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Abstract

Perception of time from sequentially acquired sen-
sory inputs is rooted in everyday behaviors of in-
dividual organisms. Yet, most algorithms for time-
series modeling fail to learn dynamics of random
event timings directly from visual or audio inputs,
requiring timing annotations during training that
are usually unavailable for real-world applications.
For instance, neuroscience perspectives on post-
diction imply that there exist variable temporal
ranges within which the incoming sensory inputs
can affect the earlier perception, but such tempo-
ral ranges are mostly unannotated for real applica-
tions such as automatic speech recognition (ASR).
In this paper, we present a probabilistic ordinary
differential equation (ODE), called STochastic
boundaRy ODE (STRODE), that learns both the
timings and the dynamics of time series data with-
out requiring any timing annotations during train-
ing. STRODE allows the usage of differential
equations to sample from the posterior point pro-
cesses, efficiently and analytically. We further
provide theoretical guarantees on the learning of
STRODE. Our empirical results show that our ap-
proach successfully infers event timings of time
series data. Our method achieves competitive
or superior performances compared to existing
state-of-the-art methods for both synthetic and
real-world datasets.

1. Introduction
Perception of time from sequentially acquired sensory inputs
is rooted in the everyday behavior of the individual organism.
Numerous neuroscience studies have provided evidence
for close connections between time perception and sensory
input from multiple sensory modalities such as audition
and vision (Bolognini et al., 2012; Murai & Yotsumoto,
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2018; Ulrich et al., 1998). Decoupling the perception of
time and content from sensory inputs is crucial for real-time
perception in fast-changing environments (Staff, 2014; Toso
et al., 2020). For example, to perform interceptive actions
such as hitting a moving object, precise timing is required
due to significant response latency of neurons; to identify
ambiguous phoneme from the acoustic signal in real-time,
again, the timing is required such that the human brain
is able to strike a balance between postdiction (to ensure
sufficient information is integrated from subsequent context)
and prediction (to ensure decision outcomes are not delayed
relative to the external world) (Gwilliams et al., 2018).

Despite the enormous practical successes of machine learn-
ing (in particular, deep learning), most of the algorithms
for time-series modeling fail to learn dynamics of random
event timings directly from visual or audio inputs, and still
require their training data to have timing annotations, such
as Latent ODE (Rubanova et al., 2019). However, for some
real-world applications in which timing annotations are not
available, it is necessary to introduce a “time perception”
mechanism to handle such uncertainty. For instance, neu-
roscience perspectives on postdiction imply that there exist
variable temporal ranges within which the incoming sensory
inputs can affect the earlier perception, but such temporal
ranges are mostly unannotated for real applications such as
automatic speech recognition (ASR) (Yu & Li, 2018).

Can gaps between natural and artificial intelligence be
bridged further through introducing the “time perception”
mechanism? In this paper, we generalize neural ODE in
handling a special type of boundary value problem with
random boundary times which are described by a temporal
point process (TPP). We present a probabilistic ordinary dif-
ferential equation (ODE) called stochastic boundary ODE
(STRODE) that infers both the timings and the dynamics of
the time series data without requiring any timing annotations
during training.

We adopt variational inference to optimize our model. The
boundary time variables involved in STRODE are described
as ODEs, consequently posing a major challenge for evaluat-
ing evidence lower bound (ELBO) with respect to sampling
and inference of such distributions. To mitigate this chal-
lenge, we propose a method that allows for joint inference
and differentiable sampling of such distributions through
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solving ODEs. Furthermore, the KL term between two
differential equations in the ELBO is computationally in-
tractable. We further provide an analytical upper bound for
the KL term such that we have a closed-form solution for
the ELBO.

Our empirical results show that our approach success-
fully infers event timings of the time series data. The ex-
periments over Rotating MNIST Thumbnail, a synthetic
video thumbnail dataset, show that our model is capable
of inferring event timings of the irregularly sampled high-
dimensional data without using timing annotations during
training, whereby learning of the complex dynamics of ir-
regularly sampled data is achieved. We further apply our
model for postdictive modeling using CHiME-5 speech data.
We demonstrate that our new model outperforms baseline
neural ODEs.

