
Hyperparameter Selection for Imitation Learning

Léonard Hussenot * 1 2 Marcin Andrychowicz * 1 Damien Vincent * 1 Robert Dadashi 1 Anton Raichuk 1

Lukasz Stafiniak 1 Sertan Girgin 1 Raphael Marinier 1 Nikola Momchev 1 Sabela Ramos 1 Manu Orsini 1

Olivier Bachem 1 Matthieu Geist 1 Olivier Pietquin 1

Abstract

We address the issue of tuning hyperparameters
(HPs) for imitation learning algorithms in the con-
text of continuous-control, when the underlying
reward function of the demonstrating expert can-
not be observed at any time. The vast literature
in imitation learning mostly considers this reward
function to be available for HP selection, but this
is not a realistic setting. Indeed, would this re-
ward function be available, it could then directly
be used for policy training and imitation would
not be necessary. To tackle this mostly ignored
problem, we propose a number of possible prox-
ies to the external reward. We evaluate them in
an extensive empirical study (more than 10’000
agents across 9 environments) and make practical
recommendations for selecting HPs. Our results
show that while imitation learning algorithms are
sensitive to HP choices, it is often possible to
select good enough HPs through a proxy to the
reward function.

1. Introduction
Recent advances in Reinforcement Learning (RL) now allow
optimizing control policies with respect to a given reward
function even for high-dimensional observation and action
spaces (Berner et al., 2019; Vinyals et al., 2019). However,
in many cases it is impossible or impractical to design a re-
ward function which captures the desired outcomes (Popov
et al., 2017). One of the approaches to overcome this is-
sue is Imitation Learning (IL), which relies on a set of
demonstrations presenting the desired behaviour instead of
a reward signal (Schaal, 1999; Argall et al., 2009). IL can
be achieved through pure supervised learning (Pomerleau,
1991) but many IL approaches leverage the assumption that

*Equal contribution 1Google Research, Brain Team 2Univ. de
Lille, CNRS, Inria Scool, UMR 9189 CRIStAL. Correspondence
to: Léonard Hussenot <hussenot@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

the expert implements an optimal policy according to an
unknown reward function. This approach, also known as
Inverse Reinforcement Learning (IRL), tries to recover this
unknown reward function and use an RL algorithm to train a
policy to maximize it (Russell, 1998; Ng et al., 2000; Ziebart
et al., 2008). Both approaches have their advantages and
drawbacks (Piot et al., 2013).

While all machine learning approaches require some degree
of hyperparameter (HP) tuning, the issue is especially pro-
nounced in RL. Indeed, RL algorithms are known to be very
sensitive to the values of their numerous HPs (Henderson
et al., 2018; Andrychowicz et al., 2020). RL algorithms’
HPs are usually chosen by letting different agents interact
with the environment and selecting the one which performed
best as measured with the environment reward.

Surprisingly, this is also a common practice in the IL domain
where one does not have access to an environment reward
function which accurately describes the task. If such a
reward were known, it could be directly used to train a
controller via RL. Although expert trajectories can also be
useful in this case, this is not the setting of IL, but of RL
with demonstrations where both the expert demonstrations
and reward signals are used (Kim et al., 2013; Piot et al.,
2014; Hester et al., 2018). This constitutes a gap between
the IL framework and the experimental design of IL agents
that hinders the practical utility of IL. It is indeed unclear
how to tune the imitation agent without access to the reward
function.

In some cases, although a per-step reward function is not
available, a success signal can be computed or given by a
human rater. We focus on the tasks for which (1) such signal
is not available or (2) the cost of such signal is prohibitive
or (3) such signal could bias the resulting policy. Indeed,
just as the reward-engineering problem leads to policies
maximizing a reward in an unexpected way (Sims, 1994;
Feldt, 1998; Ecoffet et al., 2021), selecting policies on the
basis of an incautiously designed metric or of a biased hu-
man judgement can lead to biased policies (Henderson et al.,
2018).

