∈ua
X
Pr(uX)

=
Pr(x|u?X)

∑
uX∈ua

X
Pr(uX)∑

uX∈ua
X
Pr(uX)

for any elementary state u?X ∈ ua
X (1)

= Pr(x|u?X)

To simplify notation, we will define Pr(x|ua
X) , Pr(x|

∨
uX∈ua

X
uX). We now have:

Pr(x|ua
X) = Pr(x|uX) for any elementary state uX in superstate ua

X . (2)

We define the CPT of a node X with parents UX in the abstracted BN (Ga,Θa) as follows:

θa(xa|ua
X) ,

∑
x∈xa

Pr(x|ua
X). (3)

We now show that distributions Pr(Z) and Pra(Z) are consistent, where Z are all variables:∑
z∈za

Pr(z) =
∑
z∈za

∏
x,uX∈z

Pr(x|uX)

=
∑
z∈za

∏
x∈z

Pr(x|ua
X) by (2) where ua

X ∈ za

=
∏

xa,ua
X∈za

∑
x∈xa

Pr(x|ua
X) see justification below (4)

=
∏

xa,ua
X∈za

θa(xa|ua
X), by (3)

= Pra(za)

Equation (4) is justified as follows. The state ua
X ∈ za is determined by variable X and

instantiation za so it does not depend on instantiation z. Hence, Pr(x|ua
X) depends only on

the state of variable X in z so factors Pr(X|ua
X) are over disjoint variables. By properties of

variable elimination, we can commute addition and multiplication to get Equation (4).

1

Lemma 1. A high-order edge E1 : U1 −→ X1 in G remains a high-order edge after another
high-order edge E2 : U2 −→ X2 is harmlessly deleted from G.

Proof. Suppose that P1 is the alternative directed path of E1 in G, and P2 is the alternative
directed path of E2 in G. If edge E2 is not on path P1, then trivially P1 remains a directed
path from U1 to X1 after E2 is deleted. If E2 is indeed on path P1, then after deleting E2, we
can always construct another directed path from U1 to X1 other than P1 by going through
path P2 instead of edge E2. Hence, E1 remains a high-order edge after E2 is deleted.

Lemma 2. Let Pr1, P r2, and Pr3 be three distributions over variables V where Pr2 ab-
stracts the state-space of Pr1 and Pr3 further abstracts the state-space of Pr2. If Pr1 and
Pr2 are consistent, Pr2 and Pr3 are consistent, then Pr1 and Pr3 are consistent.

Proof. Let v1,v2 and v3 denote the instantiations of V in Pr1, P r2 and Pr3. Then:∑
v1∈v3

Pr1(v1) =
∑

v2∈v3

∑
v1∈v2

Pr1(v1)

=
∑

v2∈v3

Pr2(v2) since Pr1 and Pr2 are consistent

= Pr3(v3) since Pr2 and Pr3 are consistent

Hence, Pr1 and Pr3 are consistent.

Proof of Theorem 2. Given Lemmas 1 and 2, we will prove the theorem while assuming
that only a single high-order edge is harmlessly deleted (we can repeat the proof to account
for multiple deleted edges). Suppose BN (G,Θ) is obtained by harmlessly deleting high-
order edge U → X from BN (G′,Θ′). Let U → Z1 → · · · → Zn → X be the alternative
directed path from U to X that is selected when implementing harmless edge deletion.
DAG G′ can be viewed as the result of adding edge U → X to G and abstracting nodes
Zi. We will use zi to denote the elementary states of a node Zi in G and z′i to denote its
abstracted states in G′. By definition of harmless edge deletion, nodes Zi have compound
states zi = (z′i, u) in G, where u is a state of node U . Moreover, sup(zi = (z′i, u)) = z′i.

To show that G′ is reducible to G, we will show that for every parametrization Θ′ of G′,
there exists a parametrization Θ of G such that distributions Pr′ and Pr are consistent.
We first introduce some notation, then show how to construct parameterization Θ based on
parameterization Θ′ and finally prove that distributions Pr′ and Pr are consistent.