2. Related Work
Ordinary differential equations (ODE) are powerful math-
ematical tools to describe continuous-time dynamics of an
evolving system such as chemical transformation in chem-
istry (Verwer & Simpson, 1995), and laws of motion in
physics and disease spreading (Komarova & Wodarz, 2010)
in biology. They have been recently applied to model dy-
namics of hidden representations of neural networks (Chen
et al., 2018). Such neural ODE models have increasingly
gained attention in the machine learning community. For ex-
ample, (Grathwohl et al., 2018) improves upon neural ODE
in terms of efficiency by introducing an unbiased stochastic
estimator of the likelihood. Since neural ODE assumes the
data to be evenly distributed, ODE-recurrent neural network
(ODE-RNN) (Rubanova et al., 2019) further extends this
approach to handle irregularly sampled data by describing
state transitions in recurrent neural network (RNN) as an
initial value problem (IVP). Along a different line of re-
search, jump stochastic differential equations (JSDE) (Jia
& Benson, 2019) incorporate a temporal point process into
neural ODE to model marked point processes. Though these
variants of neural ODE are capable of learning dynamics of
time series data with or without discontinuities, they require
timing annotations for each data sample. Therefore, they
are not applicable to our tasks where timing annotations are
not available during training.

The closest work to ours is (Chen et al., 2020), in which
neural event functions are introduced in neural ODE solvers
to enable the learning of termination criteria. However,
the design of such event function requires prior knowledge
of the dynamical system. In contrast, our model adopts a
regenerative point process as prior, whose parameters are
learned from data itself. Furthermore, (Chen et al., 2020)
focuses on solving IVPs, while our approach generalizes
neural ODE in handling a special type of boundary value

problem with random boundary conditions.

3. Background
3.1. Temporal Point process

A temporal point process (TPP) is a stochastic process that
describes the temporal dependence among events. It pro-
vides an effective solution to solve the next-event-prediction
problem. A TPP can be equivalently represented as multiple
sets of random variables such as arrival times and waiting
times. Let {ti}Ni=0 be a sequence of arrival times and let
{∆ti}Ni=1 be a sequence of waiting times sampled from a
TPP T ({pi(t)}Ni=0), we have:

{ti}Ni=0 ∼ T ({pi(t)}Ni=0) (1)
ti ∼ pi(t) (2)

∆ti = ti − ti−1 (3)

where pi(t) denotes the probability density function of the
arrival time ti. All these random variables involved in TPP
are characterized by a conditional intensity function λ(t),
which is defined to be the rate at which events are expected
to occur at time t given histories. For example, the probabil-
ity density pi(t) is written as:

pi(t) = λ(t)e
∫ t
ti−1

−λ(t)dt
(4)

Given the last arrival time ti−1, the expected next arrival
time can be generated by:

t̄i =

∫ +∞

ti−1

tpi(t)dt (5)

Let the first arrival time be placed at t0 = 0. If the process
follows a Poisson process or more generally a regenerative
process, it probabilistically restarts at any arrival time, i.e.,
for any i, we have

pi(t) = p0(t) = λ(t)e
∫ t
0
−λ(t)dt (6)

Parameter learning for TPP can be conducted by maximum
likelihood estimation (MLE). Note that in this work, the
arrival times of data samples are not given during training.
Therefore it is impossible to directly cast it as a supervised
learning problem that could be solved via MLE.

3.2. From Initial Value Problem to Boundary Value
Problem

Ordinary differential equations (ODE), initially exploited to
describe the phenomena in physical domain, have been ap-
plied to model dynamics of hidden representations of neural
networks (Chen et al., 2018; Rubanova et al., 2019). For
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simplicity, consider an autoregressive task which predicts
future value based on histories. Suppose we are given a
sequence of training samples X = {xi}Ni=0 at times {ti}Ni=0

and let t0 = 0. For i < N and t ∈ [ti, ti+1], the hidden
state h(t) satisfies an initial value problem (IVP):

h′(t) = fθ1(h(t), t), h(ti) = xi (7)

where fθ1 is a neural network. The general solution of
h(ti+1):

h(ti+1) = h(ti) +

∫ ti+1

ti

fθ1(h(t), t)dt (8)

where h(ti+1) can be approximated using the ODE numeri-
cal solvers such as the Euler method and the Runge-Kutta
methods (Chen et al., 2018), i.e.:

h̃(ti+1) = ODESolve(fθ1 , h(ti), ti, ti+1) (9)

Combining above N IVPs at all time steps, for t ∈ [t0, tN ],
we have a boundary value problem (BVP) as follows:

h′(t) = fθ1(h(t), t) (10)

whose boundary conditions are:

{h(t0) = x0, h(t1) = x1, ..., h(tN ) = xN} (11)

To solve the above neural ODE that satisfies boundary condi-
tions, we firstly follow Eq.(9) to construct a trial form of the
solution of h(t) at each boundary time except t0. Then the
model can be optimized by minimizing the mean squared
error (MSE):

1

N

N∑
i=1

(h̃(ti)− xi)2 (12)

It can also be conducted by MLE. More specifically, by
assuming that each boundary value xi follows a Gaussian
distribution p(xi) = N (µi, σ

2
i ) whose mean µi and vari-

ance σ2
i are the output of a neural network, we have:

xi ∼ N (µi, σ
2
i ), where [µi, σ

2
i ] = fθ2(h̃(ti)) (13)

It follows that the log-likelihood of all boundary values is:

logP (X) =

N∑
i=1

log p(xi) (14)

Both IVPs and BVPs assume timings of data samples are
available during training and thus restricting its capability
in handling real-world problems such as postdiction-based
ASR, where postdictive temporal ranges are unannotated.

