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Appendix
Roadmap: In Appendix A, we list several probability results. In Appendix B we prove our convergence result of FL-NTK.
In Appendix C, we prove our generalization result of FL-NTK.

A. Probability Tools
Lemma A.1 (Bernstein inequality (Bernstein, 1924)). Let X1, . . . , Xn be independent zero-mean random variables.
Suppose that |Xi|  M almost surely, for all i 2 [n]. Then, for all positive t,
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Lemma A.2 (Anti-concentration inequality of Gaussian). Let X ⇠ N(0,�2), then for any 0 < t  �
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Proof. For completeness, we provide a short proof. Since X ⇠ N(0, �2), the CDF of X2 is Pr[X2  t2] = �(1/2,t2/2�2)
�(1/2)

where �(·, ·) is the incomplete lower gamma function. This can be further simplified to Pr[X2  t2] = erf(
p
t2/2�2)

where erf is the error function. For z  1, we can sandwich the erf function by 2z/3  erf(z/
p
2) 

p
2/⇡z, thus letting

z = t/� complete the proof.

B. Convergence of Neural Networks in Federated Learning
This section is organized as follows:

• In Appendix B.1, we introduce some definitions.

• In Appendix B.2, we present the convergence result of FL-NTK.

• In Appendix B.3, we upper bound C1, C2, C3, C4 that appear in the proof.

• In Appendix B.4, we present the property at initialization of FL-NTK.

• In Appendix B.5, we show the properties of local steps.

• In Appendix B.6, we present several technical claims used in the proof.

B.1. Definitions

Definition B.1. We let  to denote the condition number of Gram matrix H(0).

Assumption B.2. We assume kxik2 = 1 and � = �min(H(0)) 2 (0, 1].

B.2. Convergence Result

Theorem B.3. Recall that � = �min(H(0)) > 0. Let m = ⌦(��4n4 log(n/�)), we iid initialize ur(0) ⇠ N (0, I),
ar sampled from {�1,+1} uniformly at random for r 2 [m], and we set the step size ⌘local = O(�/(Kn2)) and
⌘global = O(1), then with probability at least 1� � over the random initialization we have for t = 0, 1, 2, · · ·

ky(t)� yk22  (1� ⌘global⌘local�K

2N
)t · ky(0)� yk22. (6)
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Notation Dimension Meaning
N N #clients
c [N ] its index
T N #communication rounds
t [T ] its index
K N #local update steps
k [K] its index
y(t) Rn aggregated server model after global round t

yc R|Sc| ground truth of c-th client
y(k)c (t) R|Sc| c-th client’s model in global round t and local step k
y(k)(t) Rn all client’s model in global round t and local step k

wk,c(t) Rd⇥m c-th client’s model parameter in global round t and local step k

u(t) Rd⇥m aggregated server model parameter in global round t and local step k

Table 1: Summary of several notations

Proof. We prove by induction. The base case is t = 0 and it is trivially true. Assume for ⌧ = 0, · · · , t we have proved
Eq. (6) to be true. We show Eq. (6) holds for ⌧ = t+ 1.

Recall that the set Qi ⇢ [m] is defined as follow

Qi :=
�
r 2 [m] : 8w 2 Rd s.t. kw � wr(0)k2  R, 1wr(0)>xi�0 = 1w>xi�0

 
,

and Qi denotes its complement.

Let v1,i, v2,i be defined as follows
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m

X
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Let H(t, k, c)i,j , H(t, k, c)?i,j be defined as follows

H(t, k, c)i,j =
1

m

mX

r=1

x>
i xj1u>

r xi�0,wk,c,r(t)>xj�0,

H(t, k, c)?i,j =
1

m

X

r2Qi

x>
i xj1u>

r xi�0,wk,c,r(t)>xj�0.

Define H(t) and H(t)? 2 Rn⇥n as

H(t)i,j =
1

m

mX

r=1

x>
i xj1ur(t)>xi�0,ur(t)>xj�0,

H(t)?i,j =
1

m

X

r2Q̄i

x>
i xj1ur(t)>xi�0,ur(t)>xj�0.

Let y(k)c (t)j (j 2 Sc) be defined by

y(k)c (t)j = f(wk,c(t), xj).
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We can write �ur(t) as follow

�ur(t) =
ar
N

X

c2[N ]

X

k2[K]

⌘localp
m

X

j2Sc

(yj � y(k)c (t)j)xj1wk,c,r(t)>xj�0.

Thus we have

v1,i =
⌘global⌘local

mN

X

k2[K]

X

c2[N ]

X

j2Sc

(yj � y(k)c (t)j)x
>
i xj

X

r2Qi

1u>
r xi�0,wk,c,r(t)>xj�0

=
⌘global⌘local

N

X

k2[K]

X

c2[N ]

X

j2Sc

(yj � y(k)c (t)j)(H(t, k, c)i,j �H(t, k, c)?i,j).

We can therefore write �2(y � y(t))>(y(t+ 1)� y(t)) as follow

� 2(y � y(t))>(y(t+ 1)� y(t))

= � 2(y � y(t))>(v1 + v2)

= � 2⌘global⌘local
N

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)(H(t, k, c)i,j �H(t, k, c)?i,j)

� 2
X

i2[n]

(yi � yi(t))v2,i.

Let

C1 = � 2⌘global⌘local
N

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)H(t, k, c)i,j

C2 =
2⌘global⌘local

N

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)H(t, k, c)?i,j

C3 = � 2
X

i2[n]

(yi � yi(t))v2,i

C4 = ky(t+ 1)� y(t)k22.

Then

ky � y(t+ 1)k22
= ky � y(t)k22 � 2(y � y(t))>(y(t+ 1)� y(t)) + ky(t+ 1)� y(t)k22
= ky � y(t)k22 + C1 + C2 + C3 + C4.