• W denotes all nodes, partitioned X, Z = {Z1, . . . , Zn} and Y (hence U ∈ Y).

• Since nodeX and nodes Y ∈ Y are not abstracted, we have sup(x) = x and sup(y) = y
so we use x and y to denote both their elementary and superstates.

2

• For an elementary state (instantiation) v of nodes V ⊆W and state u of node U , we
say that v is congruent with u iff no state of U other than u appears in v.

• For an elementary state v of nodes V ⊆W, we use v↑ to denote the superstate which
results from replacing every compound state (z′i, u) in v with z′i.

• We use ∼ to indicate compatibility between instantiations (agreement on the states
of common variables).

We next show how to construct parametrization Θ based on parameterization Θ′. We have
three cases for nodes X, Zi ∈ Z and Y ∈ Y which have parents VX , Vi and VY in DAG G.
Note that U is a parent of X in G′ but not in G as we deleted edge U → X so U 6∈ VX .

θ(zi|vi) ,

{
θ′(z′i|v

↑
i) if zi = (z′i, u) and vi is congruent with u

0 otherwise
(5)

θ(x|vX) ,

{
θ′(x|v↑X , u) if vX is congruent with u

0 otherwise
(6)

θ(y|vY) , θ′(y|v↑Y) (7)

To show that distributions Pr′ and Pr are consistent, we first need to show the following:
If u is the state of node U in instantiation w and Pr(w) 6= 0, then w must be congruent
with u (that is, u will appear in every compound state zi in w for i = 1, . . . , n). Suppose
u is the state of node U in instantiation w and Pr(w) 6= 0. Since Pr(w) 6= 0, we have
θ(zi|vi) 6= 0 for every zi,vi ∼ w; by Equation 5, vi must be congruent with some state of
node U and that state must appear in zi. We prove the above result by induction. For
i = 1 (base case), we have U ∈ V1, so v1 must be congruent with u and u must appear in
z1. Assume u appears in zi−1 for i ≥ 2 (induction hypthesis). Since Zi−1 ∈ Vi, vi must be
congruent with u and u must appear in zi. Hence, u appears in all compound states of w.

In the next derivation, we will sum only over elementary states xyz ∈ w′ that are congruent
with u, where u is the state of node U in superstate w′ (otherwise, Pr(x,y, z) = 0). We
also have w′ = xyz↑ since X and Y are not abstracted.∑
xyz∈w′

Pr(x,y, z) =
∑

xyz∈w′

∏
vX∼xyz

θ(x|vX)
∏

zivi∼xyz
θ(zi|vi)

∏
yvY ∼xyz

θ(y|vY)

=
∑

xyz∈w′

∏
vX∼xyz

θ′(x|v↑X , u)
∏

zivi∼xyz,zi=(z′i,u)

θ′(z′i|v
↑
i)

∏
yvY ∼xyz

θ′(y|v↑Y)

=
∏

v′X∼w′
θ′(x|v′X , u)

∏
z′iv
′
i∼w′

θ′(z′i|v′i)
∏

yv′Y ∼w′
θ′(y|vY)

= Pr′(w′)

Hence, distributions Pr′ and Pr are consistent.

3

Proof of Theorem 3. To prove this theorem, we show that if we use the belief propaga-
tion algorithm to compute Pra(Q, e) on the abstracted polytree described by the theorem,
then we get Pra(Q, e) = Pr(Q, e). We show this by re-deriving the belief propagation
algorithm in Section B while using the modified CPTs and assuming that we can only ac-
cess superstates of abstracted nodes but not their elementary states. The derivation shows
that the meaning of some messages changes yet the computed marginal Pra(Q, e) equals
Pr(Q, e). The reason why some messages attain a new meaning is that we loose some inde-
pendences due to abstracting nodes. For example, in a polytree, the children of a node X
are independent given X; that is, given an elementary state of X. However, these children
are not independent given a superstate of X. As a result, some simplifications are no longer
possible which changes the meaning of some messages but maintains the final result.