4. Stochastic Boundary Ordinary Differential
Equation (STRODE)

4.1. Stochastic Boundary Value Problem

Stochastic boundary value problem (SBVP) is a special
type of boundary value problem we propose in which the
unobservable boundary conditions/times are described by
a stochastic process, e.g. temporal point process. Let us
consider a more challenging autoregressive task: we are
only given a sequence of training samples X = {xi}Ni=0, in
which the first data sample x0 occurs at t0 = 0, our goal is
not just one step ahead prediction, but to infer both boundary
times {ti}Ni=1 and latent dynamics of the time-series data.

Let T({pi(t|xi)}Ni=1) be a temporal point process whose
realization consists of a sequence of boundary times {t̃i}Ni=1,
each follows a density functions pi(t|xi) conditioned on the
data sample xi. For t ∈ [0, t̃N ], the hidden states h(t)
satisfies an SBVP:

h′(t) = fθo(h(t), t) (15)

whose boundary conditions are:

{t̃i}Ni=1 ∼ T({pi(t|xi)}Ni=1) (16)

{h(0) = x0, h(t̃1) = x1, ..., h(t̃N ) = xN} (17)

where fθo is a neural network.

4.2. Learning

The neural ODE that involves in SBVP is dubbed as stochas-
tic boundary ordinary differential equation (STRODE).
Learning the parameters of neural networks and TPP of
the STRODE is, equivalently, solving the SBVP. It is chal-
lenging due to the difficulty in estimating parameters of
T({pi(t|xi)}Ni=1) without having any observable boundary
times. In this work, we adopt variational inference to opti-
mize our model. Let qi(t|xi) be the approximate posterior
of the boundary time conditioned on the data sample xi and
let pi(t) be the corresponding prior. The evidence lower
bound (ELBO) can be written as:

logP (X) >
N∑
i=1

{Et̃i∼qi(t|xi) log p(xi|t̃i)

−KL(qi(t|xi)||pi(t))}

(18)

Most of the existing TPPs make strong assumptions about
the generative processes of the event data and use a fixed
parametric form of the intensity function, restricting the
expressive power of the respective processes. Instead, our
model adopts a general form of TPP in which the arrival time
variable could be an arbitrary distribution, consequently
posing a major challenge for evaluating ELBO with respect
to sampling and inference of such distributions. In the
following subsections, we will show how to obtain a closed-
form solution of ELBO.
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4.3. ODE-based Sampling and Inference of TPP

Sampling from a TPP is usually performed via thinning
algorithm (Ogata, 1981). However, such an operation is
not differentiable as there is no guarantee that the samples
drawn from the algorithm may converge to the exact gradi-
ent estimate of the ELBO. To tackle this problem, we model
TPP as ODEs such that sampling is achieved by solving such
ODEs. More importantly, all operations are differentiable.

Given the last boundary time ti−1, the expected next bound-
ary time is written as:

t̄i =

∫ +∞

ti−1

tqi(t|xi)dt (19)

Inspired by this, we derive an IVP whose solution allows us
to obtain a sequence of boundary time samples {t̃i}Ni=0. To
be more specific, suppose the initial boundary time is placed
at t̃−1 = 0. Given the last boundary time sample t̃i−1, let
t ∈ [0, t̃i−1], the next boundary time Φi(t) satisfies an IVP:

Φi
′(t) = −tqi(t|xi), Φi(0) =

∫ +∞

0

tqi(t|xi)dt (20)

Then the general solution of t̃i is written as:

t̃i = Φi(ti−1) = Φi(0) +

∫ t̃i−1

0

−tqi(t|xi)dt

The ODE numerical solver, e.g. Euler method fails to gen-
erate the approximate solution as Φi(0) is computationally
intractable. We, therefore, adopt the neural network fθΦ to
approximate the solution of t̃i, such that:

t̃i = Φi(t̃i−1) = fθΦ(t̃i−1, xi) (21)

Notably, we use t̃i−1 as the bias of the last layer of fθΦ to
guarantee that t̃i is greater than t̃i−1 (implementation details
in the Supplement).

