Appendix

Roadmap: In Appendix A, we list several probability results. In Appendix B we prove our convergence result of FL-NTK. In Appendix C, we prove our generalization result of FL-NTK.

A. Probability Tools

Lemma A. 1 (Bernstein inequality (Bernstein, 1924)). Let X_{1}, \ldots, X_{n} be independent zero-mean random variables. Suppose that $\left|X_{i}\right| \leq M$ almost surely, for all $i \in[n]$. Then, for all positive t,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \leq t\right] \leq \exp \left(-\frac{t^{2} / 2}{\sum_{j=1}^{n} \mathbb{E}\left[X_{j}^{2}\right]+M t / 3}\right)
$$

Lemma A. 2 (Anti-concentration inequality of Gaussian). Let $X \sim N\left(0, \sigma^{2}\right)$, then for any $0<t \leq \sigma$

$$
\operatorname{Pr}[|X| \leq t] \in\left(\frac{2 t}{3 \sigma}, \sqrt{\frac{2}{\pi}} \cdot \frac{t}{\sigma}\right)
$$

Proof. For completeness, we provide a short proof. Since $X \sim N\left(0, \delta^{2}\right)$, the CDF of X^{2} is $\operatorname{Pr}\left[X^{2} \leq t^{2}\right]=\frac{\gamma\left(1 / 2, t^{2} / 2 \sigma^{2}\right)}{\Gamma(1 / 2)}$ where $\gamma(\cdot, \cdot)$ is the incomplete lower gamma function. This can be further simplified to $\operatorname{Pr}\left[X^{2} \leq t^{2}\right]=\operatorname{erf}\left(\sqrt{t^{2} / 2 \sigma^{2}}\right)$ where erf is the error function. For $z \leq 1$, we can sandwich the erf function by $2 z / 3 \leq \operatorname{erf}(z / \sqrt{2}) \leq \sqrt{2 / \pi} z$, thus letting $z=t / \sigma$ complete the proof.

B. Convergence of Neural Networks in Federated Learning

This section is organized as follows:

- In Appendix B.1, we introduce some definitions.
- In Appendix B.2, we present the convergence result of FL-NTK.
- In Appendix B.3, we upper bound $C_{1}, C_{2}, C_{3}, C_{4}$ that appear in the proof.
- In Appendix B.4, we present the property at initialization of FL-NTK.
- In Appendix B.5, we show the properties of local steps.
- In Appendix B.6, we present several technical claims used in the proof.

B.1. Definitions

Definition B.1. We let κ to denote the condition number of Gram matrix $H(0)$.
Assumption B.2. We assume $\left\|x_{i}\right\|_{2}=1$ and $\lambda=\lambda_{\min }(H(0)) \in(0,1]$.

B.2. Convergence Result

Theorem B.3. Recall that $\lambda=\lambda_{\min }(H(0))>0$. Let $m=\Omega\left(\lambda^{-4} n^{4} \log (n / \delta)\right)$, we iid initialize $u_{r}(0) \sim \mathcal{N}(0, I)$, a_{r} sampled from $\{-1,+1\}$ uniformly at random for $r \in[m]$, and we set the step size $\eta_{\text {local }}=O\left(\lambda /\left(\kappa K n^{2}\right)\right)$ and $\eta_{\text {global }}=O(1)$, then with probability at least $1-\delta$ over the random initialization we have for $t=0,1,2, \ldots$

$$
\begin{equation*}
\|y(t)-y\|_{2}^{2} \leq\left(1-\frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{2 N}\right)^{t} \cdot\|y(0)-y\|_{2}^{2} \tag{6}
\end{equation*}
$$

Notation	Dimension	Meaning
N	\mathbb{N}	\#clients
c	$[N]$	its index
T	\mathbb{N}	\#communication rounds
t	$[T]$	its index
K	\mathbb{N}	\#local update steps
k	$[K]$	its index
$y(t)$	\mathbb{R}^{n}	aggregated server model after global round t
y_{c}	$\mathbb{R}^{\left\|S_{c}\right\|}$	ground truth of c-th client
$y_{c}^{(k)}(t)$	$\mathbb{R}^{\left\|S_{c}\right\|}$	c-th client's model in global round t and local step k
$y^{(k)}(t)$	\mathbb{R}^{n}	all client's model in global round t and local step k
$w_{k, c}(t)$	$\mathbb{R}^{d \times m}$	c-th client's model parameter in global round t and local step k
$u(t)$	$\mathbb{R}^{d \times m}$	aggregated server model parameter in global round t and local step k

Table 1: Summary of several notations

Proof. We prove by induction. The base case is $t=0$ and it is trivially true. Assume for $\tau=0, \cdots, t$ we have proved Eq. (6) to be true. We show Eq. (6) holds for $\tau=t+1$.

Recall that the set $Q_{i} \subset[m]$ is defined as follow

$$
Q_{i}:=\left\{r \in[m]: \forall w \in \mathbb{R}^{d} \text { s.t. }\left\|w-w_{r}(0)\right\|_{2} \leq R, \quad \mathbf{1}_{w_{r}(0)^{\top} x_{i} \geq 0}=\mathbf{1}_{w^{\top} x_{i} \geq 0}\right\}
$$

and \bar{Q}_{i} denotes its complement.
Let $v_{1, i}, v_{2, i}$ be defined as follows

$$
\begin{aligned}
& v_{1, i}=\frac{1}{\sqrt{m}} \sum_{r \in Q_{i}} a_{r}\left(\phi\left(\left(u_{r}(t)+\eta_{\text {global }} \Delta u_{r}(t)\right)^{\top} x_{i}\right)-\phi\left(u_{r}(t)^{\top} x_{i}\right)\right) \\
& v_{2, i}=\frac{1}{\sqrt{m}} \sum_{r \in \bar{Q}_{i}} a_{r}\left(\phi\left(\left(u_{r}(t)+\eta_{\text {global }} \Delta u_{r}(t)\right)^{\top} x_{i}\right)-\phi\left(u_{r}(t)^{\top} x_{i}\right)\right)
\end{aligned}
$$

Let $H(t, k, c)_{i, j}, H(t, k, c)_{i, j}^{\perp}$ be defined as follows

$$
\begin{aligned}
H(t, k, c)_{i, j} & =\frac{1}{m} \sum_{r=1}^{m} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \\
H(t, k, c)_{i, j}^{\perp} & =\frac{1}{m} \sum_{r \in \bar{Q}_{i}} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0}
\end{aligned}
$$

Define $H(t)$ and $H(t)^{\perp} \in \mathbb{R}^{n \times n}$ as

$$
\begin{aligned}
H(t)_{i, j} & =\frac{1}{m} \sum_{r=1}^{m} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, u_{r}(t)^{\top} x_{j} \geq 0} \\
H(t)_{i, j}^{\perp} & =\frac{1}{m} \sum_{r \in \bar{Q}_{i}} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, u_{r}(t)^{\top} x_{j} \geq 0}
\end{aligned}
$$

Let $y_{c}^{(k)}(t)_{j}\left(j \in S_{c}\right)$ be defined by

$$
y_{c}^{(k)}(t)_{j}=f\left(w_{k, c}(t), x_{j}\right)
$$

We can write $\Delta u_{r}(t)$ as follow

$$
\Delta u_{r}(t)=\frac{a_{r}}{N} \sum_{c \in[N]} \sum_{k \in[K]} \frac{\eta_{\text {local }}}{\sqrt{m}} \sum_{j \in S_{c}}\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) x_{j} \mathbf{1}_{w_{k, c, r}(t)^{\top} x_{j} \geq 0}
$$

Thus we have

$$
\begin{aligned}
v_{1, i} & =\frac{\eta_{\text {global }} \eta_{\text {local }}}{m N} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) x_{i}^{\top} x_{j} \sum_{r \in Q_{i}} \mathbf{1}_{u_{r}^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \\
& =\frac{\eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{j}-y_{c}^{(k)}(t)_{j}\right)\left(H(t, k, c)_{i, j}-H(t, k, c)_{i, j}^{\perp}\right) .
\end{aligned}
$$

We can therefore write $-2(y-y(t))^{\top}(y(t+1)-y(t))$ as follow

$$
\begin{aligned}
& -2(y-y(t))^{\top}(y(t+1)-y(t)) \\
= & -2(y-y(t))^{\top}\left(v_{1}+v_{2}\right) \\
= & -\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right)\left(H(t, k, c)_{i, j}-H(t, k, c)_{i, j}^{\perp}\right) \\
& -2 \sum_{i \in[n]}\left(y_{i}-y_{i}(t)\right) v_{2, i} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& C_{1}=-\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) H(t, k, c)_{i, j} \\
& C_{2}=\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) H(t, k, c)_{i, j}^{\perp} \\
& C_{3}=-2 \sum_{i \in[n]}\left(y_{i}-y_{i}(t)\right) v_{2, i} \\
& C_{4}=\|y(t+1)-y(t)\|_{2}^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \|y-y(t+1)\|_{2}^{2} \\
= & \|y-y(t)\|_{2}^{2}-2(y-y(t))^{\top}(y(t+1)-y(t))+\|y(t+1)-y(t)\|_{2}^{2} \\
= & \|y-y(t)\|_{2}^{2}+C_{1}+C_{2}+C_{3}+C_{4} .
\end{aligned}
$$

By Claim B.4, Claim B.5, Claim B. 6 and Claim B. 7 we have

$$
\begin{aligned}
\|y-y(t+1)\|_{2}^{2} \leq & \frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N}\left(-K \lambda+4 n R K\left(1+2 \eta_{\text {local }} K n\right)+2 \eta_{\text {local }} \kappa \lambda K^{2} n\right)\|y-y(y)\|_{2}^{2} \\
& +\frac{16 \eta_{\text {global }} \eta_{\text {local }}}{N} K\left(1+2 \eta_{\text {local }} K n\right) n R\|y-y(y)\|_{2}^{2} \\
& +\frac{16 \eta_{\text {global }} \eta_{\text {local }}}{N} K\left(1+2 \eta_{\text {local }} K n\right) n R\|y-y(y)\|_{2}^{2} \\
& +\frac{4 \eta_{\text {global }}^{2} \eta_{\text {local }}^{2} n^{2} K^{2}\left(1+2 \eta_{\text {local }} K n\right)^{2}}{N^{2}}\|y-y(y)\|_{2}^{2}
\end{aligned}
$$