We present a thorough empirical study of this question in
a number of challenging domains with high dimensional



Hyperparameter Selection for Imitation Learning

spaces of actions and observations. We train thousands
of agents, using three IL algorithms based on different
paradigms, with large parameter sweeps, and empirically
compare different HP selection strategies. In particular,
we consider a number of metrics assessing how well the
learned behaviors match the demonstrations. Moreover, we
investigate how well the algorithms perform if their HPs
are selected on a similar task where the reward signal is
assumed to be available. As our key contributions, we:

• highlight the fundamental question of HP selection in
IL without access to an external reward signal;

• provide empirical evidence that the results obtained by
IL algorithms depend heavily on how HPs are selected,
confirming the prominence of the problem;

• propose proxy metrics to define the task success;

• perform a thorough comparison of these alternatives to
the external reward signal in a large-scale study;

• empirically assess the transferability of HPs across
tasks for different IL algorithms;

• give practical recommendations for tuning HPs in IL.

2. Hyperparameter Selection
In this paper, we argue that HP selection should strictly
follow the setup in which the algorithm is to be used. For ex-
ample, when designing an offline RL algorithm, HPs should
not be tuned through environment interactions but rather
offline (Paine et al., 2020). Similarly, in IL, one can interact
with the environment but should choose HPs without access
to the reward signal. We propose to choose these HPs by
either (1) using proxy metrics or (2) transferring HPs from
other environments that have an accessible reward.

2.1. Using proxy metrics

To select a model, one should use a different metric than the
return under the supposedly unknown reward. We include
a diverse set of metrics that can be used to measure the
success of a policy in imitating the demonstrations.

Action MSE. The simplest way to measure similarity be-
tween agent behaviour and a given set of demonstrations
is to compare actions of the agent and the demonstrator on
the states provided in the demonstrations. In particular, for
continuous control environments, we use the mean squared
error (MSE) between the agent and the expert actions on the
training expert states1. Notice that this can be done offline
without any interaction with the environment. For every

1All action coordinates are rescaled to the [−1, 1] range to
make them comparable in magnitude.

environment, we also keep some expert trajectories as a val-
idation set and use it to compute the validation MSE. This
will allow us to study if selecting HPs on validation data
helps avoiding overfitting, notably as action MSE is actually
the loss optimized by the Behavioral Cloning (Pomerleau,
1991) algorithm.

State distribution divergence. Another approach to mea-
suring how well the learned policy imitates the expert is
by comparing the distributions of states2 encountered by
both policies. In particular, we compute the Wasserstein
distance (Villani, 2008) between the distribution of states in
the demonstrations and that of the agent3 (i.e. from gener-
ated trajectories). As before, we measure both the distance
to the training set and to the validation set and thus have
two distinct metrics. The Wasserstein metric computation
assumes we can compute distances in the state space, to this
end we use the Euclidean distance with state coordinates
normalized to have the standard deviation equal to 1. While
this is not directly applicable to vision-based observations,
there are plenty of techniques which can be used to com-
pute vector embedding for vision observations in RL/IL, e.g.
Stooke et al. (2020); Lee et al. (2020).

Random Network Distillation (RND). As proposed by
Burda et al. (2018); Wang et al. (2019), we define a sup-
port estimation metric by taking two randomly initialized
networks, and train one to predict the random output of the
other one on the expert training set. The metric is then given
by the MSE between the prediction network and the frozen
one on trajectories generated by the agent. Details on the
metric training are given in Appx. A.4.

Imitation Return. IRL algorithms recover a –learned– re-
ward function. We can use the corresponding learned return
to select HPs. We compute this metric as it should model
the goal optimized by the agent, although this goal is gener-
ally non-stationary. Moreover, the scale of the metric often
depends on the HPs which could make it harder to compare
the value of this metric between different training runs.

Environment return. This is the sum of rewards obtained
during a full episode according to the environment reward
function. We include it as the gold standard.

A desired property for all these metrics is to preserve the
ranking of policies induced by the oracle environment re-
turn. A metric that would satisfy this property would yield
an optimal HP selection. Note that this is a sufficient but
not a necessary condition. We show in Appx B.1, using

2We only consider fully observable environments, but similar
techniques may work in the partially observable case too.

3We approximate the Wasserstein distance using the entropy-
regularized Sinkhorn algorithm from the POT library (Flamary &
Courty, 2017) (leading to faster and more stable values) with a
regularization parameter of 5.