Then Φi
′(t) can be obtained by differentiating Φi(t) with re-

spect to t. It follows that the approximate posterior qi(t|xi)
can be written as:

qi(t|xi) =
−Φi

′(t)

t
(22)

4.4. Prior Point Process

We impose a regenerative process prior on our STRODE.
Inspired by (Chen et al., 2018; Rubanova et al., 2019), we
model the cumulative conditional intensity function of the
process as an initial value ODE. Let t ∈ [0,+∞), the cumu-
lative conditional intensity function φi(t) satisfies an initial
value problem (IVP):

φ′i(t) = λi(t), φi(0) = 0 (23)

Since our regenerative process prior probabilistically restarts
itself for any arrivals, the general solution for conditional
intensity function at t can be written as

φi(t) = φ0(t) =

∫ t

0

λi(s)ds (24)

such that the prior pi(t) is reformulated as follows:

pi(t) = φ′i(t)e
−φi(t) (25)

Solving the above IVP requires designing of a specific func-
tional form of the intensity function λi(t), which results
in a TPP with limited expressive power. To alleviate this
problem, instead of parameterizing λi(t), we adopt a neural
network fθφ to approximate φi(t). To ensure that both λi(t)
and φi(t) are constrained to be positive, we adopt similar
neural network architecture of (Omi et al., 2019).

4.5. Upper Bound of ODE-based Kullback–Leibler
(KL) Divergence

With both qi(t|xi) and pi(t) being defined as differential
equations, the KL term of the ELBO defined in Eq.(18) can
be written as :

KL(qi(t|xi)||pi(t)) =

∫ +∞

0

−Φi
′(t)

t
log

−Φi
′(t)

tφ′i(t)e
−φi(t)

(26)
The above KL term is computationally intractable as the
upper limit of integration approaches infinity, and it remains
unknown whether such an improper integral converges. The
following theorem provides an analytical upper bound for
the KL term such that we have a closed-form solution for
the ELBO.

Theorem 1. Suppose we are given two arbitrary distribu-
tions, q(t) and p(t) with t ∈ [0,+∞). Let m = −e−t. Let
ε be a positive real constant and let g : [−1, 0) → R be a
continuous function. There exists a G : [−1, 0)→ [0,+∞)
that satisfies an initial value problem:

G′(m) = g(m), G(−1) = 0

where g(m) =
−q(− log(−m))

m
log

q(− log(−m))

p(− log(−m))

Such that as ε→ 0, we have:

lim
ε→0

(KL(q(t)||p(t))) 6 lim
ε→0

(G(−ε)+‖G(−2ε)−G(−ε)‖)

In the proof of Theorem 1 (Appendix 2), an IVP is intro-
duced to assist derivation of the upper bound of the KL
divergence between two arbitrary distributions. Considering
specific functional forms of the KL , let m = −e−t, let
M = − log(−m) and let m ∈ [−1, 0), such an IVP can be
written as:

G′(m) = g(m), G(−1) = 0 (27)



Stochastic Boundary Ordinary Differential Equation

where g(m) is written as:

g(m) =
−Φi

′(M)

−mM
log

Φi
′(M)

Mφ′i(M)e−φi(M)
(28)

Then Theorem 1 separates the general solution of the KL,
liml→0G(l) into two: G(−ε) and an improper integral:

G(−ε) + lim
l→0

∫ l

−ε
g(m)dm (29)

where ε in this work is set as the step size of the Euler
method that we apply to calculate G(−ε). Obviously, the
second term of Eq. (29) can be written as an IVP. Theorem 1
then introduces another IVP with delay ε, consequently
applying the following lemma to derive the upper bound of
the second term.

Lemma 1. Let ε be a positive real constant. Let U ⊂
Rn be an open set. Let f1, f2 : [a − 2ε, a) → Rn be a
continuously differentiable function and

∥∥f1′∥∥ 6M where
M is a positive constant. Let y1, y2 : [a− ε, a)→ U satisfy
the initial value problem:

y′1 = f1(t), y1(a− ε) = x1

y′2 = f2(t) = f1(t− ε), y2(a− ε) = x2

Suppose both x1 and x2 depend on ε. As ε→ 0, we have:

lim
ε→0

(
lim
t→a
‖y1(t)− y2(t)‖

)
6 lim
ε→0
‖x1 − x2‖

The Lemma (proof given in Appendix 1) states that given
two IVPs, one of which is imposed with a delay, the dif-
ference between two terminal states is bounded by the dif-
ference between initial states. In contrast, Gronwall’s In-
equality (Theorem 2.1) (Howard, 1998) provides a bound
involving an unbounded Lipschitz constant of the ODE,
which is not applicable for our problem setting. Therefore,
with Lemma 1, the second term in Eq. (29) is upper bounded
by:

lim
l→0

∫ l

−ε
g(m)dm 6 ‖G(−2ε)−G(−ε)‖ (30)

Combining Eq. (27-30), the upper bound of the KL term of
the ELBO is written as:

KL(qi(t|xi)||pi(t)) 6 G(−ε) + ‖G(−2ε)−G(−ε)‖
(31)

where both G(−ε) and G(−2ε) are calculated by solving
IVP defined in Eq. (27).