By the choice of $\eta_{\text {local }} \leq \frac{\lambda}{1000 \kappa n^{2} K}$ and $\eta_{\text {local }} \eta_{\text {global }} \leq \frac{\lambda}{1000 \kappa n^{2} K}$ and $R \leq \lambda /(1000 n)$ we come to

$$
\|y-y(t+1)\|_{2}^{2} \leq\|y-y(t)\|_{2}^{2}
$$

$$
\begin{align*}
& -\frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{N}\|y-y(t)\|_{2}^{2} \tag{7}\\
& +40 \frac{\eta_{\text {global }} \eta_{\text {local }} K n R}{N}\|y-y(t)\|_{2}^{2} \\
& +40 \frac{\eta_{\text {global }} \eta_{\text {local }} K n R}{N}\|y-y(t)\|_{2}^{2} \\
& +\frac{\eta_{\text {local }}^{2} \eta_{\text {global }}^{2} n^{2} K^{2}}{N^{2}}\|y-y(t)\|_{2}^{2} \\
\leq & \|y-y(t)\|_{2}^{2} \\
& -(1-1 / 10) \frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{N}\|y-y(t)\|_{2}^{2} \\
& +80 \frac{\eta_{\text {global }} \eta_{\text {local }} K n R}{N}\|y-y(t)\|_{2}^{2} \\
\leq & \|y-y(t)\|_{2}^{2}-\frac{1}{2} \frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{N}\|y-y(t)\|_{2}^{2} \tag{8}
\end{align*}
$$

where the second step follows from $\eta_{\text {local }} \leq \frac{\lambda}{1000 \kappa n^{2} K}$, the third step follows from $R \leq \lambda /(1000 n)$.

B.3. Bounding $C_{1}, C_{2}, C_{3}, C_{4}$

Claim B.4. We have with probability at least $1-n^{2} \cdot \exp (-m R / 10)$ over random initialization

$$
C_{1} \leq \frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N}\|y-y(t)\|_{2}^{2}\left(-K \lambda+4 n R K\left(1+2 \eta_{\text {local }} K n\right)+2 \eta_{\text {local }} \kappa \lambda K^{2} n\right)
$$

Proof. We first calculate

$$
\begin{aligned}
& \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) H(t, k, c)_{i, j} \\
= & \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right)\left(H(t, k, c)_{i, j}-H(0)_{i, j}\right) \\
& +\sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}(t)-y_{c}^{(k)}(t)_{j}\right) H(0)_{i, j} \\
& +K \sum_{i \in[n]} \sum_{j \in[n]}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{j}(t)\right) H(0)_{i, j}
\end{aligned}
$$

From Lemma B. 12 and Lemma B. 9 we have $\left\|u_{r}(t)-u(0)\right\|_{2} \leq R$ and $\left\|w_{k, c, r}(t)-u(0)\right\|_{2} \leq R$. Let $H(t, k)$ be defined by

$$
H(t, k)_{i, j}=H(t, k, c)_{i, j}
$$

for $j \in S_{c}$. Then from Lemma B. 11 we obtain

$$
\|H(t, k)-H(0)\|_{F} \leq 2 n R
$$

with probability at least $1-n^{2} \cdot \exp (-m R / 10)$ over random initialization.
Therefore from direct calculations we have

$$
\begin{aligned}
& \left|\sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right)\left(H(t, k, c)_{i, j}-H(0)_{i, j}\right)\right| \\
= & \sum_{k \in[K]}(y-y(t))^{\top}(H(t, k)-H(0))\left(y-y^{(k)}(t)\right) \\
\leq & \sum_{k \in[K]}\|y-y(t)\|_{2}\left\|y-y^{(k)}(t)\right\|_{2}\|H(t, k)-H(0)\|_{F}
\end{aligned}
$$

$$
\leq 4 n R K\left(1+2 \eta_{\text {local }} K n\right)\|y-y(t)\|_{2}^{2}
$$

where the last step comes from Eq (15).
By Lemma B. 10 we have

$$
\begin{aligned}
\left|\sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}(t)-y_{c}^{(k)}(t)_{j}\right) H(0)_{i, j}\right| & \leq \sum_{k \in[K]}\|y-y(t)\|_{2}\|H(0)\|\left\|y(t)-y^{(k)}(t)\right\|_{2} \\
& \leq 2 \eta_{\text {local }} \kappa \lambda K^{2} n\|y-y(t)\|_{2}^{2}
\end{aligned}
$$

Finally we have

$$
K \sum_{i \in[n]} \sum_{j \in[n]}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{j}(t)\right) H(0)_{i, j} \geq K \lambda\|y-y(t)\|_{2}^{2}
$$

Combining the above we conclude the proof with

$$
\begin{aligned}
& C_{1} \\
= & -\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) H(t, k, c)_{i, j} \\
\leq & -\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N}\left(-4 n R K\left(1+2 \eta_{\text {local }} K^{2} n\right)\|y-y(t)\|_{2}^{2}+K \lambda\|y-y(t)\|_{2}^{2}-2 \eta_{\text {local }} \kappa \lambda K^{2} n\|y-y(t)\|_{2}^{2}\right) \\
\leq & \frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N}\|y-y(t)\|_{2}^{2}\left(-K \lambda+4 n R K\left(1+2 \eta_{\text {local }} K^{2} n\right)+2 \eta_{\text {local }} \kappa \lambda K^{2} n\right)
\end{aligned}
$$

Claim B.5. The following holds with probability at least $1-n \exp (-m R)$ over random initialization

$$
C_{2} \leq \frac{16 \eta_{\text {global }} \eta_{\text {local }}}{N} K\left(1+2 \eta_{\text {local }} n K\right) n R\|y-y(t)\|_{2}^{2}
$$

Proof. We define matrix $H(t, k)^{\perp} \in \mathbb{R}^{n \times n}$ such that $H(t, k)_{i, j}^{\perp}=H(t, k, c)_{i, j}^{\perp}, j \in S_{c}$. Notice that

$$
\begin{aligned}
C_{2} & =\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{i \in[n]} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y_{i}-y_{i}(t)\right)\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) H(t, k, c)_{i, j}^{\perp} \\
& =\frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{k \in[K]}(y-y(t))^{\top} H(t, k)^{\perp}\left(y-y^{(k)}(t)\right) \\
& \leq \frac{2 \eta_{\text {global }} \eta_{\text {local }}}{N} \sum_{k \in[K]}\|y-y(t)\|_{2}\left\|H(t, k)^{\perp}\right\|_{F}\left\|y-y^{(k)}(t)\right\|_{2} \\
& \leq \frac{4 \eta_{\text {global }} \eta_{\text {local }}}{N} K\left(1+2 \eta_{\text {local }} n K\right)\|y-y(t)\|_{2}^{2}\left\|H(t, k)^{\perp}\right\|_{F}
\end{aligned}
$$

where the last step comes from Eq (15).
It thus suffices to upper bound $\left\|H(t, k)^{\perp}\right\|_{F}$.
For each $i \in[n]$, we define ζ_{i} as follows

$$
\zeta_{i}=\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}
$$

It then follows from direct calculations that

$$
\left\|H(t, k)^{\perp}\right\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(H(t, k)_{i, j}^{\perp}\right)^{2}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(\frac{1}{m} \sum_{r \in \bar{Q}_{i}} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0}\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(\frac{1}{m} \sum_{r=1}^{m} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \cdot \mathbf{1}_{r \in \bar{Q}_{i}}\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(\frac{x_{i}^{\top} x_{j}}{m}\right)^{2}\left(\sum_{r=1}^{m} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \cdot \mathbf{1}_{r \in \bar{Q}_{i}}\right)^{2} \\
& \leq \frac{1}{m^{2}} \sum_{i=1}^{n} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(\sum_{r=1}^{m} \mathbf{1}_{u_{r}(t)^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \cdot \mathbf{1}_{r \in \bar{Q}_{i}}\right)^{2} \\
& =\frac{n}{m^{2}} \sum_{i=1}^{n}\left(\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}\right)^{2} \\
& =\frac{n}{m^{2}} \sum_{i=1}^{n} \zeta_{i}^{2} .
\end{aligned}
$$

Fix $i \in[n]$. The plan is to use Bernstein inequality to upper bound ζ_{i} with high probability.
First by Eq. (10) we have $\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right] \leq R$. We also have

$$
\begin{aligned}
\mathbb{E}\left[\left(\mathbf{1}_{r \in \bar{Q}_{i}}-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]\right)^{2}\right] & =\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}^{2}\right]-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]^{2} \\
& \leq \mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}^{2}\right] \\
& \leq R .
\end{aligned}
$$

Finally we have $\left|\mathbf{1}_{r \in \bar{Q}_{i}}-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]\right| \leq 1$.
Notice that $\left\{\mathbf{1}_{r \in \bar{Q}_{i}}\right\}_{r=1}^{m}$ are mutually independent, since $\mathbf{1}_{r \in \bar{Q}_{i}}$ only depends on $w_{r}(0)$. Hence from Bernstein inequality (Lemma A.1) we have for all $t>0$,

$$
\operatorname{Pr}\left[\zeta_{i}>m \cdot R+t\right] \leq \exp \left(-\frac{t^{2} / 2}{m \cdot R+t / 3}\right)
$$

By setting $t=3 m R$, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\zeta_{i}>4 m R\right] \leq \exp (-m R) \tag{9}
\end{equation*}
$$

Hence by union bound, with probability at least $1-n \exp (-m R)$,

$$
\left\|H(t, k)^{\perp}\right\|_{F}^{2} \leq \frac{n}{m^{2}} \cdot n \cdot(4 m R)^{2}=16 n^{2} R^{2}
$$

Putting all together we have

$$
\left\|H(t, k)^{\perp}\right\|_{F} \leq 4 n R
$$

with probability at least $1-n \exp (-m R)$ over random initialization.
Claim B.6. With probability at least $1-n \exp (-m R)$ over random initialization the following holds

$$
C_{3} \leq \frac{16 \eta_{\text {global }} \eta_{\text {local }} K}{N}\left(1+2 \eta_{\text {local }} n K\right) n R\|y-y(t)\|_{2}^{2}
$$