By Claim B.4, Claim B.5, Claim B.6 and Claim B.7 we have

ky � y(t+ 1)k22  2⌘global⌘local
N

(�K�+ 4nRK(1 + 2⌘localKn) + 2⌘local�K
2n)ky � y(y)k22

+
16⌘global⌘local

N
K(1 + 2⌘localKn)nRky � y(y)k22

+
16⌘global⌘local

N
K(1 + 2⌘localKn)nRky � y(y)k22

+
4⌘2global⌘

2
localn

2K2(1 + 2⌘localKn)2

N2
ky � y(y)k22.

By the choice of ⌘local  �
1000n2K and ⌘local⌘global  �

1000n2K and R  �/(1000n) we come to

ky � y(t+ 1)k22  ky � y(t)k22
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� ⌘global⌘local�K

N
ky � y(t)k22 (7)

+ 40
⌘global⌘localKnR

N
ky � y(t)k22

+ 40
⌘global⌘localKnR

N
ky � y(t)k22

+
⌘2local⌘

2
globaln

2K2

N2
ky � y(t)k22

 ky � y(t)k22

� (1� 1/10)
⌘global⌘local�K

N
ky � y(t)k22

+ 80
⌘global⌘localKnR

N
ky � y(t)k22

ky � y(t)k22 �
1

2

⌘global⌘local�K

N
ky � y(t)k22 (8)

where the second step follows from ⌘local  �
1000n2K , the third step follows from R  �/(1000n).

B.3. Bounding C1, C2, C3, C4

Claim B.4. We have with probability at least 1� n2 · exp(�mR/10) over random initialization

C1  2⌘global⌘local
N

ky � y(t)k22(�K�+ 4nRK(1 + 2⌘localKn) + 2⌘local�K
2n).

Proof. We first calculate
X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)H(t, k, c)i,j

=
X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)(H(t, k, c)i,j �H(0)i,j)

+
X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj(t)� y(k)c (t)j)H(0)i,j

+K
X

i2[n]

X

j2[n]

(yi � yi(t))(yj � yj(t))H(0)i,j .

From Lemma B.12 and Lemma B.9 we have kur(t)�u(0)k2  R and kwk,c,r(t)�u(0)k2  R. Let H(t, k) be defined by

H(t, k)i,j = H(t, k, c)i,j

for j 2 Sc. Then from Lemma B.11 we obtain

kH(t, k)�H(0)kF  2nR

with probability at least 1� n2 · exp(�mR/10) over random initialization.

Therefore from direct calculations we have
������

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)(H(t, k, c)i,j �H(0)i,j)

������

=
X

k2[K]

(y � y(t))>(H(t, k)�H(0))(y � y(k)(t))


X

k2[K]

ky � y(t)k2ky � y(k)(t)k2kH(t, k)�H(0)kF



FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis

 4nRK(1 + 2⌘localKn)ky � y(t)k22.

where the last step comes from Eq (15).

By Lemma B.10 we have
������

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj(t)� y(k)c (t)j)H(0)i,j

������


X

k2[K]

ky � y(t)k2kH(0)kky(t)� y(k)(t)k2

 2⌘local�K
2nky � y(t)k22.

Finally we have

K
X

i2[n]

X

j2[n]

(yi � yi(t))(yj � yj(t))H(0)i,j � K�ky � y(t)k22.

Combining the above we conclude the proof with

C1

= � 2⌘global⌘local
N

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)H(t, k, c)i,j

 � 2⌘global⌘local
N

(�4nRK(1 + 2⌘localK
2n)ky � y(t)k22 +K�ky � y(t)k22 � 2⌘local�K

2nky � y(t)k22)

 2⌘global⌘local
N

ky � y(t)k22(�K�+ 4nRK(1 + 2⌘localK
2n) + 2⌘local�K

2n).

Claim B.5. The following holds with probability at least 1� n exp(�mR) over random initialization

C2  16⌘global⌘local
N

K(1 + 2⌘localnK)nRky � y(t)k22.

Proof. We define matrix H(t, k)? 2 Rn⇥n such that H(t, k)?i,j = H(t, k, c)?i,j , j 2 Sc. Notice that

C2 =
2⌘global⌘local

N

X

i2[n]

X

k2[K]

X

c2[N ]

X

j2Sc

(yi � yi(t))(yj � y(k)c (t)j)H(t, k, c)?i,j

=
2⌘global⌘local

N

X

k2[K]

(y � y(t))>H(t, k)?(y � y(k)(t))

 2⌘global⌘local
N

X

k2[K]

ky � y(t)k2kH(t, k)?kF ky � y(k)(t)k2

 4⌘global⌘local
N

K(1 + 2⌘localnK)ky � y(t)k22kH(t, k)?kF

where the last step comes from Eq (15).

It thus suffices to upper bound kH(t, k)?kF .

For each i 2 [n], we define ⇣i as follows

⇣i =
mX

r=1

1r2Qi
.

It then follows from direct calculations that

kH(t, k)?k2F =
nX

i=1

nX

j=1

(H(t, k)?i,j)
2
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=
nX

i=1

X

c2[N ]

X

j2Sc

⇣ 1

m

X

r2Qi

x>
i xj1ur(t)>xi�0,wk,c,r(t)>xj�0

⌘2

=
nX

i=1

X

c2[N ]

X

j2Sc

⇣ 1

m

mX

r=1

x>
i xj1ur(t)>xi�0,wk,c,r(t)>xj�0 · 1r2Qi

⌘2

=
nX

i=1

X

c2[N ]

X

j2Sc

(
x>
i xj

m
)2
⇣ mX

r=1

1ur(t)>xi�0,wk,c,r(t)>xj�0 · 1r2Qi

⌘2

 1

m2

nX

i=1

X

c2[N ]

X

j2Sc

⇣ mX

r=1

1ur(t)>xi�0,wk,c,r(t)>xj�0 · 1r2Qi

⌘2

=
n

m2

nX

i=1

⇣ mX

r=1

1r2Qi

⌘2

=
n

m2

nX

i=1

⇣2i .