4.6. Model Architecture and Implementation of
STRODE

In the previous sections, we have discussed using STRODE
to describe latent dynamics and infer boundary times of

Sampling
Temporal Point  

Process (TPP)

SBVP ODE Solver

STRODE

Inference

INPUT

OUTPUT

𝑡0 = 0

(2) (3)

(4)

{𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1}

Encoder(1)

Decoder(5)

ǁ𝑡1, ǁ𝑡2,⋯ , ǁ𝑡𝑁

{ 𝑥1, 𝑥2,⋯ , 𝑥𝑁}

Figure 1: Architecture of STRODE for the toy dataset

irregularly sampled time series data. Conceptually, both
the ODE and the boundary conditions of SBVP are defined
over time series data itself. This can be an inappropriate
way to model highly structured irregularly sampled high-
dimensional data, such as video thumbnails or previews (Liu
et al., 2015), which is characterized by complex dependen-
cies.

STRODE can be conveniently extended to handle such data
by introducing an encoder fθe to describe its boundary con-
ditions, which can be written as:

{h(0) = fθe(x0), h(t̃1) = fθe(x1), ..., h(t̃N ) = fθe(xN )}
(32)

such that the ODE in SBVP is capable of modeling complex
dynamics of the hidden representations.

In our experiment on the toy dataset (see Section 5.1 ), we
use STRODE to handle irregularly sampled data from sine
waves for an autoregressive task. Here, we provide details
for its implementation. (see Supplement for STRODE im-
plementations on other tasks).

Our STRODE consists of five major components: encoder,
decoder, inference, sampling and SBVP ODE solver, which
are shown in Fig. 1. The detailed implementation of such
components are described as following:

(1) Encoder: our encoder contains 2 fully connected lay-
ers and ReLU, each with 8 hidden nodes.

(2) Inference: the inference of the approximate posterior
of the boundary time qi(t|xi) requires calculating the
derivative of Φi(t) with respect to t. In this experiment,
Φi(t) is implemented as the neural network fθΦ (Eq.
(21) ), whose architecture contains 2 fully connected
layers, each with 16 hidden nodes and Tanh, whose
outputs are further transformed into a scalar by another
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fully connected layer with Softplus. Then Φi
′(t) is

obtained by computing the derivative of the neural net-
work fθΦ with respect to its input of t, using automatic
differentiation (Paszke et al., 2017). To ensure that the
approximate posterior qi(t|xi) is positive-valued, the
neural network weights are constrained to be negative.
In doing so, if a weight is updated to be a positive value
during training, we replace it with zero. Similarly, the
corresponding prior pi(t) requires φi(t), which is im-
plemented by the neural network fθφ . The architecture
of such a neural network is similar to that of fθΦ , ex-
cept that its neural network weights are constrained
to be positive during training. To do this, if a weight
is updated to be a negative value during training, we
replace it with zero.

(3) Sampling: the boundary time samples are sequentially
generated through adopting Eq. 21.

(4) SBVP ODE Solver: with boundary time samples, we
follow Eq. 9 to obtain the prediction at t̃i:

x̃i = h̃(t̃i) = ODESolve(fθo , h(t̃i−1), t̃i−1, t̃i)
(33)

where the neural network fθo includes 2 fully con-
nected layers, each with 8 hidden nodes and Tanh.

(5) Decoder: the implementation is similar to what we
adopt for the encoder. The difference is that the last
layer of the decoder transforms data from a high-
dimensional space to a one-dimensional one.

4.7. Latency-free Postdictive Modeling with Evenly
Sampled Data

Neuroscience investigations suggest that our visual and audi-
tory system can process information retroactively, such that
the incoming sensory inputs can affect the earlier perception
(Stiles et al., 2018). There are advantages to this process: the
accuracy of “prediction” is reassured with sufficient future
information to be integrated. For example, in human speech
processing, understanding a word aids in distinguishing its
constituent phonemes from another (Gwilliams et al., 2018).
However, such a process is difficult to be incorporated into
existing algorithms for acoustic modeling, as the temporal
range of subsequent context is mostly unannotated. Further-
more, such processes could results in higher latency than
other acoustic models.

Here we propose another STRODE variant, dubbed regener-
ative STRODE, where both the dynamics of ODE and the
posterior point process are capable of restarting themselves,
allowing the latent temporal range to be captured for every
feature frame.