Proof. We can upper bound $\left\|v_{2}\right\|_{2}$ in the following sense

$$
\left\|v_{2}\right\|_{2}^{2} \leq \sum_{i=1}^{n}\left(\frac{\eta_{\text {global }}}{\sqrt{m}} \sum_{r \in \bar{Q}_{i}}\left|\Delta u_{r}(t)^{\top} x_{i}\right|\right)^{2}
$$

$$
\begin{aligned}
& =\frac{\eta_{\text {global }}^{2}}{m} \sum_{i=1}^{n}\left(\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}\left|\Delta u_{r}(t)^{\top} x_{i}\right|\right)^{2} \\
& \leq \frac{\eta_{\text {global }}^{2} \eta_{\text {local }}^{2}}{m} \cdot\left(\frac{2 K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}}\|y-y(t)\|_{2}\right)^{2} \cdot \sum_{i=1}^{n}\left(\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}\right)^{2}
\end{aligned}
$$

where the last step comes from Lemma B. 10 .
It is previously shown that $\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}} \leq 4 m R$ holds with probability at least $1-n \exp (-m R)$ over random initialization, thus with probability at least $1-n \exp (-m R)$ over random initialization

$$
\begin{aligned}
\left\|v_{2}\right\|_{2}^{2} & \leq \frac{\eta_{\text {global }}^{2} \eta_{\text {local }}^{2}}{m} \cdot \frac{4 K^{2}\left(1+2 \eta_{\text {local }} n K\right)^{2} n}{N^{2} m}\|y-y(t)\|_{2}^{2} \cdot n(4 m R)^{2} \\
& \leq\left(\frac{8 \eta_{\text {global }} \eta_{\text {local }} K}{N}\left(1+2 \eta_{\text {local }} n K\right) n R\|y-y(t)\|\right)^{2}
\end{aligned}
$$

Using Cauchy-Schwarz inequality, we complete the proof with

$$
\begin{aligned}
C_{3} & =-2 \sum_{i \in[n]}\left(y_{i}-y_{i}(t)\right) v_{2, i} \\
& \leq 2\|y-y(t)\|_{2} \cdot\left\|v_{2}\right\|_{2} \\
& \leq \frac{16 \eta_{\text {global }} \eta_{\text {local }} K}{N}\left(1+2 \eta_{\text {local }} n K\right) n R\|y-y(t)\|_{2}^{2}
\end{aligned}
$$

Claim B.7. We have

$$
C_{4} \leq \frac{4 \eta_{\text {local }}^{2} \eta_{\text {global }}^{2} n^{2} K^{2}\left(1+2 \eta_{\text {local }} n K\right)^{2}}{N^{2}}\|y-y(t)\|_{2}^{2}
$$

Proof. Recall that $y(t+1)-y(t)=v_{1}+v_{2}$, we have

$$
\begin{aligned}
\|y(t+1)-y(t)\|_{2}^{2} & \leq \sum_{i=1}^{n}\left(\frac{\eta_{\text {global }}}{\sqrt{m}} \sum_{r=1}^{m}\left|\Delta u_{r}(t)^{\top} x_{i}\right|\right)^{2} \\
& =\frac{\eta_{\text {global }}^{2}}{m} \sum_{i=1}^{n}\left(\sum_{r=1}^{m}\left|\Delta u_{r}(t)^{\top} x_{i}\right|\right)^{2} \\
& \leq \frac{\eta_{\text {global }}^{2} \eta_{\text {local }}^{2}}{m} \cdot\left(\frac{2 K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}}\|y-y(t)\|_{2}\right)^{2} \cdot n m^{2} \\
& \leq \frac{4 \eta_{\text {local }}^{2} \eta_{\text {global }}^{2} n^{2} K^{2}\left(1+2 \eta_{\text {local }} n K\right)^{2}}{N^{2}}\|y-y(t)\|_{2}^{2}
\end{aligned}
$$

where the penultimate step comes from Lemma B. 10 .

B.4. Random Initialization

Lemma B.8. Let events E_{1}, E_{2}, E_{3} be defined as follows

$$
\begin{aligned}
& E_{1}=\left\{\phi\left(w_{r}(0)^{\top} x_{i}\right) \leq \sqrt{2 \log (6 m n / \delta)}, \forall r \in[m], \forall i \in[n]\right\} \\
& E_{2}=\left\{\left|\sum_{r=1}^{m} \frac{1}{\sqrt{m}} a_{r} \phi\left(w_{r}(0)^{\top} x_{i}\right) \mathbf{1}_{w_{r}(0)^{\top} x_{i} \leq \sqrt{2 \log (6 m n / \delta)}}\right| \leq \sqrt{2 \log (2 m n / \delta)} \cdot \log (8 n / \delta), \forall i \in[n]\right\} \\
& E_{3}=\left\{\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}} \leq 4 m R, \forall i \in[n]\right\} .
\end{aligned}
$$

Then $E_{1} \cap E_{2} \cap E_{3}$ is true with probability at least $1-\delta$ over the random initialization. Furthermore given $E_{1} \cap E_{2} \cap E_{3}$ the following holds

$$
\|y-y(0)\|_{2}^{2}=O\left(n \log (m / \delta) \log ^{2}(n / \delta)\right)
$$

Proof. First we bound $\operatorname{Pr}\left[\neg E_{3}\right]$. For each $i \in[n]$, we define ζ_{i} as follows

$$
\zeta_{i}=\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}
$$

We use w as shorthand for $w(0)$. Define the event

$$
A_{i, r}=\left\{\exists u:\left\|u-w_{r}\right\|_{2} \leq R, \mathbf{1}_{x_{i}^{\top} w_{r} \geq 0} \neq \mathbf{1}_{x_{i}^{\top} u \geq 0}\right\}
$$

Note this event happens if and only if $\left|w_{r}^{\top} x_{i}\right|<R$. Recall that $w_{r} \sim \mathcal{N}(0, I)$. By anti-concentration inequality of Gaussian (Lemma A.2), we have

$$
\begin{equation*}
\operatorname{Pr}\left[A_{i, r}\right]=\operatorname{Pr}_{z \sim \mathcal{N}(0,1)}[|z|<R] \leq \frac{2 R}{\sqrt{2 \pi}} \tag{10}
\end{equation*}
$$

It thus follows from Eq. (10) that $\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right] \leq R$. We also have

$$
\begin{aligned}
\mathbb{E}\left[\left(\mathbf{1}_{r \in \bar{Q}_{i}}-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]\right)^{2}\right] & =\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}^{2}\right]-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]^{2} \\
& \leq \mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}^{2}\right] \\
& \leq R .
\end{aligned}
$$

Therefore $\left|\mathbf{1}_{r \in \bar{Q}_{i}}-\mathbb{E}\left[\mathbf{1}_{r \in \bar{Q}_{i}}\right]\right| \leq 1$.
Notice that $\left\{\mathbf{1}_{r \in \bar{Q}_{i}}\right\}_{r=1}^{m}$ are mutually independent, since $\mathbf{1}_{r \in \bar{Q}_{i}}$ only depends on w_{r}. Hence from Bernstein inequality (Lemma A.1) we have for all $t>0$,

$$
\operatorname{Pr}\left[\zeta_{i}>m \cdot R+t\right] \leq \exp \left(-\frac{t^{2} / 2}{m \cdot R+t / 3}\right)
$$

By setting $t=3 m R$, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\zeta_{i}>4 m R\right] \leq \exp (-m R) \tag{11}
\end{equation*}
$$

Taking union bound and note the choice of R and m we have

$$
\operatorname{Pr}\left[\neg E_{3}\right] \leq n \exp (-m R) \leq \delta / 3
$$

Next we bound $\operatorname{Pr}\left[\neg E_{1}\right]$. Fix $r \in[m]$ and $i \in[n]$. Since $w_{r} \sim \mathcal{N}(0, I)$ and $\left\|x_{i}\right\|_{2}=1$, $w_{r}^{\top} x_{i}$ follows distribution $\mathcal{N}(0,1)$. From concentration of Gaussian distribution, we have

$$
\operatorname{Pr}_{w_{r}}\left[w_{r}^{\top} x_{i} \geq \sqrt{2 \log (6 m n / \delta)}\right] \leq \frac{\delta}{6 m n}
$$

Let E_{1} be the event that for all $r \in[m]$ and $i \in[n]$ we have $\phi\left(w_{r}^{\top} x_{i}\right) \leq \sqrt{2 \log (6 m n / \delta)}$. Then by union bound, $\operatorname{Pr}\left[\neg E_{1}\right] \leq \frac{\delta}{3}$,
Finally we bound $\operatorname{Pr}\left[\neg E_{2}\right]$. Fix $i \in[n]$. For every $r \in[m]$, we define random variable $z_{i, r}$ as

$$
z_{i, r}:=\frac{1}{\sqrt{m}} \cdot a_{r} \cdot \phi\left(w_{r}^{\top} x_{i}\right) \cdot \mathbf{1}_{w_{r}^{\top} x_{i} \leq \sqrt{2 \log (6 m n / \delta)}}
$$

Then $z_{i, r}$ only depends on $a_{r} \in\{-1,1\}$ and $w_{r} \sim \mathcal{N}(0, I)$. Notice that $\mathbb{E}_{a_{r}, w_{r}}\left[z_{i, r}\right]=0$, and $\left|z_{i, r}\right| \leq \sqrt{2 \log (6 m n / \delta)}$. Moreover,

$$
\begin{aligned}
\underset{a_{r}, w_{r}}{\mathbb{E}}\left[z_{i, r}^{2}\right] & =\underset{a_{r}, w_{r}}{\mathbb{E}}\left[\frac{1}{m} a_{r}^{2} \phi^{2}\left(w_{r}^{\top} x_{i}\right) \mathbf{1}_{w_{r}^{\top} x_{i} \leq \sqrt{2 \log (6 m n / \delta)}}^{2}\right] \\
& =\frac{1}{m} \underset{a_{r}}{\mathbb{E}}\left[a_{r}^{2}\right] \cdot \underset{w_{r}}{\mathbb{E}}\left[\phi^{2}\left(w_{r}^{\top} x_{i}\right) \mathbf{1}_{w_{r}^{\top} x_{i} \leq \sqrt{2 \log (6 m n / \delta)}}^{2}\right] \\
& \leq \frac{1}{m} \cdot 1 \cdot \underset{w_{r}}{\mathbb{E}}\left[\left(w_{r}^{\top} x_{i}\right)^{2}\right] \\
& =\frac{1}{m}
\end{aligned}
$$

where the second step uses independence between a_{r} and w_{r}, the third step uses $a_{r} \in\{-1,1\}$ and $\phi(t)=\max \{t, 0\}$, and the last step follows from $w_{r}^{\top} x_{i} \sim \mathcal{N}(0,1)$.