Fix i 2 [n]. The plan is to use Bernstein inequality to upper bound ⇣i with high probability.

First by Eq. (10) we have E[1r2Qi
]  R. We also have

E
h
(1r2Qi

� E[1r2Qi
])2
i
= E[12

r2Qi
]� E[1r2Qi

]2

 E[12
r2Qi

]

 R.

Finally we have |1r2Qi
� E[1r2Qi

]|  1.

Notice that {1r2Qi
}mr=1 are mutually independent, since 1r2Qi

only depends on wr(0). Hence from Bernstein inequality
(Lemma A.1) we have for all t > 0,

Pr [⇣i > m ·R+ t]  exp

✓
� t2/2

m ·R+ t/3

◆
.

By setting t = 3mR, we have

Pr [⇣i > 4mR]  exp(�mR). (9)

Hence by union bound, with probability at least 1� n exp(�mR),

kH(t, k)?k2F  n

m2
· n · (4mR)2 = 16n2R2.

Putting all together we have

kH(t, k)?kF  4nR

with probability at least 1� n exp(�mR) over random initialization.

Claim B.6. With probability at least 1� n exp(�mR) over random initialization the following holds

C3  16⌘global⌘localK

N
(1 + 2⌘localnK)nRky � y(t)k22

Proof. We can upper bound kv2k2 in the following sense

kv2k22 
nX

i=1

0

@⌘globalp
m

X

r2Qi

���ur(t)
>xi

��

1

A
2
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=
⌘2global
m

nX

i=1

⇣ mX

r=1

1r2Qi
|�ur(t)

>xi|
⌘2


⌘2global⌘

2
local

m
·
⇣2K(1 + 2⌘localnK)

p
n

N
p
m

ky � y(t)k2
⌘2

·
nX

i=1

 
mX

r=1

1r2Qi

!2

where the last step comes from Lemma B.10.

It is previously shown that
Pm

r=1 1r2Qi
 4mR holds with probability at least 1�n exp(�mR) over random initialization,

thus with probability at least 1� n exp(�mR) over random initialization

kv2k22 
⌘2global⌘

2
local

m
· 4K

2(1 + 2⌘localnK)2n

N2m
ky � y(t)k22 · n(4mR)2


⇣8⌘global⌘localK

N
(1 + 2⌘localnK)nRky � y(t)k

⌘2
.

Using Cauchy-Schwarz inequality, we complete the proof with

C3 = � 2
X

i2[n]

(yi � yi(t))v2,i

 2ky � y(t)k2 · kv2k2

 16⌘global⌘localK

N
(1 + 2⌘localnK)nRky � y(t)k22.

Claim B.7. We have

C4 
4⌘2local⌘

2
globaln

2K2(1 + 2⌘localnK)2

N2
ky � y(t)k22.

Proof. Recall that y(t+ 1)� y(t) = v1 + v2, we have

ky(t+ 1)� y(t)k22 
nX

i=1

 
⌘globalp

m

mX

r=1

���ur(t)
>xi

��
!2

=
⌘2global
m

nX

i=1

⇣ mX

r=1

|�ur(t)
>xi|

⌘2


⌘2global⌘

2
local

m
·
⇣2K(1 + 2⌘localnK)

p
n

N
p
m

ky � y(t)k2
⌘2

· nm2


4⌘2local⌘

2
globaln

2K2(1 + 2⌘localnK)2

N2
ky � y(t)k22

where the penultimate step comes from Lemma B.10.

B.4. Random Initialization

Lemma B.8. Let events E1, E2, E3 be defined as follows

E1 =
n
�(wr(0)

>xi) 
p
2 log(6mn/�), 8r 2 [m], 8i 2 [n]

o

E2 =
n���

mX

r=1

1p
m
ar�(wr(0)

>xi)1wr(0)>xi
p

2 log(6mn/�)

��� 
p

2 log(2mn/�) · log(8n/�), 8i 2 [n]
o

E3 =
n mX

r=1

1r2Qi
 4mR, 8i 2 [n]

o
.
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Then E1 \ E2 \ E3 is true with probability at least 1� � over the random initialization. Furthermore given E1 \ E2 \ E3

the following holds

ky � y(0)k22 = O(n log(m/�) log2(n/�)).

Proof. First we bound Pr [¬E3]. For each i 2 [n], we define ⇣i as follows

⇣i =
mX

r=1

1r2Qi
.

We use w as shorthand for w(0). Define the event

Ai,r =
n
9u : ku� wrk2  R,1x>

i wr�0 6= 1x>
i u�0

o
.

Note this event happens if and only if |w>
r xi| < R. Recall that wr ⇠ N (0, I). By anti-concentration inequality of Gaussian

(Lemma A.2), we have

Pr[Ai,r] = Pr
z⇠N (0,1)

[|z| < R]  2Rp
2⇡

. (10)

It thus follows from Eq. (10) that E[1r2Qi
]  R. We also have

E
h
(1r2Qi

� E[1r2Qi
])2
i
= E[12

r2Qi
]� E[1r2Qi

]2

 E[12
r2Qi

]

 R.

Therefore |1r2Qi
� E[1r2Qi

]|  1.

Notice that {1r2Qi
}mr=1 are mutually independent, since 1r2Qi

only depends on wr. Hence from Bernstein inequality
(Lemma A.1) we have for all t > 0,

Pr [⇣i > m ·R+ t]  exp

✓
� t2/2

m ·R+ t/3

◆
.