B Belief Propagation on Polytrees with Abstracted Nodes

Given a polytree BN (G,Θ) with distribution Pr and a state-space abstraction a, let
(Ga,Θa) be the abstracted polytree BN described by Theorem 3. We will next show that
if we run the belief propagation on BN (Ga,Θa) to compute the marginal Pra(Q, e), then
the result we get equals Pr(Q, e).

As stated by Theorem 3, we have the following:

1. Query node Q and evidence nodes E are not abstracted.

2. Abstracted nodes must be ancestors of query node Q.

3. We have an ordering π of polytree nodes which places Q-children after their siblings.

4. For a node X with parents U that are not abstracted, θa(xa|ua) = Pr(xa|ua).

5. Consider an abstracted node U with children X1, · · · , Xk that respect ordering π, and
let Ui be the other parents of child Xi. The abstracted CPT for Xi is as follows:

θa(xai | ua,ua
i) = Pr(xai | ua,ua

i , e
+
Xi
\ {e−UXj

}j>i)

To simplify notation, we will drop the superscript a while keeping track of which nodes are
abstracted. We will also use θπe instead of θa to highlight that the CPTs we are using in
the abstracted polytree depend on evidence e and ordering π.

The belief propagation algorithm can be used to compute marginals over all nodes. This is
done by passing two messages across each edge U → X, a message πX(u) from parent U to
child X and a message λX(u) from child X to parent U . However, we are only interested in
the marginal for query node Q which entails sending only one of the two messages that is
directed towards node Q. Moreover, if node U is abstracted, then u is an abstracted state
and hence messages πX(u) and λX(u) are over the abstracted states.

4

B.1 Notation and Observations

We first settle some notation and state some observations that will be used in the proof.

We use capital letters (e.g., X) to denote variables (nodes) and small letters (e.g., x) to
denote states of variables. When node X is abstracted, then x denotes a superstate (the
algorithm will not access elmentary states of abstracted nodes). As customary, we assume
that evidence on a node X is modeled using a message λe(x) sent from a virtual child of
X, so only (virtual) leaf nodes can have evidence. This is defined as λe(x) = 1 if state x is
compatible with evidence e and λe(x) = 0 otherwise.

We use the classical notation for partitioning polytree evidence e based on edge U → X.

e−X : evidence on the descendants of X

e+X : evidence on the non-descendants of X, e \ e−X
e+UX : evidence on the U -side of edge U → X

e−UX : evidence on the X-side of edge U → X

The following are some implications of (a) abstracted nodes must be ancestors of query node
Q and (b) all messages are directed towards query node Q. We will use these implications
in the proof of correctness for the algorithm.

• If node X is an ancestor of query node Q, then exactly one child of X will be either
Q or an ancestor of Q. This is what we called the Q-child of node X.

• An abstracted node X will never send a λ-message.

• The one message sent by an abstracted node will be a π-message to its Q-child.

• If a node has two abstracted parents, it must be the Q-child of both.

• If node X sends a λ-message towards its parent U , then no other parent of X can be
abstracted.

• A node that sends a π-message and has an abstracted parent must be the Q-child of
that parent.

B.2 The Belief Propagation Algorithm

The belief propagation algorithm is specified by the following equations, which show how
messages are computed and then used to compute BEL(Q, e), the marginal for node Q.

5

These equations assume that node X has parents U1, · · · , Um and children Y1, · · · , Yn.

BEL(q, e) = π(q)λ(q) (8)

π(x) =
∑

u1,··· ,um
θ(x | u1, · · · , um)

m∏
i=1

πX(ui) (9)

λ(x) = λe(x)
n∏
i=1

λYi(x) (10)

πYi(x) = π(x)
∏
j 6=i

λYj (x) (11)

λX(ui) =
∑

x,u1,··· ,ui−1,ui+1,...,um

θ(x | u1, · · · , um)λ(x)
∏
j 6=i

πX(uj) (12)

When applying this algorithm to the abstracted polytree, we will use abstracted CPTs θπe
as indicated earlier. Moreover, if node X is abstracted, then x is a superstate. Similarly, if
a parent Ui is abstracted, then ui is a superstate.