Now we are ready to apply Bernstein inequality (Lemma A.1) to get for all $t>0$,

$$
\operatorname{Pr}\left[\sum_{r=1}^{m} z_{i, r}>t\right] \leq \exp \left(-\frac{t^{2} / 2}{m \cdot \frac{1}{m}+\sqrt{2 \log (6 m n / \delta)} \cdot t / 3}\right)
$$

Setting $t=\sqrt{2 \log (6 m n / \delta)} \cdot \log (8 n / \delta)$, we have with probability at least $1-\frac{\delta}{8 n}$,

$$
\sum_{r=1}^{m} z_{i, r} \leq \sqrt{2 \log (6 m n / \delta)} \cdot \log (8 n / \delta)
$$

Notice that we can also apply Bernstein inequality (Lemma A.1) on $-z_{i, r}$ to get

$$
\operatorname{Pr}\left[\sum_{r=1}^{m} z_{i, r}<-t\right] \leq \exp \left(-\frac{t^{2} / 2}{m \cdot \frac{1}{m}+\sqrt{2 \log (6 m n / \delta)} \cdot t / 3}\right)
$$

Let E_{2} be the event that for all $i \in[n]$,

$$
\left|\sum_{r=1}^{m} z_{i, r}\right| \leq \sqrt{2 \log (2 m n / \delta)} \cdot \log (8 n / \delta)
$$

By applying union bound on all $i \in[n]$, we have $\operatorname{Pr}\left[\neg E_{2}\right] \leq \delta / 3$.
By union bound, $E_{1} \cap E_{2} \cap E_{3}$ will happen with probability at least $1-\delta$.
If both E_{1} and E_{2} happen, we have

$$
\begin{aligned}
\|y-u(0)\|_{2}^{2} & =\sum_{i=1}^{n}\left(y_{i}-f\left(W(0), a, x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_{r} \phi\left(w_{r}^{\top} x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n} y_{i}^{2}-2 \sum_{i=1}^{n} \frac{y_{i}}{\sqrt{m}} \sum_{r=1}^{m} a_{r} \phi\left(w_{r}^{\top} x_{i}\right)+\sum_{i=1}^{n} \frac{1}{m}\left(\sum_{r=1}^{m} a_{r} \phi\left(w_{r}^{\top} x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n} y_{i}^{2}-2 \sum_{i=1}^{n} y_{i} \sum_{r=1}^{m} z_{i, r}+\sum_{i=1}^{n}\left(\sum_{r=1}^{m} z_{i, r}\right)^{2} \\
& \leq \sum_{i=1}^{n} y_{i}^{2}+2 \sum_{i=1}^{n}\left|y_{i}\right| \sqrt{2 \log (2 m n / \delta)} \cdot \log (4 n / \delta)+\sum_{i=1}^{n}(\sqrt{2 \log (2 m n / \delta)} \cdot \log (4 n / \delta))^{2} \\
& =O\left(n \log (m / \delta) \log ^{2}(n / \delta)\right)
\end{aligned}
$$

where the first step uses E_{1}, the second step uses E_{2}, and the last step follows from $\left|y_{i}\right|=O(1), \forall i \in[n]$.

B.5. Local Steps

The following theorem is standard in neural tangent kernel theory (see e.g. (Song \& Yang, 2019)).
Lemma B.9. With probability at least $1-\delta$ over the random initialization, the following holds for all $k \in[K]$ and $c \in[N]$ and $r \in[m]$ in step t

$$
\begin{align*}
\left\|y_{c}^{(k)}(t)-y_{c}\right\|_{2}^{2} & \leq\left(1-\eta_{\text {local }} \lambda / 2\right)^{k} \cdot\left\|y_{c}^{(0)}(t)-y_{c}\right\|_{2}^{2} \tag{12}\\
\left\|w_{k, c, r}(t+1)-w_{0, c, r}(t)\right\|_{2} & \leq \frac{4 \sqrt{n}\left\|y_{c}^{(0)}(t)-y_{c}\right\|_{2}}{\sqrt{m} \lambda} \tag{13}\\
\left\|y_{c}^{(k+1)}(t)-y_{c}^{(k)}(t)\right\|_{2}^{2} & \leq \eta_{\text {local }}^{2} n^{2} \cdot\left\|y_{c}^{(k)}(t)-y_{c}\right\|_{2}^{2} \tag{14}
\end{align*}
$$

We then prove a Lemma that controls the updates in local steps.
Lemma B.10. Given $E q(14)$ for all $k \in[K], c \in[N]$ in step t the following holds for all $k \in[K], c \in[N]$

$$
\begin{aligned}
\left\|y_{c}(t)-y_{c}^{(k)}(t)\right\|_{2} & \leq 2 \eta_{\text {local }} n K\left\|y_{c}(t)-y_{c}\right\| \\
\left\|\Delta u_{r}(t)\right\|_{2} & \leq \frac{2 \eta_{\text {local }} K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}}\|y-y(t)\|_{2}
\end{aligned}
$$

Proof. For the first inequality, from Eq (14) we have

$$
\begin{aligned}
\left\|y_{c}-y_{c}^{(k)}(t)\right\|_{2} & \leq\left\|y_{c}^{(k)}(t)-y_{c}^{(k-1)}(t)\right\|_{2}+\left\|y_{c}^{(k-1)}(t)-y_{c}\right\|_{2} \\
& \leq\left(\eta_{\text {local }} n+1\right)\left\|y_{c}-y_{c}^{(k-1)}(t)\right\|_{2} \\
& \leq\left(\eta_{\text {local }} n+1\right)^{k}\left\|y_{c}-y_{c}(t)\right\|_{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|y_{c}(t)-y_{c}^{(k)}(t)\right\|_{2} & \leq \sum_{i=1}^{k}\left\|y_{c}^{(j)}(t)-y_{c}^{(j-1)}(t)\right\|_{2} \\
& \leq \sum_{i=1}^{k} \eta_{\text {local }} n\left\|y_{c}-y_{c}^{(j-1)}(t)\right\|_{2} \\
& \leq \sum_{i=1}^{k} \eta_{\text {local }} n\left(\eta_{\text {local }} n+1\right)^{j-1}\left\|y_{c}-y_{c}(t)\right\|_{2} \\
& \leq 2 \eta_{\text {local }} n K\left\|y_{c}(t)-y_{c}\right\|_{2}
\end{aligned}
$$

where the last step comes from the choice of $\eta_{\text {local }}$.
For the second inequality, notice that

$$
\begin{aligned}
\left\|\Delta u_{r}(t)\right\|_{2} & =\eta_{\text {local }}\left\|\frac{a_{r}}{N} \sum_{c \in[N]} \sum_{k \in[K]} \frac{1}{\sqrt{m}} \sum_{j \in S_{c}}\left(y_{j}-y^{(k)}(t)_{j}\right) x_{j} \mathbf{1}_{w_{r, k, c}(t)^{\top} x_{j} \geq 0}\right\|_{2} \\
& \leq \frac{\eta_{\text {local }}}{N \sqrt{m}} \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left|y_{j}-y^{(k)}(t)_{j}\right| \\
& \leq \frac{\eta_{\text {local }} \sqrt{n}}{N \sqrt{m}} \sum_{k \in[K]}\left\|y-y^{(k)}(t)\right\|_{2}
\end{aligned}
$$

where the second step comes form triangle inequality and $\left\|x_{i}\right\|_{2}=1$ and the last step comes from Cauchy-Schwartz inequality. From the $\left\|y_{c}(t)-y_{c}^{(k)}(t)\right\|_{2} \leq 2 \eta_{\text {local }} n K\left\|y_{c}(t)-y_{c}\right\|_{2}$ we have

$$
\left\|y-y^{(k)}(t)\right\|_{2}^{2}=\sum_{c \in[N]}\left\|y_{c}-y_{c}^{(k)}(t)\right\|_{2}^{2}=\sum_{c \in[N]} 2\left(\left\|y_{c}-y_{c}(t)\right\|_{2}^{2}+\left\|y_{c}(t)-y_{c}^{(k)}(t)\right\|_{2}^{2}\right)
$$

$$
\begin{align*}
& \leq \sum_{c \in[N]} 2\left(\left\|y_{c}-y_{c}(t)\right\|_{2}^{2}+\left(2 \eta_{\text {local }} n K\right)^{2}\left\|y_{c}(t)-y_{c}\right\|_{2}^{2}\right) \\
& \leq 2\left(1+2 \eta_{\text {local }} n K\right)^{2}\|y-y(t)\|_{2}^{2} \tag{15}
\end{align*}
$$

It thus follows that

$$
\begin{aligned}
\left\|\Delta u_{r}(t)\right\|_{2} & \leq \frac{\eta_{\text {local }} \sqrt{n}}{N \sqrt{m}} \sum_{k \in[K]}\left\|y-y^{(k)}(t)\right\|_{2} \\
& \leq \frac{2 \eta_{\text {local }} K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}}\|y-y(t)\|_{2}
\end{aligned}
$$

B.6. Technical Lemma

Lemma B.11. For any set of weight vectors $\widetilde{w}_{1}, \cdots, \widetilde{w}_{m} \in \mathbb{R}^{d}$ and $\widehat{w}_{1}, \cdots, \widehat{w}_{m} \in \mathbb{R}^{d}$ define $H(\widetilde{w}, \widehat{w}) \in \mathbb{R}^{n \times n}$ as

$$
H(\widetilde{w}, \widehat{w})_{i, j}=\frac{1}{m} x_{i}^{\top} x_{j} \sum_{r=1}^{m} \mathbf{1}_{\widetilde{w}_{r}^{\top} x_{i} \geq 0, \widehat{w}_{r}^{\top} x_{j} \geq 0}
$$

Let $R \in(0,1)$ and w_{1}, \cdots, w_{m} be iid generated from $\mathcal{N}(0, I)$. Then we have with probability at least $1-n^{2} \cdot \exp (-m R / 10)$ the following holds

$$
\|H(w, w)-H(\widetilde{w}, \widehat{w})\|_{F}<2 n R
$$

for any $\widetilde{w}_{1}, \cdots, \widetilde{w}_{m} \in \mathbb{R}^{d}$ and $\widehat{w}_{1}, \cdots, \widehat{w}_{m} \in \mathbb{R}^{d}$ such that $\left\|\widehat{w}_{r}-w_{r}\right\|_{2} \leq R$ and $\left\|\widetilde{w}_{r}-w_{r}\right\|_{2} \leq R$ for any $r \in[m]$.
Proof. For each $r \in[m]$ and $i, j \in[n]$, we define

$$
s_{r, i, j}:=\mathbf{1}_{\widetilde{w}_{r}^{\top} x_{i} \geq 0, \widehat{w}_{r}^{\top} x_{j} \geq 0}-\mathbf{1}_{w_{r}^{\top} x_{i} \geq 0, w_{r}^{\top} x_{j} \geq 0}
$$