Hyperparameter Selection for Imitation Learning

both the Spearman rank correlation and the ROC-AUC of
an additional task (classify good from poor policies), that
the aforementioned metrics have good enough ranking prop-
erties to make them legitimate candidates for HP selection.

2.2. Transfer scenario

The HPs that work best in tasks for which a well-defined
reward function is available can also be transferred to a new
task. We expect the success of this procedure to highly
depend on the similarity between the source and target do-
mains.

2.3. Environments and data

We focus on continuous-control benchmarks and con-
sider five widely used environments from OpenAI Gym
(Brockman et al., 2016): Hopper-v2, Walker2d-v2,
HalfCheetah-v2, Ant-v2, and Humanoid-v2 and
four manipulation tasks from Adroit (Kumar, 2016):
pen-v0, relocate-v0, door-v0, and hammer-v0.
The Adroit tasks respectively consist in aligning a pen
with a target orientation, moving an object to a target lo-
cation, opening a door and hammering a nail. These two
benchmarks bring orthogonal contributions. The former
focuses on locomotion but has 5 environments with differ-
ent state/action dimensionality. The latter, more varied in
term of tasks, has an almost constant state-action space.
For the Gym tasks, we generate demonstrations with a Soft
Actor-Critic (SAC) (Haarnoja et al., 2018a) agent trained on
the environment reward. For the Adroit environments, we
use the “expert” datasets from the D4RL dataset (Fu et al.,
2020).

For the OpenAI Gym environments, we use 11 training
trajectories and keep 5 additional held-out trajectories for
validation. For the Adroit environments, 20 training trajecto-
ries are used as well as 5 validation trajectories. The number
of training trajectories corresponds to what IL algorithms
are typically designed for. We chose a low number of valida-
tion trajectories as demonstrations are generally expensive
and one wishes to use as many as possible for training.

2.4. Algorithms

We consider the three algorithms briefly described below.
They use different approaches, from supervised learning,
to Inverse RL via distribution matching, either through the
primal or the dual form of a divergence. We consider them
to be representative of different families of algorithms and
thus good candidates to validate HP selection techniques.

Detailed description of the algorithms can be found in the
original publications. We provide additional information
on our implementations in Appx. A. We implemented our
algorithms in the Acme framework (Hoffman et al., 2020)

using JAX (Bradbury et al., 2018) for automatic differen-
tiation and Flax (Heek et al., 2020) for neural networks
computation.

Behavioral Cloning (BC, Pomerleau (1991)) is the sim-
plest approach to IL and relies on mapping the expert states
to the expert actions in a supervised manner. In contrast to
the other algorithms we consider, BC is an offline algorithm
as it does not require any interactions with the environment.

Adversarial Imitation Learning (AIL, Ho & Ermon
(2016)) is a family of algorithms stemming from the semi-
nal GAIL paper (Ho & Ermon, 2016). The overall design
uses a classifier to discriminate the expert state-action pairs
from the agent ones, and an RL algorithm trains the policy
to maximize the confusion of this discriminator. Our imple-
mentation is mostly similar to Discriminator-Actor-Critic
(DAC, Kostrikov et al. (2018)) but uses different reward
functions depending on the HPs. See Appx. A.2 for details.

Primal Wasserstein Imitation Learning (PWIL,
Dadashi et al. (2020)) uses an RL algorithm to minimize a
greedy upper bound on the Wasserstein distance between
the state-action distributions of the expert and the agent.
For both AIL and PWIL, we use Soft Actor-Critic (SAC,
Haarnoja et al. (2018a)) to train the policy.

2.5. Experimental design

For each algorithms and 5 different random seeds4, we
sample 100 independent HP configurations from the HP
sweeps detailed in Appx. A. We then use them to train a
total of 500 agents per algorithm-environment pair. Online
algorithms (AIL & PWIL) are run for 1M environment
steps while BC is trained for 60k gradient steps. Each
agent is evaluated 20 times throughout its training. At each
evaluation, all the metrics are computed using 50 episodes5.