To be specific, suppose we are given a sequence of acous-
tic features X = {x0, ...,xN} and training labels Y =

{y0, ...,yN}. Given that our posterior point process proba-
bilistically restarts when each feature frame occurs, Eq.(21)
for generating the i-th boundary time sample is rewritten as:

t̃i = Φi(t̃0 + ε0) = fθΦ(t̃0 + ε0, xi) (34)

where ε0 is a small positive value. We set it as 1 × 10−6.
Then the corresponding postdictive temporal ranges for i-
th frame is [i, i + t̃i]. Let t ∈ [i, i + t̃i], we assume the
hidden state h(t) satisfies the following ODE in which the
dynamics restarts at each feature frame:

h′(t) = fθo(h(t− i), t− i), h(i) = fθe(xi) (35)

Then the ODE solution at time i+ t̃i can be written as:

h̃(i+ t̃i) = ODESolve(fθo , h(i+ t̃i), i, i+ t̃i) (36)

Next, we use the ODE solution h̃(i + t̃i) as an additional
input of the acoustic model. Such design allows our model
to look-ahead without compromising input latency.

We further impose a prior distribution for the ODE solution
h̃(i+ t̃i), which can be treated as a way of injecting prior
knowledge for solutions of ODE. For instance, we can use
the Gaussian distribution N (µ0, σ

2
0), whose mean µ0 and

variance σ2
0 are the output of a non-linear function fθp of

xi+1, to constrain the future ODE solution:

h̃(i+ t̃i) ∼ N (µ0, σ
2
0), where [µ0, σ

2
0 ] = fθp(xi+1)

(37)

For optimization, we simply add the log-likelihood of all
ODE solutions p(h̃(i+ t̃i)) to the original ELBO:

N∑
i=0

{Eti∼qi(t|xi) log p(yi|xi, ti)

−KL(qi(t|xi)‖pi(t)) + log p(h̃(i+ t̃i))}

(38)

5. Experiments
We evaluate our STRODE on both synthetic and real-world
time-series data. More specifically, we conduct the pre-
liminary experiments on irregularly sampled 1D synthetic
time-series data and synthetic video thumbnail data based
on MNIST to demonstrate its effectiveness in learning both
the latent dynamics and timings of the time-series data. We
further evaluate our model on CHiME-5, a realistic conver-
sational speech recognition dataset to explore STRODE’s
potential in posdictive modeling.

5.1. Toy Dataset

We start by conducting an autoregressive task using
STRODE on a toy dataset with 1D sequential data. We
aim to demonstrate the capability of our STRODE in in-
ferring informative boundary times given the time series
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Figure 2: Left: boundary time samples produced by STRODE for sine waves irregularly sampled with Hawkes process data;
Right: boundary time samples produced by STRODE for sine waves irregularly sampled with Poisson process data.

data alone. Our datasets are generated by the sine function
Asin(wt) + η, where the amplitude A = 1; the frequency
w = 1.0; η represents Gaussian random noises; t is the
time point drawn from point processes. In this experiment,
we consider two general point processes, namely a Pois-
son process with the conditional intensity λ = 10.0 and a
Hawkes process with the conditional intensity λ = 10.0,
α = 0.5, β = 1.0. For each process, we create a dataset
containing 5200 sequences with 10 different time points in
each sequence. We use 5000 sequences for training 100
sequences for validation and 100 sequences for testing.

5.1.1. RESULTS AND ANALYSIS

We evaluate our model by calculating the cosine similarity
(CS) between the inferred boundary time and the ground
truth. We display the boundary time samples produced
by STRODE for both Poisson process data and Hawkes
process data shown in Fig. 2. Note that we use min-max
normalization to scale the boundary time samples between
0 and 1. We can see that STRODE achieves CS of 0.979 and
0.964 for the Hawkes process data and the Poisson process
data respectively. This suggests that our model is capable of
inferring timings of the irregularly sampled sine waves.

5.2. Rotating MNIST Thumbnail: Evaluation on
Irregularly Sampled High-dimensional Data
without Timings

We further study the generalization of STRODE for irreg-
ularly sampled high-dimensional data. To do this, we con-
struct a synthetic video thumbnail dataset based on MNIST,
the Rotating MNIST Thumbnail. We first generate 12000
video sequences of the rotating MNIST handwritten digits
with constant angular velocity. We then adopt a point pro-
cess and an exponential function to generate time points for

selecting frames from video sequences. We generate the
corresponding video thumbnails for each video sequence
using a Hawkes process with λ = 40, α = 0.5, and β = 1.0
and an exponential function t = ea + ε where a is evenly
distributed and ε is normally distributed, resulting in two
subsets of Rotating MNIST Thumbnail: Hawkes and Expo-
nential. We designate video thumbnails that are rotating by
0◦ to 180◦ as the training and validation data, and assign
video thumbnails rotating by 180◦ to 360◦ as the test data.
For each subset, we generate 10000 video thumbnails for
training, 1000 video thumbnails for validation and 1000
video thumbnails for testing.