The random variable we consider can be rewritten as follows

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left|H(\widetilde{w}, \widehat{w})_{i, j}-H(w, w)_{i, j}\right|^{2} \\
\leq & \frac{1}{m^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{r=1}^{m} \mathbf{1}_{\widetilde{w}_{r}^{\top} x_{i} \geq 0, \widehat{w}_{r}^{\top} x_{j} \geq 0}-\mathbf{1}_{w_{r}^{\top} x_{i} \geq 0, w_{r}^{\top} x_{j} \geq 0}\right)^{2} \\
= & \frac{1}{m^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{r=1}^{m} s_{r, i, j}\right)^{2} .
\end{aligned}
$$

It thus suffices to bound $\frac{1}{m^{2}}\left(\sum_{r=1}^{m} s_{r, i, j}\right)^{2}$.
Fix i, j and we simplify $s_{r, i, j}$ to s_{r}. Then $\left\{s_{r}\right\}_{r=1}^{m}$ are mutually independent random variables.
We define the event

$$
A_{i, r}=\left\{\exists u:\left\|u-w_{r}\right\|_{2} \leq R, \mathbf{1}_{x_{i}^{\top} w_{r} \geq 0} \neq \mathbf{1}_{x_{i}^{\top} u \geq 0}\right\}
$$

If $\neg A_{i, r}$ and $\neg A_{j, r}$ happen, then

$$
\left|\mathbf{1}_{\widetilde{w}_{r}^{\top} x_{i} \geq 0, \widehat{w}_{r}^{\top} x_{j} \geq 0}-\mathbf{1}_{w_{r}^{\top} x_{i} \geq 0, w_{r}^{\top} x_{j} \geq 0}\right|=0
$$

If $A_{i, r}$ or $A_{j, r}$ happen, then

$$
\left|\mathbf{1}_{\tilde{w}_{r}^{\top} x_{i} \geq 0, \hat{w}_{r}^{\top} x_{j} \geq 0}-\mathbf{1}_{w_{r}^{\top} x_{i} \geq 0, w_{r}^{\top} x_{j} \geq 0}\right| \leq 1 .
$$

So we have

$$
\begin{aligned}
\underset{w_{r}}{\mathbb{E}}\left[s_{r}\right] \leq \underset{w_{r}}{\mathbb{E}}\left[\mathbf{1}_{A_{i, r} \vee A_{j, r}}\right] & \leq \operatorname{Pr}\left[A_{i, r}\right]+\operatorname{Pr}\left[A_{j, r}\right] \\
& \leq \frac{4 R}{\sqrt{2 \pi}} \\
& \leq 2 R
\end{aligned}
$$

and

$$
\begin{aligned}
\underset{w_{r}}{\mathbb{E}}\left[\left(s_{r}-\underset{w_{r}}{\mathbb{E}}\left[s_{r}\right]\right)^{2}\right] & =\underset{w_{r}}{\mathbb{E}}\left[s_{r}^{2}\right]-\underset{w_{r}}{\mathbb{E}}\left[s_{r}\right]^{2} \\
& \leq \underset{w_{r}}{\mathbb{E}}\left[s_{r}^{2}\right] \\
& \leq \underset{w_{r}}{\mathbb{E}}\left[\left(\mathbf{1}_{A_{i, r} \vee A_{j, r}}\right)^{2}\right] \\
& \leq \frac{4 R}{\sqrt{2 \pi}} \\
& \leq 2 R .
\end{aligned}
$$

We also have $\left|s_{r}\right| \leq 1$. So we can apply Bernstein inequality (Lemma A.1) to get for all $t>0$,

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{r=1}^{m} s_{r} \geq 2 m R+m t\right] & \leq \operatorname{Pr}\left[\sum_{r=1}^{m}\left(s_{r}-\mathbb{E}\left[s_{r}\right]\right) \geq m t\right] \\
& \leq \exp \left(-\frac{m^{2} t^{2} / 2}{2 m R+m t / 3}\right)
\end{aligned}
$$

Choosing $t=R$, we get

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{r=1}^{m} s_{r} \geq 3 m R\right] & \leq \exp \left(-\frac{m^{2} R^{2} / 2}{2 m R+m R / 3}\right) \\
& \leq \exp (-m R / 10)
\end{aligned}
$$

It follows that

$$
\operatorname{Pr}\left[\frac{1}{m} \sum_{r=1}^{m} s_{r} \geq 3 R\right] \leq \exp (-m R / 10)
$$

Similarly

$$
\operatorname{Pr}\left[\frac{1}{m} \sum_{r=1}^{m} s_{r} \leq-3 R\right] \leq \exp (-m R / 10)
$$

Therefore we complete the proof.
Lemma B.12. If Eq. (6) holds for $i=0, \cdots, k$, then we have for all $r \in[m]$

$$
\left\|u_{r}(t)-u_{r}(0)\right\|_{2} \leq \frac{8 \sqrt{n}\|y-y(0)\|_{2}}{\sqrt{m} \lambda}:=D
$$

Proof. We have

$$
\left\|u_{r}(t)-u_{r}(0)\right\|_{2} \leq \eta_{\text {global }} \sum_{\tau=0}^{t}\left\|\Delta u_{r}(\tau)\right\|_{2}
$$

$$
\begin{aligned}
& \leq \eta_{\text {global }} \sum_{\tau=0}^{t} \frac{2 \eta_{\text {local }} K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}}\|y-y(\tau)\|_{2} \\
& \leq \eta_{\text {global }} \frac{2 \eta_{\text {local }} K\left(1+2 \eta_{\text {local }} n K\right) \sqrt{n}}{N \sqrt{m}} \sum_{\tau=0}^{t}\left(1-\frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{2 N}\right)^{\tau}\|y-y(0)\|_{2} \\
& \leq \frac{8 \sqrt{n}\|y-y(0)\|_{2}}{\sqrt{m} \lambda}
\end{aligned}
$$

where the second step comes from Lemma B. 10 and the last step comes from the choice of $\eta_{\text {local }}$.

C. Generalization

In this section, we generalize our initialization scheme to each $w_{r}(0) \sim \mathcal{N}\left(0, \sigma^{2} I\right)$. Notice that this just introduces an extra σ^{-2} term to every occurrence of m. In addition, we use $U(t)=\left[u_{1}(t), \cdots, u_{m}(t)\right]^{\top} \in \mathbb{R}^{d \times m}$ to denote parameters in a matrix form. For convenience, we first list several definitions and results which will be used in the proof our generalization theorem. Our setting mainly follows (Arora et al., 2019a). This section is organized as follows:

- In Appendix C.1, we introduce several definitions.
- In Appendix C.2, we list some tools from previous work.
- In Appendix C.3, we upper bound the movement of weights which corresponds to the complexity of our model.
- In Appendix C.4, we present some technical claims used in the proof.
- In Appendix C.5, we show the generalization result of FL-NTK.

C.1. Definitions

Definition C. 1 (Non-degenerate Data Distribution, Definition 5.1 in (Arora et al., 2019a)). A distribution \mathcal{D} over $\mathbb{R}^{d} \times \mathbb{R}$ is (λ, δ, n)-non-degenerate, if with probability at least $1-\delta$, for n iid samples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ chosen from $\mathcal{D}, \lambda_{\min }\left(H^{\infty}\right) \geq$ $\lambda>0$.
Definition C. 2 (Loss Functions). Let $\ell: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the loss function. For function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for distribution \mathcal{D} over $\mathbb{R}^{d} \times \mathbb{R}$, the population loss is defined as

$$
L_{\mathcal{D}}(f):=\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}[\ell(f(x), y)]
$$

Let $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ be n samples. The empirical loss over S is defined as

$$
L_{S}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

Definition C. 3 (Rademacher Complexity). Let \mathcal{F} be a class of functions mapping from \mathbb{R}^{d} to \mathbb{R}. Given n samples $S=\left\{x_{1}, \cdots, x_{n}\right\}$ where $x_{i} \in \mathbb{R}^{d}$ for $i \in[n]$, the empirical Rademacher complexity of \mathcal{F} is defined as

$$
\mathcal{R}_{S}(\mathcal{F}):=\frac{1}{n} \underset{\epsilon}{\mathbb{E}}\left[\sup _{f \in \mathcal{F}} \sum_{i=1}^{n} \epsilon_{i} f\left(x_{i}\right)\right]
$$

where $\epsilon \in \mathbb{R}^{d}$ and each entry of ϵ are drawn from independently uniform at random from $\{ \pm 1\}$.

C.2. Tools from Previous Work

Theorem C. 4 (Theorem B. 1 in (Arora et al., 2019a)). Suppose the loss function $\ell(\cdot, \cdot)$ is bounded in $[0, c]$ for some $c>0$ and is ρ-Lipschitz in its first argument. Then with probability at least $1-\delta$ over samples S of size n,

$$
\sup _{f \in \mathcal{F}}\left\{L_{\mathcal{D}}(f)-L_{S}(f)\right\} \leq 2 \rho \mathcal{R}_{S}(\mathcal{F})+3 c \sqrt{\frac{\log (2 / \delta)}{2 n}}
$$

Lemma C. 5 (Lemma 5.4 in (Arora et al., 2019a)). Given $R>0$, with probability at least $1-\delta$ over the random initialization on $U(0) \in \mathbb{R}^{m \times d}$ and $a \in \mathbb{R}^{m}$, for all $B>0$, the function class

$$
\mathcal{F}_{R, B}^{U(0), a}=\left\{f(U, \cdot, a)=\frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_{r} \phi\left(u_{r}^{\top} x\right):\left\|u_{r}-u_{r}(0)\right\|_{2} \leq R, \forall r \in[m] ;\|U-U(0)\|_{F} \leq B\right\}
$$

has bounded empirical Rademacher complexity

$$
\mathcal{R}_{S}\left(\mathcal{F}_{R, B}^{U(0), a}\right) \leq \frac{B}{\sqrt{2 n}}\left(1+\left(\frac{2 \log (2 / \delta)}{m}\right)^{1 / 4}\right)+\frac{2 R^{2} \sqrt{m}}{\sigma}+R \sqrt{2 \log (2 / \delta)}
$$