We want to check whether the metrics introduced in Sec. 2
can be used for the problem of HP selection. To this end,
we repeat the following experiment 20 times for each of
the 5 seeds: (1) we uniformly sample 25 HP configurations
from the set of all 100 configurations, (2) we take the fi-
nal policies from the corresponding training runs, (3) we
select the best one according to the techniques outlined in
Sec. 2 and (4) we check how well it performs according
to the environment reward This allows to simulate 5× 20
practitioners that would run sweeps of size 25 and look for
the best configuration possible.

We also investigate how the metrics described in Sec. 2 can
be used for early stopping. To this end, we repeat the above
experiment but this time we select the best policy not only

4The random seed fixes the episodes train/validation split.
5We use only 10 episodes for the state divergence as it is more

computationally demanding.



Hyperparameter Selection for Imitation Learning

HalfCheetah Ant Hopper Walker2d Humanoid

Door Hammer Pen Relocate

Figure 1. Environments: OpenAI Gym (top) and Adroit (bottom).

from the fully trained ones, but also include the partially
trained policies from the corresponding training runs.

Furthermore, we evaluate whether the performance on an-
other task with a well-defined reward function can be used
to select HPs. To this end, we choose a set of validation
environments and repeat the experiment mentioned above
but this time selecting the HP configuration with the best
average normalized6 return across the validation tasks. We
then check how well it performs on the test environment.

3. Experimental Results
In this section, we try to answer the following questions:

1. Can we effectively choose an IL algorithm and its HPs
without access to the true reward function?
2. Which of the proxy metrics defined in Sec. 2 is the best?
3. Is early stopping important in IL algorithms?
4. Do HPs transfer well between different environments?

3.1. Using other metrics to select HPs

Fig. 2 and Fig. 3 show how the performance of different
algorithms varies as we change the metric used for HP selec-
tion on OpenAI Gym and Adroit environments respectively.

By looking at the first bar in each subplot (performance
for HPs selected on the episode return), we can see that all
algorithms, including BC7, can achieve returns comparable
to or even better than those of the expert on almost all
environments if the HP selection and early stopping are
performed using the oracle episode return. In some cases,

6Rewards are normalized per task so that 0 corresponds to a
random policy and 1 is the average return in the demonstration set.

7Many recent publications in IL (e.g. Ho & Ermon (2016)) sub-
sample demonstrations by including only every n-th state-action
pair to make the task harder for BC. We did not follow this practice
as it has little justification from the practical point of view.

the policies obtained this way can even perform significantly
better than the expert (e.g. BC on pen-expert, Fig. 3).
This should not happen as all the algorithms are trying to
mimic the expert behaviour and we argue that this is an
artifact of the policy selection process.

How much do we lose by choosing an IL algorithm and
HPs using a proxy metric? The top-left subplot in Fig. 2
and Fig. 3 shows the performance averaged across the tasks
in a given suite when the HPs as well as the IL algorithm
are chosen using the proxy metrics. The selection by state
divergence achieves episode returns similar to that of the
demonstrator on both environment suites. This is a very
positive result, suggesting that it is, in practice, possible
to select HPs without access to a reward function and still
obtain a policy that performs well at the task.

On the other hand, the big gap between the performance of
all three algorithms on Adroit (first column in Fig. 3) with
HPs selected on the return vs. proxy metrics shows that
the research practice of selecting HPs based on the return
can lead to significant overestimation of an algorithm’s per-
formance when no reward function is available. This may
limit the applicability of some IL algorithms to practical
problems.

Which proxy metric is the best? The state divergence
performs best for all algorithms. Action MSE performs
worse than the state divergence but still achieves at least
75% of the expert score on some algorithm-environment
pairs. The inferior performance of action MSE is expected
as it is a fully offline metric unaware of the system dynamics.
Whether the metrics are computed against the set of training
demonstrations or a held-out set of demonstrations makes
little difference in our experiments and suggests that it might
be better to use all available demonstrations for training8.