By setting t = 3mR, we have

Pr [⇣i > 4mR]  exp(�mR). (11)

Taking union bound and note the choice of R and m we have

Pr [¬E3]  n exp(�mR)  �/3.

Next we bound Pr[¬E1]. Fix r 2 [m] and i 2 [n]. Since wr ⇠ N (0, I) and kxik2 = 1, w>
r xi follows distribution N (0, 1).

From concentration of Gaussian distribution, we have

Pr
wr

[w>
r xi �

p
2 log(6mn/�)]  �

6mn
.

Let E1 be the event that for all r 2 [m] and i 2 [n] we have �(w>
r xi) 

p
2 log(6mn/�). Then by union bound,

Pr[¬E1]  �
3 ,

Finally we bound Pr[¬E2]. Fix i 2 [n]. For every r 2 [m], we define random variable zi,r as

zi,r :=
1p
m

· ar · �(w>
r xi) · 1w>

r xi
p

2 log(6mn/�)
.
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Then zi,r only depends on ar 2 {�1, 1} and wr ⇠ N (0, I). Notice that Ear,wr [zi,r] = 0, and |zi,r| 
p

2 log(6mn/�).
Moreover,

E
ar,wr

[z2i,r] = E
ar,wr


1

m
a2r�

2(w>
r xi)1

2
w>

r xi
p

2 log(6mn/�)

�

=
1

m
E
ar

[a2r] · Ewr

h
�2(w>

r xi)1
2
w>

r xi
p

2 log(6mn/�)

i

 1

m
· 1 · E

wr

[(w>
r xi)

2]

=
1

m
,

where the second step uses independence between ar and wr, the third step uses ar 2 {�1, 1} and �(t) = max{t, 0}, and
the last step follows from w>

r xi ⇠ N (0, 1).

Now we are ready to apply Bernstein inequality (Lemma A.1) to get for all t > 0,

Pr

"
mX

r=1

zi,r > t

#
 exp

 
� t2/2

m · 1
m +

p
2 log(6mn/�) · t/3

!
.

Setting t =
p
2 log(6mn/�) · log(8n/�), we have with probability at least 1� �

8n ,
mX

r=1

zi,r 
p
2 log(6mn/�) · log(8n/�).

Notice that we can also apply Bernstein inequality (Lemma A.1) on �zi,r to get

Pr

"
mX

r=1

zi,r < �t

#
 exp

 
� t2/2

m · 1
m +

p
2 log(6mn/�) · t/3

!
.

Let E2 be the event that for all i 2 [n],
�����

mX

r=1

zi,r

����� 
p

2 log(2mn/�) · log(8n/�).

By applying union bound on all i 2 [n], we have Pr[¬E2]  �/3.

By union bound, E1 \ E2 \ E3 will happen with probability at least 1� �.

If both E1 and E2 happen, we have

ky � u(0)k22 =
nX

i=1

(yi � f(W (0), a, xi))
2

=
nX

i=1

⇣
yi �

1p
m

mX

r=1

ar�(w
>
r xi)

⌘2

=
nX

i=1

y2i � 2
nX

i=1

yip
m

mX

r=1

ar�(w
>
r xi) +

nX

i=1

1

m

⇣ mX

r=1

ar�(w
>
r xi)

⌘2

=
nX

i=1

y2i � 2
nX

i=1

yi

mX

r=1

zi,r +
nX

i=1

⇣ mX

r=1

zi,r
⌘2


nX

i=1

y2i + 2
nX

i=1

|yi|
p

2 log(2mn/�) · log(4n/�) +
nX

i=1

⇣p
2 log(2mn/�) · log(4n/�)

⌘2

= O(n log(m/�) log2(n/�)),

where the first step uses E1, the second step uses E2, and the last step follows from |yi| = O(1), 8i 2 [n].
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B.5. Local Steps

The following theorem is standard in neural tangent kernel theory (see e.g. (Song & Yang, 2019)).
Lemma B.9. With probability at least 1� � over the random initialization, the following holds for all k 2 [K] and c 2 [N ]
and r 2 [m] in step t

ky(k)c (t)� yck22  (1� ⌘local�/2)
k · ky(0)c (t)� yck22, (12)

kwk,c,r(t+ 1)� w0,c,r(t)k2  4
p
nky(0)c (t)� yck2p

m�
, (13)

ky(k+1)
c (t)� y(k)c (t)k22  ⌘2localn

2 · ky(k)c (t)� yck22. (14)

We then prove a Lemma that controls the updates in local steps.
Lemma B.10. Given Eq (14) for all k 2 [K], c 2 [N ] in step t the following holds for all k 2 [K], c 2 [N ]

kyc(t)� y(k)c (t)k2  2⌘localnKkyc(t)� yck,

k�ur(t)k2  2⌘localK(1 + 2⌘localnK)
p
n

N
p
m

ky � y(t)k2.

Proof. For the first inequality, from Eq (14) we have

kyc � y(k)c (t)k2  ky(k)c (t)� y(k�1)
c (t)k2 + ky(k�1)

c (t)� yck2
 (⌘localn+ 1)kyc � y(k�1)

c (t)k2
 (⌘localn+ 1)kkyc � yc(t)k2.

Therefore

kyc(t)� y(k)c (t)k2 
kX

i=1

ky(j)c (t)� y(j�1)
c (t)k2


kX

i=1

⌘localnkyc � y(j�1)
c (t)k2


kX

i=1

⌘localn(⌘localn+ 1)j�1kyc � yc(t)k2

 2⌘localnKkyc(t)� yck2

where the last step comes from the choice of ⌘local.