Lemma C. 6 (Lemma C. 3 in (Arora et al., 2019a)). With probability at least $1-\delta$ we have

$$
\left\|H(0)-H^{\infty}\right\|_{F} \leq O(n \sqrt{\log (n / \delta) / \sqrt{m}})
$$

C.3. Complexity Bound

To simplify the proof in the following sections, we define $\rho:=\eta_{\text {local }} \eta_{\text {global }} K / N$.
Now we prove a key technical lemma which will be used to prove the main result.
Lemma C.7. Let $\lambda=\lambda_{\min }\left(H^{\infty}\right)>0$. Fix $\sigma>0$, let $m=\Omega\left(\lambda^{-4} \sigma^{-2} n^{4} \log (n / \delta)\right)$, we iid initialize $w_{r} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, a_{r} sampled from $\{-1,+1\}$ uniformly at random for $r \in[m]$ and set $\eta_{\text {local }}=O\left(\frac{\lambda}{n^{2} K \kappa}\right), \eta_{\text {global }}=O(1)$. For weights $w_{1}, \cdots, w_{m} \in \mathbb{R}^{d}$, let $\operatorname{vec}(W)=\left[w_{1}^{\top} w_{2}^{\top} \cdots w_{m}^{\top}\right]^{\top} \in \mathbb{R}^{m d}$ be the concatenation of w_{1}, \cdots, w_{m}. Then with probability at least $1-6 \delta$ over the random initialization, we have for all $t \geq 0$,

- $\left\|u_{r}(t)-u_{r}(0)\right\|_{2} \leq \frac{8 \sqrt{n}\|y-u(0)\|_{2}}{\sqrt{m} \lambda}$,
- $\|U(t)-U(0)\|_{F} \leq\left(y^{\top}\left(H^{\infty}\right)^{-1} y\right)^{1 / 2}+O\left(\left(\frac{n \sigma}{\lambda}+\frac{n^{7 / 2}}{\sigma^{1 / 2} m^{1 / 4}}\right) \cdot \operatorname{poly}(\log (m / \delta))\right)$.

Proof. Similarly to Appendix B, $\left\|u_{r}(t)-u_{r}(0)\right\|_{2} \leq \frac{8 \sqrt{n}\|y-u(0)\|_{2}}{\sqrt{m} \lambda}$ and $\left\|w_{k, c, r}(t)-u(0)\right\|_{2} \leq \frac{8 \sqrt{n}\|y-u(0)\|_{2}}{\sqrt{m} \lambda}$. For integer $k \geq 0$, define $J(k, t) \in \mathbb{R}^{m d \times n}$ as the matrix

$$
J(k, t)=\frac{1}{\sqrt{m}}\left(\begin{array}{ccc}
a_{1} x_{1} \mathbf{1}_{w_{k, c_{1}, 1}(t)^{\top} x_{1} \geq 0} & \cdots & a_{1} x_{n} \mathbf{1}_{w_{k, c_{n}, 1}(t)^{\top} x_{n} \geq 0} \\
\vdots & \ddots & \vdots \\
a_{m} x_{1} \mathbf{1}_{w_{k, c_{1}, m}(t)^{\top} x_{1} \geq 0} & \cdots & a_{m} x_{n} \mathbf{1}_{w_{k, c_{n}, m}(t)^{\top} x_{n} \geq 0}
\end{array}\right)
$$

where $c_{i} \in[N]$ denotes the unique client such that $i \in c_{i}$. We claim that

$$
\|J(k, t)-J(0,0)\|_{F} \leq O\left(n \cdot\left(\delta+\frac{n \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{\sigma \lambda \sqrt{m}}\right)\right)^{1 / 2}
$$

In fact, we can calculate $\|J(k, t)-J(0,0)\|_{F}^{2}$ in the following

$$
\begin{aligned}
\|J(k, t)-J(0,0)\|_{F}^{2} & =\frac{1}{m} \sum_{r=1}^{m} \sum_{c \in[N]} \sum_{i \in S_{c}}\left(\left\|x_{i}\right\|_{2} \cdot a_{i}\left(\mathbf{1}_{w_{k, c, r}(t)^{\top} x_{i} \geq 0}-\mathbf{1}_{u_{r}(0)^{\top} x_{i} \geq 0}\right)\right)^{2} \\
& =\frac{1}{m} \sum_{r=1}^{m} \sum_{c \in[N]} \sum_{i \in S_{c}}\left(\mathbf{1}_{w_{k, c, r}(t)^{\top} x_{i} \geq 0}-\mathbf{1}_{u_{r}(0)^{\top} x_{i} \geq 0}\right)^{2} \\
& =\frac{1}{m} \sum_{r=1}^{m} \sum_{c \in[N]} \sum_{i \in S_{c}} \mathbf{1}_{\mathbf{1}_{w_{k, c, r}(t)^{\top} x_{i} \geq 0} \neq \mathbf{1}_{u_{r}(0)^{\top} x_{i} \geq 0}} .
\end{aligned}
$$

Fix $c \in[N], i \in S_{c}$ and for $r \in[m]$ define t_{r} as follows

$$
t_{r}=\mathbf{1}_{\mathbf{1}_{w_{k, c, r}(t)^{\top} x_{i} \geq 0} \neq \mathbf{1}_{u_{r}(0)}{ }^{\top} x_{i} \geq 0} .
$$

Consider the event

$$
A_{i, r}=\left\{\exists w:\left\|u_{r}(0)-w\right\|_{2} \leq R, \mathbf{1}_{w^{\top} x_{i} \geq 0} \neq \mathbf{1}_{u_{r}(0)^{\top} x_{i} \geq 0}\right\}
$$

where $R=\frac{C n \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{\lambda \sqrt{m}}$ for sufficiently small constant $C>0$. If $t_{r}=1$ then either $A_{i, r}$ happens or $\| w_{k, c, r}(t)-$ $u_{r}(0) \|_{2} \leq R$, otherwise $t_{r}=0$. Therefore

$$
\mathbb{E}\left[t_{r}\right] \leq \operatorname{Pr}\left[A_{i, r}\right]+\operatorname{Pr}\left[\left\|u_{r}(0)-w_{k, c, r}(t)\right\|_{2}<R\right] \leq R \sigma^{-1}+\delta
$$

And similarly $\mathbb{E}\left[\left(t_{r}-\mathbb{E}\left[t_{r}\right]\right)^{2}\right] \leq \mathbb{E}\left[t_{r}^{2}\right]=R \sigma^{-1}+\delta$. Applying Bernstein inequality, we have for all $t>0$,

$$
\operatorname{Pr}\left[\sum_{r=1}^{m} t_{r} \geq m R \sigma^{-1}+m \delta+m t\right] \leq \exp \left(-\frac{m^{2} t^{2}}{2\left(m R \sigma^{-1}+m \delta+m t / 3\right)}\right)
$$

Choosing $t=R \sigma^{-1}+\delta$,

$$
\operatorname{Pr}\left[\sum_{r=1}^{m} t_{r} \geq 2 m\left(R \sigma^{-1}+\delta\right)\right] \leq \exp \left(-m\left(R \sigma^{-1}+\delta\right) / 10\right)
$$

By applying union bound over $i \in[n]$, we have with probability at least $1-n \exp \left(-m\left(R \sigma^{-1}+\delta\right) / 10\right), \| J(k, t)-$ $J(0,0) \|_{F} \leq 2 n\left(R \sigma^{-1}+\delta\right)$. This is exactly what we need.

Notice that we can rewrite the update rule in federated learning as

$$
\begin{align*}
\operatorname{vec}(U(t+1)) & =\operatorname{vec}(U(t))-\frac{\eta_{\text {global }}}{N} \sum_{k \in[K]} \eta_{\text {local }} J(k, c)\left(y^{(k)}(t)-y\right) \\
& =\operatorname{vec}(U(t))-\rho \frac{1}{K} \sum_{k \in[K]} J(k, c)\left(y^{(k)}(t)-y\right) \tag{16}
\end{align*}
$$

where the last step follows from definition of $\rho=\eta_{\text {global }} \eta_{\text {local }} K / N$.
Recall from Appendix B that

$$
\Delta u_{r}(t)=\frac{a_{r}}{N} \sum_{c \in[N]} \sum_{k \in[K]} \frac{\eta_{\text {local }}}{\sqrt{m}} \sum_{j \in S_{c}}\left(y_{j}-y_{c}^{(k)}(t)_{j}\right) x_{j} \mathbf{1}_{w_{k, c, r}(t)^{\top} x_{j} \geq 0}
$$

and

$$
\begin{aligned}
H(t, k, c)_{i, j} & =\frac{1}{m} \sum_{r=1}^{m} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0} \\
H(t, k, c)_{i, j}^{\perp} & =\frac{1}{m} \sum_{r \in \bar{Q}_{i}} x_{i}^{\top} x_{j} \mathbf{1}_{u_{r}^{\top} x_{i} \geq 0, w_{k, c, r}(t)^{\top} x_{j} \geq 0}
\end{aligned}
$$

We have

$$
\begin{aligned}
v_{1, i} & =\frac{1}{\sqrt{m}} \sum_{r \in Q_{i}} a_{r}\left(\phi\left(\left(u_{r}(t)+\eta_{\text {global }} \Delta u_{r}(t)\right)^{\top} x_{i}\right)-\phi\left(u_{r}(t)^{\top} x_{i}\right)\right) \\
& =-\frac{\eta_{\text {local }} \eta_{\text {global }} K}{N} \sum_{j \in S_{c}}\left(y(t)_{j}-y_{j}\right) H_{i, j}^{\infty}+\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y(t)_{j}\right) H_{i, j}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y_{j}\right)\left(H(t, k, c)_{i, j}-H_{i, j}^{\infty}\right) \\
& +\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y_{j}\right) H(t, k, c)_{i, j}^{\perp}, \\
v_{2, i}= & \frac{1}{\sqrt{m}} \sum_{r \in \bar{Q}_{i}} a_{r}\left(\phi\left(\left(u_{r}(t)+\eta_{\text {global }} \Delta u_{r}(t)\right)^{\top} x_{i}\right)-\phi\left(u_{r}(t)^{\top} x_{i}\right)\right) .
\end{aligned}
$$