8For some algorithm-environment pairs, the train versions of
some metrics performs better than the validation ones. We suspect



Hyperparameter Selection for Imitation Learning

0 2 4 6

0.25

0.50

0.75

1.00

Co
m

bi
ne

d
BC

, A
IL

, P
W

IL

N/
A

N/
A

average

0 2 4 6

N/
A

N/
A

Ant-v2

0 2 4 6

N/
A

N/
A

HalfCheetah-v2

0 2 4 6

N/
A

N/
A

Hopper-v2

0 2 4 6

N/
A

N/
A

Humanoid-v2

0 2 4 6

N/
A

N/
A

Walker2d-v2

0 2 4 6

0.25

0.50

0.75

1.00

BC

N/
A

N/
A

0 2 4 6
N/

A
N/

A
0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

0.25

0.50

0.75

1.00

AI
L

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

0.25

0.50

0.75

1.00

PW
IL

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

Figure 2. The episode return achieved by different algorithms if the HP selection and early stopping is performed using a proxy metric for
OpenAI Gym tasks. Each subplot corresponds to a different algorithm and a different environment with the first column showing the
results averaged across environments. The first row corresponds to the case when we choose HPs as well as the IL algorithm used based on
the given metric. Episode returns are rescaled for each environment so that 0 corresponds to a random policy and 1 to the average episode
return in the demonstration set. The lower (blue) part of each bar shows the episode returns in the case of no early stopping and the full
bar (blue and yellow) shows the performance when using early stopping with the same metric as for the HP selection. The vertical lines
show the 25-th and 75-th percentile of the episode return across reruning the whole HP selection process as described in Sec. 2.5 for the
early stopping case. Brown color in the upper part of the bar means that the algorithm performs better without early stopping and shows
how much performance is lost by using it. Each bar shows the mean performance across running the HP selection process 100 times.

The metric given by the average RND score on the episode
performs well to select HPs on OpenAI Gym environments
but is outperformed by the state divergence. Perhaps supris-
ingly, the metric is not as performant on Adroit. This sug-
gests that this support-estimation metric might have to be
adapted for environments with more stochasticity in initial

that it is due to the training sets being bigger (11 trajectories
for OpenAI Gym and 20 for Adroit) than the validation sets (5
trajectories). Moreover, except for BC and action MSE, the metric
used to select HPs is not the metric being optimized, so it may be
less crucial to have a validation set.

states. Imitation return (the sum of learned-reward collected
in an episode), as defined by in AIL and PWIL also per-
form poorly and is usually worse than action MSE with
the exception of PWIL on OpenAI Gym where both ap-
proaches perform similarly. The inferior performance of
the imitation return for AIL can be explained by the fact
that the reward function introduced in the algorithm is non-
stationary. Therefore comparing the values from different
training runs or different timesteps might be misleading.
Concerning PWIL, we suspect that its inferior performance
on Adroit compared to the state divergence metrics is caused



Hyperparameter Selection for Imitation Learning

0 2 4 6

0.25

0.50

0.75

1.00
Co

m
bi

ne
d

BC
, A

IL
, P

W
IL

N/
A

N/
A

average

0 2 4 6

N/
A

N/
A

door-expert-v0

0 2 4 6

N/
A

N/
A

hammer-expert-v0

0 2 4 6

N/
A

N/
A

pen-expert-v0

0 2 4 6

N/
A

N/
A

relocate-expert-v0

0 2 4 6

0.25

0.50

0.75

1.00

BC

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

N/
A

N/
A

0 2 4 6

0.25

0.50

0.75

1.00

AI
L

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

0.25

0.50

0.75

1.00

PW
IL

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

En
v 

Re
tu

rn
Ac

tio
n 

M
SE

 (T
ra

in
)

Ac
tio

n 
M

SE
 (V

al
)

St
at

e 
Di

ve
rg

en
ce

 (T
ra

in
)

St
at

e 
Di

ve
rg

en
ce

 (V
al

)
RN

D
Im

ita
tio

n 
Re

tu
rn

Figure 3. The episode return achieved by different algorithms if the HP selection and early stopping is performed using a proxy metric for
Adroit environments. See the caption for Fig. 2 for the detailed description of this plot.

by the fact that the upper-bound on the Wasserstein distance
introduced by the algorithm is not tight.