For the second inequality, notice that

k�ur(t)k2 = ⌘local
���
ar
N

X

c2[N ]

X

k2[K]

1p
m

X

j2Sc

(yj � y(k)(t)j)xj1wr,k,c(t)>xj�0

���
2

 ⌘local
N
p
m

X

k2[K]

X

c2[N ]

X

j2Sc

|yj � y(k)(t)j |

 ⌘local
p
n

N
p
m

X

k2[K]

ky � y(k)(t)k2

where the second step comes form triangle inequality and kxik2 = 1 and the last step comes from Cauchy-Schwartz
inequality. From the kyc(t)� y(k)c (t)k2  2⌘localnKkyc(t)� yck2 we have

ky � y(k)(t)k22 =
X

c2[N ]

kyc � y(k)c (t)k22 =
X

c2[N ]

2(kyc � yc(t)k22 + kyc(t)� y(k)c (t)k22)
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X

c2[N ]

2(kyc � yc(t)k22 + (2⌘localnK)2kyc(t)� yck22)

 2(1 + 2⌘localnK)2ky � y(t)k22. (15)

It thus follows that

k�ur(t)k2  ⌘local
p
n

N
p
m

X

k2[K]

ky � y(k)(t)k2

 2⌘localK(1 + 2⌘localnK)
p
n

N
p
m

ky � y(t)k2.

B.6. Technical Lemma

Lemma B.11. For any set of weight vectors ew1, · · · , ewm 2 Rd and bw1, · · · , bwm 2 Rd define H( ew, bw) 2 Rn⇥n as

H( ew, bw)i,j =
1

m
x>
i xj

mX

r=1

1 ew>
r xi�0, bw>

r xj�0.

Let R 2 (0, 1) and w1, · · · , wm be iid generated from N (0, I). Then we have with probability at least 1�n2 ·exp(�mR/10)
the following holds

kH(w,w)�H( ew, bw)kF < 2nR

for any ew1, · · · , ewm 2 Rd and bw1, · · · , bwm 2 Rd such that k bwr � wrk2  R and k ewr � wrk2  R for any r 2 [m].

Proof. For each r 2 [m] and i, j 2 [n], we define

sr,i,j := 1 ew>
r xi�0, bw>

r xj�0 � 1w>
r xi�0,w>

r xj�0.

The random variable we consider can be rewritten as follows
nX

i=1

nX

j=1

|H( ew, bw)i,j �H(w,w)i,j |2

 1

m2

nX

i=1

nX

j=1

 
mX

r=1

1 ew>
r xi�0, bw>

r xj�0 � 1w>
r xi�0,w>

r xj�0

!2

=
1

m2

nX

i=1

nX

j=1

⇣ mX

r=1

sr,i,j
⌘2

.

It thus suffices to bound 1
m2 (

Pm
r=1 sr,i,j)

2.

Fix i, j and we simplify sr,i,j to sr. Then {sr}mr=1 are mutually independent random variables.

We define the event

Ai,r =
n
9u : ku� wrk2  R,1x>

i wr�0 6= 1x>
i u�0

o
.

If ¬Ai,r and ¬Aj,r happen, then
��1 ew>

r xi�0, bw>
r xj�0 � 1w>

r xi�0,w>
r xj�0

�� = 0.

If Ai,r or Aj,r happen, then
��1 ew>

r xi�0, bw>
r xj�0 � 1w>

r xi�0,w>
r xj�0

��  1.
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So we have

E
wr

[sr]  E
wr

⇥
1Ai,r_Aj,r

⇤
 Pr[Ai,r] + Pr[Aj,r]

 4Rp
2⇡

 2R,

and

E
wr

"✓
sr � E

wr

[sr]

◆2
#
= E

wr

[s2r]� E
wr

[sr]
2

 E
wr

[s2r]

 E
wr

h�
1Ai,r_Aj,r

�2i

 4Rp
2⇡

 2R.

We also have |sr|  1. So we can apply Bernstein inequality (Lemma A.1) to get for all t > 0,

Pr

"
mX

r=1

sr � 2mR+mt

#
 Pr

"
mX

r=1

(sr � E[sr]) � mt

#

 exp

✓
� m2t2/2

2mR+mt/3

◆
.

Choosing t = R, we get

Pr

"
mX

r=1

sr � 3mR

#
 exp

✓
� m2R2/2

2mR+mR/3

◆

 exp (�mR/10) .

It follows that

Pr

"
1

m

mX

r=1

sr � 3R

#
 exp(�mR/10).

Similarly

Pr

"
1

m

mX

r=1

sr  �3R

#
 exp(�mR/10).

Therefore we complete the proof.

Lemma B.12. If Eq. (6) holds for i = 0, · · · , k, then we have for all r 2 [m]

kur(t)� ur(0)k2  8
p
nky � y(0)k2p

m�
:= D.

Proof. We have

kur(t)� ur(0)k2  ⌘global

tX

⌧=0

k�ur(⌧)k2
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 ⌘global

tX

⌧=0

2⌘localK(1 + 2⌘localnK)
p
n

N
p
m

ky � y(⌧)k2

 ⌘global
2⌘localK(1 + 2⌘localnK)

p
n

N
p
m

tX

⌧=0

(1� ⌘global⌘local�K

2N
)⌧ky � y(0)k2

 8
p
nky � y(0)k2p

m�
.

where the second step comes from Lemma B.10 and the last step comes from the choice of ⌘local.

C. Generalization
In this section, we generalize our initialization scheme to each wr(0) ⇠ N (0,�2I). Notice that this just introduces an extra
��2 term to every occurrence of m. In addition, we use U(t) = [u1(t), · · · , um(t)]> 2 Rd⇥m to denote parameters in a
matrix form. For convenience, we first list several definitions and results which will be used in the proof our generalization
theorem. Our setting mainly follows (Arora et al., 2019a). This section is organized as follows:

• In Appendix C.1, we introduce several definitions.