5.2.1. MODELS

We follow implementation in (Rubanova et al., 2019) to
incorporate STRODE to RNN. We then obtain a new vari-
ant of STRODE, dubbed as STRODE-RNN. We compare
STRODE and STRODE-RNN with two baselines including:
(i) NODE (Chen et al., 2018), which in this task is an ex-
tension of neural ODE through adopting convolution layers
in the encoder and deconvolution layers in the decoder. (ii)
ODE-RNN (Rubanova et al., 2019), which is an extension
of ODE-RNN through adopting convolution layers in the
encoder and deconvolution layers in the decoder as well.
All baselines adopt the same architecture of encoder and
decoder and take the same input as our STRODEs while
having the similar number of parameters.

5.2.2. TRAINING PROCEDURE

Similar to experiments on toy dataset, our STRODEs on
Rotating MNIST Thumbnail is trained by the ELBO, in
which the likelihood term is simplified by an MSE term,
using the Adam optimizer with a learning rate in the range
[2× 10−4, 6× 10−4]. We follow the training strategies of
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Table 1: Cosine similarity (CS) (mean± std) and MSE results on two subsets of Rotating MNIST Thumbnail

DATASET Hawkes Exponential
CS MSE (×10−3) CS MSE (×10−3)

NODE (Chen et al., 2018) 0.907 6.66±0.03 0.923 7.69±0.02
ODE-RNN (Rubanova et al., 2019) 0.907 7.08±0.26 0.923 6.77±0.10
STRODE (Ours) 0.952±0.011 6.42±0.14 0.972±0.006 7.60±0.03
STRODE-RNN (Ours) 0.978±0.016 6.14±0.27 0.974±0.003 6.74±0.17

β-VAE (Higgins et al., 2017) to reweight the importance
of the MSE term and the KL term. We repeat this training
procedure across 3 different random seeds.

5.2.3. RESULTS AND ANALYSIS

We report test-set CS and MSE on both Hawkes and Expo-
nential subsets of Rotating MNIST Thumbnail, as shown
in Table 1. As timings of each video frame are unknown,
both NODE and ODE-RNN set the difference between the
initial time and terminate time of the ODE solvers as a con-
stant (i.e.= 1). As such, a sequence of natural numbers
are adopted when calculating CS with ground truth bound-
ary time for both NODE and ODE-RNN. For the Hawkes
task, we can see that STRODE outperforms both NODE and
ODE-RNN in terms of CS and MSE score and our STRODE-
RNN archives the lowest MSE and the highest CS score.
This suggests that our STRODEs are capable of inferring
both timings and complex dynamics of high-dimensional
time-series data. We further apply our STRODEs to han-
dle the video thumbnails drawn from exponential functions.
Again, our STRODEs perform much better than baselines in
terms of CS score, which demonstrates the expressive power
of STRODEs in handling data whose generation doesn’t fol-
low a TPP.

5.3. CHiME-5: Latency-free Postdictive Modeling with
Evenly Sampled Data

CHiME-5 was originally designed for the CHiME 2018
challenge (Barker et al., 2018). It contains a very chal-
lenging problem of conversational speech recognition in
everyday home environments. For a fair comparison with
(Huang et al., 2020), only the audio data recorded by bin-
aural microphones is employed for training and evaluation
in this experiment. The Train, Dev and Eval include about
40 hours, 4 hours, and 5 hours of real conversational speech
respectively. The evaluation was performed with a trigram
language model trained from the transcription of CHiME-5.

5.3.1. MODELS

We adopted SRU (Lei et al., 2017) as the building block to
construct all RNNs involved in both our STRODE and base-
lines. Note that Latent ODE (Rubanova et al., 2019) is not

adopted as one of our baselines, as it employs a seq2seq ar-
chitecture, which is not applicable for HMM-based acoustic
modeling. For simplicity, we denote regenerative STRODE
as STRODE in this task. We compare our STRODE with the
following baseline models: (i) ODE-RNN with 9 stacked
SRU layers in the encoder and 9 stacked SRU layers in the
decoder (ii) RTN with a 6-layer SRU encoder and a 9-layer
SRU decoder.

All baselines except RTN take the same input as our
STRODE. RTN takes multiple utterances as input, which
contains significantly more contextual information than our
STRODE and other baselines. To ensure similar numbers of
model parameters for different models, we set the number
of RNN hidden states per layer to 1,100 for ODE-RNN and
900 for STRODE. The size of ODE solutions for both ODE-
RNN and STRODE is set as 128. More implementation
details of STRODE are provided in the Supplement.