Is early stopping important? The upper yellow (resp.
brown) parts of the bars in Fig. 2 and Fig. 3 show how
much is gained (resp. lost) by using early stopping based
on the same metric as for the HP selection. We can see that
early stopping almost always improves performances if a
reliable metric (i.e., state divergence) is used and the task
was not already almost completely solved without it. The
magnitude of the gain depends heavily on the environment
and the algorithm, in particular we found early stopping to
be particularly helpful for PWIL on Adroit environments.

Can we use metrics to choose the algorithm? The first
row in Fig. 2 and Fig. 3 show the performance when we
use the metrics to choose not only HPs but also the IL algo-
rithm. We observe that when using the state divergence as

the metric to select the algorithm, we achieve comparable
performance to that of the best algorithm. Furthermore, se-
lecting the algorithm based on action MSE results in similar
performance as BC even if it is not the best algorithm. This
may be due to the fact that BC optimizes the very same
criterion, hence it is more likely to have the best results
according to that metric. We provide additional evidence
for this hypothesis in Appx. B.2.

3.2. Hyperparameter selection by transfer

As an alternative to the metrics investigated in the previous
section, we could select HPs which work best on a simi-
lar task(s) that actually has a well-defined reward function.
Fig. 4 and 5 show the performance of different algorithms
when we choose HPs using a set of validation environments
and then test them on another environment from the same



Hyperparameter Selection for Imitation Learning

0 2 4

0.25

0.50

0.75

1.00

BC
average

0 2 4

Ant-v2

0 2 4

HalfCheetah-v2

0 2 4

Hopper-v2

0 2 4

Humanoid-v2

0 2 4

Walker2d-v2

0 2 4

0.25

0.50

0.75

1.00

AI
L

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

0.25

0.50

0.75

1.00

PW
IL

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

En
v 

Re
tu

rn
St

at
e 

Di
ve

rg
en

ce
 (V

al
)

Tr
an

sf
er

 fr
om

 1
 e

nv
Tr

an
sf

er
 fr

om
 2

 e
nv

s
Tr

an
sf

er
 fr

om
 3

 e
nv

s
Tr

an
sf

er
 fr

om
 4

 e
nv

s

Figure 4. The episode return achieved by different algorithms if the HP selection is performed using transfer for OpenAI Gym environments.
HPs are selected by choosing the HP configuration which performs best on a set of other tasks from the same benchmark (See Sec. 2.5 for
the details). The results are averaged across all possible choices of the validation environments. Different bars in each subplot correspond
to using a different number of environments to select HPs. We also include the selection based on the episode return and the state
divergence for comparison. Early stopping is performed using the state divergence (validation) regardless of the HP selection metric. See
the caption for Fig. 2 for additional information on this figure.

benchmark (i.e., we do not consider the transfer from Ope-
nAI Gym to Adroit here). While we could use transfer for
early stopping (i.e., select the timestep which worked best
for the validation environments), we have noticed that it
almost always resulted in worse performance than no early
stopping and therefore we chose to use state divergence for
early stopping in the transfer experiments.

Transfer performance consistently improves with the num-
ber of validation environments used but selecting HPs based
on the state divergence on the task of interest outperforms
transfer even if we validate HPs on all the other tasks in the
given task suite. The relatively poor transfer performance
can be caused by two factors: (1) different HP configura-
tions performing well on each task, or (2) the stochasticity
of the algorithm (i.e., the algorithm producing different re-
sults when run twice with the same HPs). Despite that,
transferring HPs may still be preferred in some situations as
it does not require tuning HPs for each new task.

Fig. 6 shows the transfer performance for individual pairs of
validation-test environments. We observe that HPs transfer

better within a suite, but the HP transfer between OpenAI
Gym and Adroit often succeeds too. Especially, BC’s HPs
transfer very well from Adroit to Gym but not the other way
around. Results also suggest that HPs transfer better to eas-
ier tasks than to harder ones: the two tasks on which the HP
transfer performs worst are Humanoid and relocate
which are the hardest tasks in their respective suites.

The results suggest also that BC enjoys better HP transfer-
ability than AIL and PWIL which can be expected as it is a
much simpler algorithm based on supervised learning.

A general conclusion from our experiments is that IL al-
gorithms are quite sensitive to their HPs and may require
per-environment HP tuning for optimal performance. It is
therefore important to compare IL algorithms not only in
terms of their performance under optimal HPs but also in
terms of their HP sensitivity and transferability.