• In Appendix C.2, we list some tools from previous work.

• In Appendix C.3, we upper bound the movement of weights which corresponds to the complexity of our model.

• In Appendix C.4, we present some technical claims used in the proof.

• In Appendix C.5, we show the generalization result of FL-NTK.

C.1. Definitions

Definition C.1 (Non-degenerate Data Distribution, Definition 5.1 in (Arora et al., 2019a)). A distribution D over Rd ⇥ R is
(�, �, n)-non-degenerate, if with probability at least 1� �, for n iid samples {(xi, yi)}ni=1 chosen from D, �min(H1) �
� > 0.
Definition C.2 (Loss Functions). Let ` : R ⇥ R ! R be the loss function. For function f : Rd ! R, for distribution D
over Rd ⇥ R, the population loss is defined as

LD(f) := E
(x,y)⇠D

[`(f(x), y)].

Let S = {(xi, yi)}ni=1 be n samples. The empirical loss over S is defined as

LS(f) :=
1

n

nX

i=1

`(f(xi), yi).

Definition C.3 (Rademacher Complexity). Let F be a class of functions mapping from Rd to R. Given n samples
S = {x1, · · · , xn} where xi 2 Rd for i 2 [n], the empirical Rademacher complexity of F is defined as

RS(F) :=
1

n
E
✏

"
sup
f2F

nX

i=1

✏if(xi)

#
.

where ✏ 2 Rd and each entry of ✏ are drawn from independently uniform at random from {±1}.

C.2. Tools from Previous Work

Theorem C.4 (Theorem B.1 in (Arora et al., 2019a)). Suppose the loss function `(·, ·) is bounded in [0, c] for some c > 0
and is ⇢-Lipschitz in its first argument. Then with probability at least 1� � over samples S of size n,

sup
f2F

{LD(f)� LS(f)}  2⇢RS(F) + 3c

r
log(2/�)

2n
.
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Lemma C.5 (Lemma 5.4 in (Arora et al., 2019a)). Given R > 0, with probability at least 1�� over the random initialization
on U(0) 2 Rm⇥d and a 2 Rm, for all B > 0, the function class

FU(0),a
R,B = {f(U, ·, a) = 1p

m

mX

r=1

ar�(u
>
r x) : kur � ur(0)k2  R, 8r 2 [m]; kU � U(0)kF  B}

has bounded empirical Rademacher complexity

RS(FU(0),a
R,B )  Bp

2n

✓
1 +

⇣2 log(2/�)
m

⌘1/4
◆
+

2R2pm

�
+R

p
2 log(2/�).

Lemma C.6 (Lemma C.3 in (Arora et al., 2019a)). With probability at least 1� � we have

kH(0)�H1kF  O(n
q

log(n/�)/
p
m).

C.3. Complexity Bound

To simplify the proof in the following sections, we define ⇢ := ⌘local⌘globalK/N .

Now we prove a key technical lemma which will be used to prove the main result.

Lemma C.7. Let � = �min(H1) > 0. Fix � > 0, let m = ⌦(��4��2n4 log(n/�)), we iid initialize wr ⇠ N (0,�2I),
ar sampled from {�1,+1} uniformly at random for r 2 [m] and set ⌘local = O( �

n2K ), ⌘global = O(1). For weights
w1, · · · , wm 2 Rd, let vec(W ) = [w>

1 w>
2 · · ·w>

m]> 2 Rmd be the concatenation of w1, · · · , wm. Then with probability
at least 1� 6� over the random initialization, we have for all t � 0,

• kur(t)� ur(0)k2  8
p
nky�u(0)k2p

m�
,

• kU(t)� U(0)kF  (y>(H1)�1y)1/2 +O
⇣
(n�� + n7/2

�1/2m1/4 ) · poly(log(m/�))
⌘

.

Proof. Similarly to Appendix B, kur(t)� ur(0)k2  8
p
nky�u(0)k2p

m�
and kwk,c,r(t)� u(0)k2  8

p
nky�u(0)k2p

m�
. For integer

k � 0, define J(k, t) 2 Rmd⇥n as the matrix

J(k, t) =
1p
m

0

B@

a1x11wk,c1,1(t)>x1�0 · · · a1xn1wk,cn,1(t)>xn�0

...
. . .

...
amx11wk,c1,m(t)>x1�0 · · · amxn1wk,cn,m(t)>xn�0

1

CA

where ci 2 [N ] denotes the unique client such that i 2 ci. We claim that

kJ(k, t)� J(0, 0)kF  O
⇣
n ·

�
� +

n
q
log(m/�) log2(n/�)

��
p
m

�⌘1/2
.

In fact, we can calculate kJ(k, t)� J(0, 0)k2F in the following

kJ(k, t)� J(0, 0)k2F =
1

m

mX

r=1

X

c2[N ]

X

i2Sc

�
kxik2 · ai(1wk,c,r(t)>xi�0 � 1ur(0)>xi�0)

�2

=
1

m

mX

r=1

X

c2[N ]

X

i2Sc

�
1wk,c,r(t)>xi�0 � 1ur(0)>xi�0

�2

=
1

m

mX

r=1

X

c2[N ]

X

i2Sc

11wk,c,r(t)>xi�0 6=1ur(0)>xi�0
.
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Fix c 2 [N ], i 2 Sc and for r 2 [m] define tr as follows

tr = 11wk,c,r(t)>xi�0 6=1ur(0)>xi�0
.