Following the proof of Appendix B, let

$$
\begin{aligned}
\xi_{i}(t)= & v_{2, i}(t)+\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y(t)_{j}\right) H_{i, j}^{\infty} \\
& +\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y_{j}\right)\left(H(t, k, c)_{i, j}-H_{i, j}^{\infty}\right) \\
& +\left(-\frac{\eta_{\text {local }} \eta_{\text {global }}}{N}\right) \sum_{k \in[K]} \sum_{c \in[N]} \sum_{j \in S_{c}}\left(y^{(k)}(t)_{j}-y_{j}\right) H(t, k, c)_{i, j}^{\perp} .
\end{aligned}
$$

Notice that

$$
\sum_{i=1}^{n}\left|\bar{Q}_{i}\right|=\sum_{r=1}^{m} \sum_{i=1}^{n} \mathbf{1}_{r \in \bar{Q}_{i}}=\sum_{i=1}^{n}\left(\sum_{r=1}^{m} \mathbf{1}_{r \in \bar{Q}_{i}}\right)
$$

Hence by Eq. (9), with probability at least $1-n \exp \left(-m R \sigma^{-1}\right)$ we have

$$
\sum_{i=1}^{n}\left|\bar{Q}_{i}\right| \leq 4 m n R \sigma^{-1}
$$

Similar to Appendix B, by the choice of $R=\frac{8 \sqrt{n}\|y-u(0)\|_{2}}{\sqrt{m} \lambda}$ and

$$
\|y-y(0)\|_{2}=O\left(\sqrt{n \log (m / \delta) \log ^{2}(n / \delta)}\right)
$$

we can bound $\xi(t)=\left[\xi_{1}(t), \cdots, \xi_{n}\right]^{\top} \in \mathbb{R}^{n}$ as

$$
\begin{align*}
\|\xi(t)\|_{2} & \leq O\left(\frac{\eta_{\text {global }} \eta_{\text {local }} n^{5 / 2} K \kappa \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{N \sigma \lambda \sqrt{m}}\|y-y(t)\|_{2}\right) \\
& =O\left(\frac{\rho n^{5 / 2} \kappa \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{\sigma \lambda \sqrt{m}}\|y-y(t)\|_{2}\right) \tag{17}
\end{align*}
$$

where the last step follows from definition of $\rho=\eta_{\text {global }} \eta_{\text {local }} K / N$.
Notice that with probability at least $1-\delta$, for all $i \in[n]$,

$$
\left|y_{i}(0)\right| \leq \sigma \cdot \sqrt{2 \log (2 m n / \delta)} \cdot \log (4 n / \delta)
$$

which implies

$$
\begin{equation*}
\|y(0)\|_{2}^{2} \leq n \sigma^{2} \cdot 2 \log (2 m n / \delta) \cdot \log ^{2}(4 n / \delta) \tag{18}
\end{equation*}
$$

Therefore we can explicitly write the dynamics of the global model as

$$
y(t)-y=\left(I-\frac{\eta_{\text {global }} \eta_{\text {local }} K}{N} H^{\infty}\right)(y(t-1)-y)+\xi(t-1)
$$

$$
\begin{aligned}
& =\left(I-\rho H^{\infty}\right)(y(t-1)-y)+\xi(t-1) \\
& =\left(I-\rho H^{\infty}\right)^{t}(y(0)-y)+\sum_{\tau=0}^{t-1}\left(I-\rho H^{\infty}\right)^{\tau} \xi(t-1-\tau) \\
& =-\left(I-\rho H^{\infty}\right)^{t} y+e(t)
\end{aligned}
$$

where the second step follows from definition of $\rho=\eta_{\text {global }} \eta_{\text {local }} K / N$, the third step comes from recursively applying the former step.y.
By Eq (17) and Eq (18) we have

$$
\begin{aligned}
e(t) & =\left(I-\rho H^{\infty}\right)^{t} y(0)+\sum_{\tau=0}^{t-1}\left(I-\rho H^{\infty}\right)^{\tau} \xi(t-1-\tau) \\
& =O\left((1-\rho)^{t} \cdot \sqrt{n \sigma^{2}} \cdot \sqrt{2 \log (2 m n / \delta)} \cdot \log (8 n / \delta)+t(1-\rho)^{t} \cdot \frac{\rho n^{3} \log (m / \delta) \log ^{2}(n / \delta)}{\lambda \sigma \sqrt{m}}\right)
\end{aligned}
$$

where we used $\|y(t)-y\|_{2}^{2} \leq\left(1-\frac{\eta_{\text {global }} \eta_{\text {local }} \lambda K}{2 N}\right)^{t} \cdot\|y(0)-y\|_{2}^{2}$ from Theorem B.3.
By Eq (16),

$$
\begin{aligned}
\operatorname{vec}(U(T))-\operatorname{vec}(U(0))= & \sum_{t=0}^{T-1}(\operatorname{vec}(U(t+1))-\operatorname{vec}(U(t))) \\
= & \sum_{t=0}^{T-1}\left(-\rho \cdot \frac{1}{K} \sum_{k \in[K]} J(k, t)\left(y^{(k)}(t)-y\right)\right) \\
= & \sum_{t=0}^{T-1} \rho \cdot J(0,0)\left(I-\rho H^{\infty}\right)^{t} y \\
& +\sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]}(J(k, t)-J(0,0))\left(I-\rho H^{\infty}\right)^{t} y \\
& -\sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]} J(k, t)\left(y^{(k)}(t)-y(t)+e(k)\right) \\
= & B_{1}+B_{2}+B_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
B_{1} & :=+\rho \cdot \sum_{t=0}^{T-1} J(0,0)\left(I-\rho H^{\infty}\right)^{t} y \\
B_{2} & :=+\rho \cdot \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k \in[K]}(J(k, t)-J(0,0))\left(I-\rho H^{\infty}\right)^{t} y, \\
B_{3} & :=-\rho \cdot \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k \in[K]} J(k, t)\left(y^{(k)}(t)-y(t)+e(k)\right) .
\end{aligned}
$$

We bound these terms separately.
Putting Claim C.8, C. 9 and C. 10 together we have

$$
\begin{aligned}
& \|U(T)-U(0)\|_{F} \\
= & \|\operatorname{vec}(U(T))-\operatorname{vec}(U(0))\|_{2} \\
= & B_{1}+B_{2}+B_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(y^{\top}\left(H^{\infty}\right)^{-1} y\right)^{1 / 2}+O\left(\left(\frac{n^{2} \sqrt{\log (n / \delta)}}{\lambda^{2} \sqrt{m}}\right)^{1 / 2}+\left(\frac{n^{3 / 2}}{m^{1 / 4} \sigma^{1 / 2} \lambda^{3 / 2}}+\frac{n \sigma}{\lambda}+\frac{n^{7 / 2}}{\lambda^{3} \sigma \sqrt{m}}\right) \cdot \operatorname{poly}(\log (m / \delta))\right) \\
& \leq\left(y^{\top}\left(H^{\infty}\right)^{-1} y\right)^{1 / 2}+O\left(\frac{n \sigma}{\lambda} \cdot \operatorname{poly}(\log (m / \delta))+\frac{n^{7 / 2}}{\sigma^{1 / 2} m^{1 / 4}} \cdot \operatorname{poly}(\log (m / \delta))\right)
\end{aligned}
$$

which completes the proof of Lemma C.7.

C.4. Technical Claims

Claim C. 8 (Bounding B_{1}). With probability at least $1-\delta$ over the random initialization, we have

$$
\left\|B_{1}\right\|_{2}^{2} \leq y^{\top} D^{\top} H^{\infty} D y+O\left(\frac{n^{2} \sqrt{\log (n / \delta)}}{\lambda^{2} \sqrt{m}}\right)
$$

where $D=\sum_{t=0}^{T-1} \rho\left(I-\rho H^{\infty}\right)^{t} \in \mathbb{R}^{n \times n}$.
Proof. Recall $D=\sum_{t=0}^{T-1} \rho\left(I-\rho H^{\infty}\right)^{t} \in \mathbb{R}^{n \times n}$, then we have

$$
\begin{aligned}
\left\|B_{1}\right\|_{2}^{2} & =\left\|\sum_{t=0}^{T-1} \rho \cdot J(0,0) \cdot\left(I-\rho \cdot H^{\infty}\right)^{t} y\right\|_{2}^{2} \\
& =y^{\top} D^{\top} J(0,0)^{\top} J(0,0) D y \\
& =y^{\top} D^{\top} H^{\infty} D y+y^{\top} D^{\top}\left(H(0)-H^{\infty}\right) D y \\
& \leq y^{\top} D^{\top} H^{\infty} D y+\left\|H(0)-H^{\infty}\right\|_{F} \cdot\|D\|_{2}^{2}\|y\|^{2} \\
& \leq y^{\top} D^{\top} H^{\infty} D y+O\left(\frac{n \sqrt{\log (n / \delta)}}{\sqrt{m}}\right)\left(\sum_{t=0}^{T-1} \rho(1-\rho \lambda)^{t}\right)^{2} n \\
& \leq y^{\top} D^{\top} H^{\infty} D y+O\left(\frac{n^{2} \sqrt{\log (n / \delta)}}{\lambda^{2} \sqrt{m}}\right)
\end{aligned}
$$

where the penultimate step comes from Lemma C. 6 and $y_{i}=O(1)$.
Claim C. 9 (Bounding B_{2}). With probability at least $1-\delta$ over the random initialization, we have

$$
\left\|B_{2}\right\|_{2} \leq \frac{n^{3 / 2} \operatorname{poly}(\log (m / \delta))}{m^{1 / 4} \sigma^{1 / 2} \lambda^{3 / 2}}
$$

Proof. For B_{2}, we have

$$
\begin{aligned}
\left\|B_{2}\right\|_{2} & =\left\|\sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]}(J(k, t)-J(0,0))\left(I-\rho H^{\infty}\right)^{t} y\right\|_{2} \\
& \leq \sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]}\|J(k, t)-J(0,0)\|_{F} \cdot\left\|I-\rho H^{\infty}\right\|_{2}^{t} \cdot\|y\|_{2} \\
& \leq O\left(\frac{n \operatorname{poly}(\log (m / \delta))}{m^{1 / 4} \sigma^{1 / 2} \lambda^{1 / 2}} \cdot \rho \cdot \sum_{k=0}^{K-1}(1-\rho \lambda)^{k} \cdot \sqrt{n}\right) \\
& =O\left(\frac{n^{3 / 2} \operatorname{poly}(\log (m / \delta))}{m^{1 / 4} \sigma^{1 / 2} \lambda^{3 / 2}}\right)
\end{aligned}
$$

where in the third step we use

$$
\|J(k, t)-J(0,0)\|_{F} \leq O\left(n \cdot\left(\delta+\frac{n \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{\sigma \lambda \sqrt{m}}\right)\right)^{1 / 2}
$$

and without loss of generality, we can set δ sufficiently small.