Hyperparameter Selection for Imitation Learning

0 2 4

0.25

0.50

0.75

1.00
BC

average

0 2 4

door-expert-v0

0 2 4

hammer-expert-v0

0 2 4

pen-expert-v0

0 2 4

relocate-expert-v0

0 2 4

0.25

0.50

0.75

1.00

AI
L

0 2 4 0 2 4 0 2 4 0 2 4

En
v 

Re
tu

rn

St
at

e 
Di

ve
rg

en
ce

 (V
al

)

Tr
an

sf
er

 fr
om

 1
 e

nv

Tr
an

sf
er

 fr
om

 2
 e

nv
s

Tr
an

sf
er

 fr
om

 3
 e

nv
s

0.25

0.50

0.75

1.00

PW
IL

En
v 

Re
tu

rn

St
at

e 
Di

ve
rg

en
ce

 (V
al

)

Tr
an

sf
er

 fr
om

 1
 e

nv

Tr
an

sf
er

 fr
om

 2
 e

nv
s

Tr
an

sf
er

 fr
om

 3
 e

nv
s

En
v 

Re
tu

rn

St
at

e 
Di

ve
rg

en
ce

 (V
al

)

Tr
an

sf
er

 fr
om

 1
 e

nv

Tr
an

sf
er

 fr
om

 2
 e

nv
s

Tr
an

sf
er

 fr
om

 3
 e

nv
s

En
v 

Re
tu

rn

St
at

e 
Di

ve
rg

en
ce

 (V
al

)

Tr
an

sf
er

 fr
om

 1
 e

nv

Tr
an

sf
er

 fr
om

 2
 e

nv
s

Tr
an

sf
er

 fr
om

 3
 e

nv
s

En
v 

Re
tu

rn

St
at

e 
Di

ve
rg

en
ce

 (V
al

)

Tr
an

sf
er

 fr
om

 1
 e

nv

Tr
an

sf
er

 fr
om

 2
 e

nv
s

Tr
an

sf
er

 fr
om

 3
 e

nv
s

Figure 5. The episode return achieved by different algorithms if the HP selection is performed using transfer for Adroit environments. See
Fig. 4 for additional information on this plot.

4. Related Work
Hyperparameters selection is central to the performance of
machine learning algorithms. In the context of supervised
learning, it is common practice to select HPs on dedicated
held-out data (validation) and subsequently estimate the
performance of an algorithm on another set of held-out
data (test). Previous work has looked into improving the
selection of the best configurations using grid search (Le-
Cun et al., 2012), random search (Larochelle et al., 2007;
Bergstra & Bengio, 2012) or population based strategies
(Jaderberg et al., 2017).

In the context of reinforcement learning, the notions of train-
ing and validation can be conflated. This is the case if the
goal is to design a policy that performs well in a single envi-
ronment (Silver et al., 2016; Tesauro, 1995; Vinyals et al.,
2017). However, RL agents are typically evaluated on their
ability to learn on multiple environments (Bellemare et al.,
2013; Brockman et al., 2016; Cobbe et al., 2020) with a
single set of HPs. Henderson et al. (2018) highlights that
poor evaluation protocols make RL algorithms hard to repro-
duce. For instance, although code level optimizations often
explain a lot of the RL algorithms performance, they tend to
be omitted in most of the recent RL publications (Engstrom

et al., 2020; Andrychowicz et al., 2020), making it hard for
practionners to compare and reproduce.

Imitation Learning adds another level of algorithmic com-
plexity to the RL setting since the reward function is not
available. Therefore, the learning of a reward function,
which introduces its own set of extra HPs, is intertwined
with the learning process of a direct RL agent (Finn et al.,
2016; Ho & Ermon, 2016; Kostrikov et al., 2018). Al-
though previous work has identified measures of similarity
not based on the reward functions (Dadashi et al., 2020;
Ghasemipour et al., 2020; Ke et al., 2019), this work is, as
far as we know, the first to propose a principled evaluation
protocol to select HPs not based on the true but supposedly
unknown reward function.