Consider the event

Ai,r = {9w : kur(0)� wk2  R,1w>xi�0 6= 1ur(0)>xi�0}

where R =
Cn

p
log(m/�) log2(n/�)

�
p
m

for sufficiently small constant C > 0. If tr = 1 then either Ai,r happens or kwk,c,r(t)�
ur(0)k2  R, otherwise tr = 0. Therefore

E[tr]  Pr[Ai,r] + Pr[kur(0)� wk,c,r(t)k2 < R]  R��1 + �.

And similarly E[(tr � E[tr])2]  E[t2r] = R��1 + �. Applying Bernstein inequality, we have for all t > 0,

Pr
h mX

r=1

tr � mR��1 +m� +mt
i
 exp

✓
� m2t2

2(mR��1 +m� +mt/3)

◆
.

Choosing t = R��1 + �,

Pr
h mX

r=1

tr � 2m(R��1 + �)
i
 exp(�m(R��1 + �)/10).

By applying union bound over i 2 [n], we have with probability at least 1 � n exp(�m(R��1 + �)/10), kJ(k, t) �
J(0, 0)kF  2n(R��1 + �). This is exactly what we need.

Notice that we can rewrite the update rule in federated learning as

vec(U(t+ 1)) = vec(U(t))� ⌘global
N

X

k2[K]

⌘localJ(k, c)(y
(k)(t)� y)

= vec(U(t))� ⇢
1

K

X

k2[K]

J(k, c)(y(k)(t)� y) (16)

where the last step follows from definition of ⇢ = ⌘global⌘localK/N .

Recall from Appendix B that

�ur(t) =
ar
N

X

c2[N ]

X

k2[K]

⌘localp
m

X

j2Sc

(yj � y(k)c (t)j)xj1wk,c,r(t)>xj�0,

and

H(t, k, c)i,j =
1

m

mX

r=1

x>
i xj1u>

r xi�0,wk,c,r(t)>xj�0,

H(t, k, c)?i,j =
1

m

X

r2Qi

x>
i xj1u>

r xi�0,wk,c,r(t)>xj�0.

We have

v1,i =
1p
m

X

r2Qi

ar

✓
�
�
(ur(t) + ⌘global�ur(t))

>xi

�
� �(ur(t)

>xi)

◆

= � ⌘local⌘globalK

N

X

j2Sc

(y(t)j � yj)H
1
i,j + (�⌘local⌘global

N
)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � y(t)j)H
1
i,j
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+ (�⌘local⌘global
N

)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � yj)(H(t, k, c)i,j �H1
i,j)

+ (�⌘local⌘global
N

)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � yj)H(t, k, c)?i,j ,

v2,i =
1p
m

X

r2Qi

ar

✓
�
�
(ur(t) + ⌘global�ur(t))

>xi

�
� �(ur(t)

>xi)

◆
.

Following the proof of Appendix B, let

⇠i(t) = v2,i(t) + (�⌘local⌘global
N

)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � y(t)j)H
1
i,j

+ (�⌘local⌘global
N

)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � yj)(H(t, k, c)i,j �H1
i,j)

+ (�⌘local⌘global
N

)
X

k2[K]

X

c2[N ]

X

j2Sc

(y(k)(t)j � yj)H(t, k, c)?i,j .

Notice that
nX

i=1

|Qi| =
mX

r=1

nX

i=1

1r2Qi
=

nX

i=1

(
mX

r=1

1r2Qi
).

Hence by Eq. (9), with probability at least 1� n exp(�mR��1) we have

nX

i=1

|Qi|  4mnR��1.

Similar to Appendix B, by the choice of R = 8
p
nky�u(0)k2p

m�
and

ky � y(0)k2 = O
⇣q

n log(m/�) log2(n/�)
⌘
,

we can bound ⇠(t) = [⇠1(t), · · · , ⇠n]> 2 Rn as

k⇠(t)k2  O

✓⌘global⌘localn5/2K
q

log(m/�) log2(n/�)

N��
p
m

ky � y(t)k2
◆

= O

✓⇢n5/2
q
log(m/�) log2(n/�)

��
p
m

ky � y(t)k2
◆

(17)

where the last step follows from definition of ⇢ = ⌘global⌘localK/N .

Notice that with probability at least 1� �, for all i 2 [n],

|yi(0)|  � ·
p

2 log(2mn/�) · log(4n/�),

which implies

ky(0)k22  n�2 · 2 log(2mn/�) · log2(4n/�). (18)

Therefore we can explicitly write the dynamics of the global model as

y(t)� y = (I � ⌘global⌘localK

N
H1)(y(t� 1)� y) + ⇠(t� 1)
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= (I � ⇢H1)(y(t� 1)� y) + ⇠(t� 1)

= (I � ⇢H1)t(y(0)� y) +
t�1X

⌧=0

(I � ⇢H1)⌧ ⇠(t� 1� ⌧)

= � (I � ⇢H1)ty + e(t).

where the second step follows from definition of ⇢ = ⌘global⌘localK/N , the third step comes from recursively applying the
former step.y.

By Eq (17) and Eq (18) we have

e(t) = (I � ⇢H1)ty(0) +
t�1X

⌧=0

(I � ⇢H1)⌧ ⇠(t� 1� ⌧)

= O

✓
(1� ⇢)t ·

p
n�2 ·

p
2 log(2mn/�) · log(8n/�) + t(1� ⇢)t · ⇢n

3 log(m/�) log2(n/�)

��
p
m

◆

where we used ky(t)� yk22  (1� ⌘global⌘local�K
2N )t · ky(0)� yk22 from Theorem B.3.