Claim C. 10 (Bounding B_{3}). With probability at least $1-\delta$ over the random initialization, we have

$$
\left\|B_{3}\right\|_{2} \leq\left(\frac{n \sigma}{\lambda}+\frac{n^{7 / 2}}{\lambda^{3} \sigma \sqrt{m}}\right) \cdot \operatorname{poly}(\log (m / \delta))
$$

Proof. Notice that for $k, t \geq 0,\|J(k, t)\|_{F}^{2} \leq \frac{m n}{m}=n$. By Eq (17) and Eq (18) we have

$$
\begin{aligned}
\left\|B_{3}\right\|_{2}= & \left\|-\sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]} J(k, t)\left(y^{(k)}(t)-y(t)+e(k)\right)\right\|_{2} \\
\leq & \rho \frac{1}{K} \cdot \sqrt{n} \cdot \sum_{t=0}^{T-1} O\left((1-\rho)^{t} \cdot \sqrt{n \sigma^{2}} \cdot \sqrt{2 \log (2 m n / \delta)} \cdot \log (8 n / \delta)\right. \\
& \left.+t(1-\rho)^{t} \cdot \frac{\rho n^{3} \log (m / \delta) \log ^{2}(n / \delta)}{\lambda \sigma \sqrt{m}}\right) \\
\leq & \left(\frac{n \sigma}{\lambda}+\frac{n^{7 / 2}}{\lambda^{3} \sigma \sqrt{m}}\right) \cdot \operatorname{poly}(\log (m / \delta))
\end{aligned}
$$

here in the first step $-\sum_{t=0}^{T-1} \rho \cdot \frac{1}{K} \sum_{k \in[K]} J(k, t) e(k)$ is the dominant term.

C.5. Main Results

Now we can present our main result in this section.
Theorem C.11. Fix failure probability $\delta \in(0,1)$. Set $\sigma=O(\lambda \operatorname{poly}(\log n, \log (1 / \delta)) / n)$, $m=$ $\Omega\left(\sigma^{-2}\left(n^{14} \operatorname{poly}\left(\log m, \log (1 / \delta), \lambda^{-1}\right)\right)\right.$, let the two layer neural network be initialized with w_{r} i.i.d sampled from $\mathcal{N}\left(0, \sigma^{2} I\right)$ and a_{r} sampled from $\{-1,+1\}$ uniformly at random for $r \in[m]$. Suppose the training data $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are i.i.d samples from a $(\lambda, \delta / 3, n)$-non-degenerate distribution \mathcal{D}. Let $\rho=\eta_{\text {local }} \eta_{\text {global }} K / N$ and train the two layer neural network $f(U(t), \cdot, a)$ by federated learning for

$$
T \geq \Omega\left(\rho^{-1} \lambda^{-1} \operatorname{poly}(\log (n / \delta))\right)
$$

iterations. Consider loss function $\ell: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$ that is 1 -Lipschitz in its first argument. Then with probability at least $1-\delta$ over the random initialization on $U(0) \in \mathbb{R}^{d \times m}$ and $a \in \mathbb{R}^{m}$ and the training samples, the population loss $L_{\mathcal{D}}(f):=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\ell(f(U(T), x, a), y)]$ is upper bounded by

$$
L_{\mathcal{D}}(f) \leq \sqrt{2 y^{\top}\left(H^{\infty}\right)^{-1} y / n}+O(\sqrt{\log (n /(\lambda \delta)) /(2 n)})
$$

Proof. We will define a sequence of failing events and bound these failure probability individually, then we can apply the union bound to obtain the desired result.

Let E_{1} be the event that $\lambda_{\text {min }}\left(H^{\infty}\right)<\lambda$. Because \mathcal{D} is $(\lambda, \delta / 3, n)$-non-degenerate, $\operatorname{Pr}\left[E_{1}\right] \leq \epsilon / 3$. In the remaining of the proof we assume E_{1} does not happen.

Let E_{2} be the event that $L_{S}(f(U(T), \cdot, a))=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(U(T), x_{i}, a\right), y_{i}\right)>\frac{1}{\sqrt{n}}$. By Theorem B. 3 with scaling δ properly, with probability $1-\delta / 9$ we have $L_{S}(f(U(T), \cdot, a)) \leq \frac{1}{\sqrt{n}}$. So we have $\operatorname{Pr}\left[E_{2}\right] \leq \delta / 9$.
Set $R, B>0$ as

$$
\begin{aligned}
R & =O\left(\frac{n \sqrt{\log (m / \delta) \log ^{2}(n / \delta)}}{\lambda \sqrt{m}}\right) \\
B & =\left(y^{\top}\left(H^{\infty}\right)^{-1} y\right)^{1 / 2}+O\left(\frac{n \sigma}{\lambda} \cdot \operatorname{poly}(\log (m / \delta))+\frac{n^{7 / 2}}{\sigma^{1 / 2} m^{1 / 4}} \cdot \operatorname{poly}(\log (m / \delta))\right)
\end{aligned}
$$

Notice that $\|y\|_{2}=O(\sqrt{n})$ and $\left\|\left(H^{\infty}\right)^{-1}\right\|_{2}=1 / \lambda$. By our setting of $\sigma=O\left(\frac{\lambda \operatorname{poly}(\log n, \log (1 / \delta))}{n}\right)$ and $m \sigma^{2} \geq n^{14}>n^{12}$, $B=O(\sqrt{n / \lambda})$ Let E_{3} be the event that there exists $r \in[m]$ so that $\left\|u_{r}-u_{r}(0)\right\|_{2}>R$, or $\|U-U(0)\|_{F}>B$. By Lemma C.7, $\operatorname{Pr}\left[E_{3}\right] \leq \delta / 9$.

For $i=1,2, \cdots$, let $B_{i}=i$. Let E_{4} be the event that there exists $i>0$ so that

$$
\mathcal{R}_{S}\left(\mathcal{F}_{R, B_{i}}^{U(0), a}\right)>\frac{B_{i}}{\sqrt{2 n}}\left(1+\left(\frac{2 \log (18 / \delta)}{m}\right)^{1 / 4}\right)+\frac{2 R^{2} \sqrt{m}}{\sigma}+R \sqrt{2 \log (18 / \delta)}
$$

By Lemma C. $5, \operatorname{Pr}\left[E_{4}\right] \leq 1-\delta / 9$.
Assume neither of E_{3}, E_{4} happens. Let i^{*} be the smallest integer so that $B_{i^{*}}=i^{*} \geq B$, then we have $B_{i^{*}} \leq B+1$ and $i^{*}=O(\sqrt{n / \lambda})$. Since E_{3} does not happen, we have $f(U(T), \cdot, a) \in \mathcal{F}_{R, B_{i^{*}}}^{U(0), a}$. Moreover,

$$
\begin{aligned}
\mathcal{R}_{S}\left(\mathcal{F}_{R, B_{i^{*}}}^{U(0), a}\right) & \leq \frac{B+1}{\sqrt{2 n}}\left(1+\left(\frac{2 \log (18 / \delta)}{m}\right)^{1 / 4}\right)+\frac{2 R^{2} \sqrt{m}}{\sigma}+R \sqrt{\log (18 / \delta)} \\
& =\sqrt{\frac{y^{\top}\left(H^{\infty}\right)^{-1} y}{2 n}}+\frac{1}{\sqrt{n}}+O\left(\frac{\sqrt{n} \sigma \cdot \operatorname{poly}(\log (m / \delta))}{\lambda}\right) \\
& +\frac{n^{3} \operatorname{poly}\left(\log m, \log (1 / \delta), \lambda^{-1}\right)}{m^{1 / 4} \sigma^{1 / 2}}+\frac{2 R^{2} \sqrt{m}}{\sigma}+R \sqrt{\log (18 / \delta)} \\
& =\sqrt{\frac{y^{\top}\left(H^{\infty}\right)^{-1} y}{2 n}}+\frac{1}{\sqrt{n}}+O\left(\frac{\sqrt{n} \sigma \cdot \operatorname{poly}(\log (m / \delta))}{\lambda}\right)+\frac{n^{3} \operatorname{poly}\left(\log m, \log (1 / \delta), \lambda^{-1}\right)}{m^{1 / 4} \sigma^{1 / 2}} \\
& =\sqrt{\frac{y^{\top}\left(H^{\infty}\right)^{-1} y}{2 n}}+\frac{2}{\sqrt{n}}
\end{aligned}
$$

where the first step follows from E_{4} does not happen and the choice of B, the second step follows from the choice of R, and the last step follows from the choice of m and σ.
Finally, let E_{5} be the event so that there exists $i \in\{1,2, \cdots, O(\sqrt{n / \lambda})\}$ so that

$$
\sup _{\substack{\mathcal{F}_{R, B_{i}}^{U(0), a}}}\left\{L_{\mathcal{D}}(f)-L_{S}(f)\right\}>2 \mathcal{R}_{S}\left(\mathcal{F}_{R, B_{i}}^{U(0), a}\right)+\Omega\left(\sqrt{\frac{\log \left(\frac{n}{\lambda \delta}\right)}{2 n}}\right)
$$

By Theorem C. 4 and applying union bound on i, we have $\operatorname{Pr}\left[E_{5}\right] \leq \delta / 3$.
In the case that all of the bad events $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ do not happen,

$$
\begin{aligned}
L_{\mathcal{D}}(f(U(T), \cdot, a)) & \leq L_{S}(f(U(T), \cdot, a))+2 \mathcal{R}_{S}\left(\mathcal{F}_{R, B_{i^{*}}}^{U(0), a}\right)+O\left(\sqrt{\frac{\log \left(\frac{n}{\lambda \delta}\right)}{2 n}}\right) \\
& \leq \sqrt{\frac{2 y^{\top}\left(H^{\infty}\right)^{-1} y}{n}}+\frac{5}{\sqrt{n}}+O\left(\sqrt{\frac{\log \left(\frac{n}{\lambda \delta}\right)}{2 n}}\right) \\
& =\sqrt{\frac{2 y^{\top}\left(H^{\infty}\right)^{-1} y}{n}}+O\left(\sqrt{\frac{\log \left(\frac{n}{\lambda \delta}\right)}{2 n}}\right)
\end{aligned}
$$

which is exactly what we need.