B.3 Proof Structure

Our proof is based on showing the following. Let Pr be the distribution induced by the
original polytree BN, which is used to compute the abstracted CPTs θπe . When applying
the belief propagation algorithm to the abstracted polytree, Equations 9-12 compute the
following quantities:

π(x) = Pr(x, e+X) (13)

λ(x) = Pr(e−X | x) (14)

πX(ui) = Pr(ui, e
+
UiX

) (15)

λYi(x) = Pr(e−XYi | x) when X is not abstracted (16)

λYi(x) = Pr(e−XYi | x, e
+
X , e

−
XY1

, · · · , e−XYi−1
) when X is abstracted (17)

where Y1, · · · , Yi respects the ordering π.

Given these equalities, Equation 8 establishes the desired result.

BEL(q, e) = π(q)λ(q)

= Pr(q, e+Q)Pr(e−Q | q)
= Pr(q, e+Q)Pr(e−Q | q, e

+
Q)

= Pr(q, e+Q, e
−
Q)

= Pr(q, e)

6

That is, the marginal for query node Q as computed by the belief propagation algorithm on
the abstracted polytree BN is nothing but Pr(q, e) (the marginal it would have computed
if applied to the original polytree BN).

Equations 13-16 are known to hold for the belief propagation algorithm. However, Equa-
tion 16 does not hold if node X is abstracted and is replaced by Equation 17. To see
why, suppose that node X is not abstracted. Then E−XYi is independent of E−XYj given X

for i 6= j. Moreover, E−XYi is independent of E+
X given X for all i. Therefore, Pr(e−XYi |

x, e+X , e
−
XY1

, · · · , e−XYi−1
) = Pr(x, e+UiX

) so Equation 17 reduces to Equation 16. These in-
dependences do not hold though when X is abstracted since conditioning on a superstate of
X does not fix the elementary state of X. The loss of such independence when conditioning
on superstates is the main subtlety of the upcoming proofs as it requires one to keep track
of conditionings on abstracted nodes. Aside from this, the derivations below are mostly
standard derivations used when justifying the standard belief propagation algorithm.

The proof is by induction on the structure of the polytree. The base cases are nodes with
a single neighbor: root nodes with a single child and leaf nodes with a single parent.

B.4 Base Cases

We first note that the query node Q does not send messages.

Suppose X 6= Q is a root node that has a single child Y . Then X will send a message πY (x)
to its child Y . Moreover, πY (x) = π(x) = Pr(x) = Pr(x, e+X) since e+X is empty.

Suppose now that X 6= Q is a leaf node that has a single parent U . Then X will send a
message λX(u) to its parent U . Hence, U cannot be abstracted since query node Q must
be on the U -side of edge U → X so U cannot be an ancestor of Q. Hence, λ(x) = λe(x)
and λX(u) =

∑
x λe(x)Pr(x | u, e+X). Since Pr(x | u, e+X) = Pr(x | u) we have λX(u) =∑

x λe(x)Pr(x | u) = Pr(e−UX | u) since e−UX is the evidence on node X.

We will next prove Equations 13-17 while assuming that the messages received by a node
have the correct meanings.

B.5 π-Support and λ-Support: Proving Equations 13 and 14

The support π(x) is computed only if X = Q or X is sending a π-message to its Q-child.

If X has no abstracted parents, then it is independent of its non-descendants given its
parents and we have θπe (x | u1, · · · , um) = Pr(x | u1, · · · , um) = Pr(x | u1, · · · , um, e+X). If
X has some abstracted parents, then it is their Q-child so it is ordered last by π among its

7

siblings and we have θπe (x | u1, · · · , um) = Pr(x | u1, · · · , um, e+X).