By Eq (16),

vec(U(T ))� vec(U(0)) =
T�1X

t=0

(vec(U(t+ 1))� vec(U(t)))

=
T�1X

t=0

0

@�⇢ · 1

K

X

k2[K]

J(k, t)(y(k)(t)� y)

1

A

=
T�1X

t=0

⇢ · J(0, 0)(I � ⇢H1)ty

+
T�1X

t=0

⇢ · 1

K

X

k2[K]

(J(k, t)� J(0, 0))(I � ⇢H1)ty

�
T�1X

t=0

⇢ · 1

K

X

k2[K]

J(k, t)(y(k)(t)� y(t) + e(k))

= B1 +B2 +B3

where

B1 := + ⇢ ·
T�1X

t=0

J(0, 0)(I � ⇢H1)ty,

B2 := + ⇢ ·
T�1X

t=0

1

K

X

k2[K]

(J(k, t)� J(0, 0))(I � ⇢H1)ty,

B3 := � ⇢ ·
T�1X

t=0

1

K

X

k2[K]

J(k, t)(y(k)(t)� y(t) + e(k)).

We bound these terms separately.

Putting Claim C.8, C.9 and C.10 together we have

kU(T )� U(0)kF
= k vec(U(T ))� vec(U(0))k2
= B1 +B2 +B3
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which completes the proof of Lemma C.7.

C.4. Technical Claims

Claim C.8 (Bounding B1). With probability at least 1� � over the random initialization, we have

kB1k22  y>D>H1Dy +O(
n2
p

log(n/�)

�2
p
m

)

where D =
PT�1

t=0 ⇢(I � ⇢H1)t 2 Rn⇥n.

Proof. Recall D =
PT�1

t=0 ⇢(I � ⇢H1)t 2 Rn⇥n, then we have

kB1k22 =
���

T�1X
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⇢ · J(0, 0) · (I � ⇢ ·H1)ty
���
2

2

= y>D>J(0, 0)>J(0, 0)Dy

= y>D>H1Dy + y>D>(H(0)�H1)Dy

 y>D>H1Dy + kH(0)�H1kF · kDk22kyk2
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where the penultimate step comes from Lemma C.6 and yi = O(1).

Claim C.9 (Bounding B2). With probability at least 1� � over the random initialization, we have

kB2k2  n3/2 poly(log(m/�))

m1/4�1/2�3/2
.

Proof. For B2, we have
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where in the third step we use

kJ(k, t)� J(0, 0)kF  O
⇣
n ·

�
� +

n
q
log(m/�) log2(n/�)

��
p
m

�⌘1/2

and without loss of generality, we can set � sufficiently small.
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Claim C.10 (Bounding B3). With probability at least 1� � over the random initialization, we have
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p
m
) · poly(log(m/�)).

Proof. Notice that for k, t � 0, kJ(k, t)k2F  mn
m = n. By Eq (17) and Eq (18) we have
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here in the first step �
PT�1

t=0 ⇢ · 1
K

P
k2[K] J(k, t)e(k) is the dominant term.

C.5. Main Results

Now we can present our main result in this section.

Theorem C.11. Fix failure probability � 2 (0, 1). Set � = O(� poly(log n, log(1/�))/n), m =
⌦
�
��2(n14 poly(logm, log(1/�),��1))

�
, let the two layer neural network be initialized with wr i.i.d sampled from

N (0,�2I) and ar sampled from {�1,+1} uniformly at random for r 2 [m]. Suppose the training data S = {(xi, yi)}ni=1

are i.i.d samples from a (�, �/3, n)-non-degenerate distribution D. Let ⇢ = ⌘local⌘globalK/N and train the two layer neural
network f(U(t), ·, a) by federated learning for

T � ⌦
�
⇢�1��1 poly(log(n/�))

�

iterations. Consider loss function ` : R ⇥ R ! [0, 1] that is 1-Lipschitz in its first argument. Then with probability at
least 1 � � over the random initialization on U(0) 2 Rd⇥m and a 2 Rm and the training samples,the population loss
LD(f) := E(x,y)⇠D[`(f(U(T ), x, a), y)] is upper bounded by

LD(f) 
q
2y>(H1)�1y/n+O(

p
log(n/(��))/(2n)).

Proof. We will define a sequence of failing events and bound these failure probability individually, then we can apply the
union bound to obtain the desired result.

Let E1 be the event that �min(H1) < �. Because D is (�, �/3, n)-non-degenerate, Pr[E1]  ✏/3. In the remaining of the
proof we assume E1 does not happen.

Let E2 be the event that LS(f(U(T ), ·, a)) = 1
n

Pn
i=1 `(f(U(T ), xi, a), yi) > 1p

n
. By Theorem B.3 with scaling �

properly, with probability 1� �/9 we have LS(f(U(T ), ·, a))  1p
n

. So we have Pr[E2]  �/9.

Set R,B > 0 as
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Notice that kyk2 = O(
p
n) and k(H1)�1k2 = 1/�. By our setting of � = O(� poly(log n,log(1/�))

n ) and m�2 � n14 > n12,
B = O(

p
n/�). Let E3 be the event that there exists r 2 [m] so that kur � ur(0)k2 > R, or kU � U(0)kF > B. By

Lemma C.7, Pr[E3]  �/9.

For i = 1, 2, · · · ,, let Bi = i. Let E4 be the event that there exists i > 0 so that
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By Lemma C.5, Pr[E4]  1� �/9.

Assume neither of E3, E4 happens. Let i⇤ be the smallest integer so that Bi⇤ = i⇤ � B, then we have Bi⇤  B + 1 and
i⇤ = O(
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where the first step follows from E4 does not happen and the choice of B, the second step follows from the choice of R, and
the last step follows from the choice of m and �.

Finally, let E5 be the event so that there exists i 2 {1, 2, · · · , O(
p
n/�)} so that
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By Theorem C.4 and applying union bound on i, we have Pr[E5]  �/3.

In the case that all of the bad events E1, E2, E3, E4, E5 do not happen,
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which is exactly what we need.