5.3.2. TRAINING PROCEDURE

For a fair comparison, we adopted the same configuration
with (Huang et al., 2020) to train all GMM-HMM. They
were then used to derive the state targets for subsequent
DNN acoustic model training through forced alignment
for Train of CHiME-5. The state targets of CHiME-5 for
subsequent STRODE-based and baseline acoustic model
training were obtained by aligning the training data with
the DNN acoustic model through the iterative procedure
outlined in (Dahl et al., 2012). Our STRODE and baselines
on CHiME-5 are trained by maximizing the ELBO, using
BPTT (Werbos, 1990) and SGD with learning rates ranging
from 0.13 to 0.19. We apply a dropout rate of 0.1 to the
connections between neural network layers except that of
ODE solvers. We reweight the importance of both KL
terms and the prior log-likelihood. Both weights are set as
1× 10−3.

5.3.3. RESULTS AND ANALYSIS

Training Speed and Model Complexity of STRODE
Table 2 shows the configurations of baseline models and the
new STRODE model for CHiME-5. The training time per
epoch for CHiME-5 is also reported. In our experiments, the
timing experiments use PyTorch package and are performed
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Figure 3: The Softmax outputs by taking the ODE solutions {h(i+ t)} at future time points as an extra input of the acoustic
model. The dotted line corresponds to the original Softmax output of STRODE. Both Fig. 3(left) and Fig. 3(middle) provide
examples that match the assumption of postdictive modeling, while Fig. 3(right) provides some counter examples.

Table 2: Model configurations and the training time for
CHiME-5. N: number of hidden states per layer; P: number
of model parameters; T: Training time per epoch (hr).

Model N P T

ODE-RNN (Rubanova et al., 2019) 1100 77M 0.6
RTN (Huang et al., 2020) 1024 70M 0.3
STRODE (Ours) 900 76M 0.7

on Ubuntu 16.04 with a single Intel Xeon Silver 4214 CPU
and a GTX 2080Ti GPU. Each model takes around 20 it-
erations, with their average running time reported. We can
see that STRODE runs as fast as ODE-RNN with a similar
number of parameters. The running time of STRODE is
comparable to RTN, though it runs 2.5 times faster than
ours.

Quantitative evaluation of STRODE on CHiME-5 Ta-
ble 3 shows the word recognition performance of the base-
line models and the new STRODE model for CHiME-5. It
is observed that ODE-RNN outperforms the DNN baseline
from Kaldi s5 (Povey et al., 2011). STRODE performs the
best among all models in terms of WER, outperforming the
ODE-RNN by 2.7%. Compared with the state-of-the-art
acoustic RTN model, our STRODE achieves 0.9% abso-
lute WER reduction even though the input of our STRODE
contains much less contextual information than RTN.

Table 3: WER (%) on eval of CHiME-5.

Model WER

Kaldi DNN (Povey et al., 2011) 64.5
ODE-RNN (Rubanova et al., 2019) 59.0
RTN (Huang et al., 2020) 57.4
STRODE (Ours) 56.3

Qualitative evaluation of Postdictive Temporal Range
Produced by STRODE We generate postdictive tempo-
ral range [i, i+ t̃i] for randomly selected feature frames from

utterances in Dev of CHiME-5. For t ∈ [0, 2t̃i], we obtain a
sequence of ODE solutions {h(i+ t)} at future time points,
and produce the Softmax output by taking {h(i+ t)} as an
extra input of the acoustic model. In Fig. 3, we only display
the Softmax outputs for the ground truth label (red), and
the others are from the class labels with the top 2 highest
Softmax output values. It is evident from Fig. 3(left) that the
Softmax outputs for ground truth label increases over time,
and tops exactly after i + t̃i. Such a pattern matches the
assumption of postdictive modeling. For the Fig. 3(middle),
STRODE fails to produce accurate results without integrat-
ing sufficient information. Interestingly, the STRODE hits
the target after i+ t̃i, which suggests that our model requires
a longer context for targeting the ground truth label. We
also show some counter examples Fig. 3(right) in which
STRODE fails to produce accurate results when more con-
textual information is integrated.

6. Conclusion
We propose a novel neural ODE model named STochastic
boundaRy ODE (STRODE) for handling time series data
without timing annotation during training. We provide theo-
retical guarantees on the learning of STRODE. We show that
our model is capable of inferring timings and the dynamics
of time series data without requiring any timing annotations
during training. We demonstrate that our STRODE can be
applied to address postdictive modeling. Our experiments
on CHiME-5 show that our method outperforms ODE-RNN
acoustic model in ASR.
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