π(x) =
∑

u1,··· ,um
θπe (x | u1, · · · , um)

m∏
i=1

πX(ui)

=
∑

u1,··· ,um
θπe (x | u1, · · · , um)

m∏
i=1

Pr(ui, e
+
UiX

)

=
∑

u1,··· ,um
θπe (x | u1, · · · , um)Pr({ui, e+UiX

}mi=1)

=
∑

u1,··· ,um
θπe (x | u1, · · · , um)Pr(u1, · · · , um, e+X)

=
∑

u1,··· ,um
Pr(x | u1, · · · , um, e+X)Pr(u1, · · · , um, e+X)

=
∑

u1,··· ,um
Pr(x, u1, · · · , um, e+X)

= Pr(x, e+X)

The support λ(x) is computed only if X = Q or X is sending a λ-message to a parent.

The query node Q cannot be abstracted and abstracted nodes do not send λ-messages so X
cannot be abstracted. Hence the evidence connected to its children, e−XYj , are independent

given X. Moreover, the λ-messages it receives are classical (Equation 16).

λ(x) = λe(x)

n∏
i=1

λYi(x)

= λe(x)

n∏
i=1

Pr(e−XYi | x)

= λe(x)Pr({e−XYi}
n
i=1 | x)

= Pr(e−X | x)

8

B.6 π-Messages: Proving Equation 15

Suppose node X is not abstracted. Then the evidence connected to its children, e−XYj , are

independent given X. Moreover, the λ-messages it receives are classical (Equation 16).

πYi(x) = π(x)
∏
j 6=i

λYj (x)

= Pr(x, e+X)
∏
j 6=i

Pr(e−XYj | x)

= Pr(x, e+X)Pr({e−XYj}j 6=i | x)

= Pr(x, e+X)Pr({e−XYj}j 6=i | x, e
+
X)

= Pr(x, e+X , {e
−
XYj
}j 6=i)

= Pr(x, e+XYi)

Suppose node X is abstracted. Then the λ-messages it receives are non-classical (Equa-
tion 17) and it will only send a π-message to its Q-child Yn.

πYn(x) = π(x)
n−1∏
i=1

λYi(x)

= Pr(x, e+X)
n−1∏
i=1

Pr(e−XYi | x, e
+
X , e

−
XY1

, · · · , e−XYi−1
)

= Pr(x, e+X)Pr(e−XY1 | x, e
+
X)Pr(e−XY2 | x, e

+
X , e

−
XY1

) · · ·Pr(e−XYn−1
| x, e+X , e

−
XY1

, · · · , e−XYn−2
)

= Pr(x, e+X)Pr(e−XY1 , · · · , e
−
XYn−1

| x, e+X)

= Pr(x, e+X , e
−
XY1

, · · · , e−XYn−1
)

= Pr(x, e+XYn)

B.7 λ-Messages: Proving Equations 16 and 17

Consider the message λX(ui) from X to its parent Ui. Node X cannot be abstracted and
no other parent Uj of X can be abstracted. We consider two cases.

Parent Ui is not abstracted. All parents of X are not abstracted so X is independent of its
non-descendants given its parents and we have θπe (x | u1, · · · , um) = Pr(x | u1, · · · , um) =

9

Pr(x | u1, · · · , um, e+X).

λX(ui) =
∑

x,u1,··· ,ui−1,ui+1,...,um

Pr(x | u1, · · · , um, e+X)λ(x)
∏
j 6=i

πX(uj)

=
∑

x,u1,··· ,ui−1,ui+1,...,um

Pr(x | u1, · · · , um, e+X)Pr(e−X | x)
∏
j 6=i

Pr(uj , e
+
UjX

)

=
∑

x,u1,··· ,ui−1,ui+1,...,um

Pr(x | u1, · · · , um, e+X)Pr(e−X | x)Pr({uj , e+UjX
}j 6=i)

=
∑
x

Pr(e−X | x)
∑

u1,··· ,ui−1,ui+1,...,um

Pr(x | u1, · · · , um, e+X)Pr({uj , e+UjX
}j 6=i)

=
∑
x

Pr(e−X | x)
∑

u1,··· ,ui−1,ui+1,...,um

Pr(x | {uj , e+UjX
}j)Pr({uj , e+UjX

}j 6=i)

=
∑
x

Pr(e−X | x)
∑

u1,··· ,ui−1,ui+1,...,um

Pr(x, {uj , e+UjX
}j 6=i | ui, e+UiX

)

=

=
∑
x

Pr(e−X | x)Pr(x, {e+UjX
}j 6=i | ui, e+UiX

)

=
∑
x

Pr(e−X | x)Pr(x, {e+UjX
}j 6=i | ui) (requires Ui non-abstracted)

=
∑
x

Pr(e−X | x, ui, {e
+
UjX
}j 6=i)Pr(x, {e+UjX

}j 6=i | ui) (requires X non-abstracted)

=
∑
x

Pr(x, e−X , {e
+
UjX
}j 6=i | ui)

= Pr(e−X , {e
+
UjX
}j 6=i | ui)

= Pr(e−UiX
| ui)

Parent Ui is abstracted. The meaning of message λX(ui) depends on the order of X within
the children of Ui. We will index these children X1, · · · , Xo according to order π so Xo is
the Q-child of Ui. Only messages λXj (ui) for j = 1, · · · , o − 1 will be sent. Recall again
that X cannot be abstracted and parents Uk, k 6= i, cannot be abstracted either. Moreover,

e+Xj
\ {e−UiXk

}k>j = e+Ui
, {e−UiXk

}k<j , {e+UkXj
}k 6=i

and hence

θπe (xj | u1, · · · , um) = Pr(x | u1, · · · , um, e+Ui
, {e−UiXk

}k<j , {e+UkXj
}k 6=i).

Since parents Uk, k 6= i, are not abstracted we have that ui, e
+
Ui
, {e−UiXk

}k<j is independent

of {uk, e+UkXj
}k 6=i. This is needed for the following equality, which will be the basis for

10

showing the meaning of message λXj (ui).

θπe (xj | u1, · · · , um)Pr({uk, e+UkX
}k 6=i)

= Pr(xj | u1, · · · , um, e+Ui
, {e−UiXk

}k<j , {e+UkXj
}k 6=i)Pr({uk, e+UkX

}k 6=i)

= Pr(xj , {uk, e+UkX
}k 6=i | ui, e+Ui

, {e−UiXk
}k<j)

The last step follows since Pr(xj |α, β)Pr(β) = Pr(xj , β|α) when α and β are independent.
Here, α = ui, e

+
Ui
, {e−UiXk

}k<j and β = {uk, e+UkX
}k 6=i.

We now have

λXj (ui) =
∑

xj ,u1,··· ,ui−1,ui+1,...,um

θπe (xj | u1, · · · , um)λ(xj)
∏
k 6=i

πXj (uk)

=
∑
xj

Pr(e−Xj
| xj)

∑
u1,··· ,ui−1,ui+1,...,um

θπe (xj | u1, · · · , um)Pr({uk, e+UkX
}k 6=i)

=
∑
xj

Pr(e−Xj
| xj)

∑
u1,··· ,ui−1,ui+1,...,um

Pr(xj , {uk, e+UkX
}k 6=i | ui, e+Ui

, {e−UiXk
}k<j)

=
∑
xj

Pr(e−Xj
| xj)Pr(xj , {e+UkX

}k 6=i | ui, e+Ui
, {e−UiXk

}k<j)

=
∑
xj

Pr(e−Xj
| xj , ui, e+Ui

, {e−UiXk
}k<j , {e+UkX

}k 6=i)Pr(xj , {e+UkX
}k 6=i | ui, e+Ui

, {e−UiXk
}k<j)

=
∑
xj

Pr(e−Xj
, xj , {e+UkX

}k 6=i | ui, e+Ui
, {e−UiXk

}k<j)

= Pr(e−Xj
, {e+UkX

}k 6=i | ui, e+Ui
, {e−UiXk

}k<j)

= Pr(e−UiXj
| ui, e+Ui

, e−UiX1
, · · · , e−UiXj−1

)

11