Paine et al. (2020) recently highlighted the same problem oc-
curring in offline RL (Lagoudakis & Parr, 2003; Ernst et al.,
2005; Riedmiller, 2005; Lange et al., 2012; Levine et al.,
2020), where HPs are usually selected on the performance
of the agent on the online environment (although the core
constraint of offline RL prevents interactions with the envi-
ronment). Some recent benchmarks (Gulcehre et al., 2020;
Fu et al., 2020) also propose evaluation protocols where HPs
are selected by tuning on only a subset of environments.



Hyperparameter Selection for Imitation Learning

do
or

ha
mmer pe

n

rel
oca

te Ant

Half
Che

eta
h

Hop
pe

r

Hum
an

oid

Walk
er2

d

Results on ... are

door

hammer

pen

relocate

Ant

HalfCheetah

Hopper

Humanoid

Walker2d

If 
HP

 se
le

ct
ed

 o
n 

...
1.05 1.02 0.78 0.40 0.43 0.15 0.38 0.25 0.25

1.03 1.24 0.81 0.39 0.52 0.24 0.57 0.34 0.36

1.00 0.98 1.05 0.41 0.45 0.16 0.42 0.26 0.28

1.02 1.06 0.91 0.73 0.66 0.18 0.60 0.41 0.42

1.01 1.14 0.91 0.49 0.91 0.40 0.80 0.50 0.71

1.01 1.08 0.84 0.40 0.75 0.55 0.77 0.46 0.69

1.01 1.10 0.82 0.37 0.77 0.42 0.91 0.45 0.72

1.02 1.09 0.87 0.45 0.76 0.33 0.71 0.65 0.52

1.00 1.09 0.85 0.43 0.77 0.42 0.80 0.47 0.90

BC

do
or

ha
mmer pe

n

rel
oca

te Ant

Half
Che

eta
h

Hop
pe

r

Hum
an

oid

Walk
er2

d

Results on ... are

door

hammer

pen

relocate

Ant

HalfCheetah

Hopper

Humanoid

Walker2d

If 
HP

 se
le

ct
ed

 o
n 

...

1.04 1.00 0.90 0.37 0.45 1.01 0.74 0.07 0.65

0.68 1.28 0.80 0.22 0.34 1.01 0.70 0.23 0.67

0.76 0.89 1.16 0.27 0.55 1.01 0.87 0.18 0.75

0.98 0.93 1.00 0.58 0.63 1.00 0.81 0.07 0.82

0.48 0.52 0.59 0.24 1.03 1.00 1.09 0.20 0.84

0.31 0.61 0.50 0.08 0.31 1.06 0.61 0.21 0.55

0.08 0.13 0.17 0.02 0.12 0.83 1.19 0.06 0.54

0.32 0.71 0.60 0.02 0.23 0.92 0.91 1.10 0.80

0.40 0.61 0.53 0.06 0.41 0.99 0.89 0.31 1.01

AIL

do
or

ha
mmer pe

n

rel
oca

te Ant

Half
Che

eta
h

Hop
pe

r

Hum
an

oid

Walk
er2

d

Results on ... are

door

hammer

pen

relocate

Ant

HalfCheetah

Hopper

Humanoid

Walker2d

If 
HP

 se
le

ct
ed

 o
n 

...

1.01 0.99 0.50 0.14 0.93 0.85 0.97 0.53 0.94

0.41 1.24 0.48 0.11 0.86 0.76 1.00 0.67 0.96

0.40 0.57 0.79 0.06 0.72 0.51 1.00 0.60 0.97

0.82 1.03 0.53 0.27 0.97 0.93 0.98 0.44 0.96

0.60 0.84 0.51 0.05 1.03 0.77 1.00 0.62 0.92

0.41 0.63 0.37 0.03 0.93 1.03 0.98 0.47 0.86

0.03 0.19 0.39 0.01 0.74 0.66 1.18 0.72 0.93

0.10 0.39 0.43 0.03 0.61 0.66 1.07 1.32 0.88

0.31 0.45 0.45 0.04 0.79 0.67 1.00 0.59 1.00

PWIL

Figure 6. HP transfer results for individual validation-test environments pairs. Rows correspond to different validation environments and
columns to different test environments. Early stopping is performed using the state divergence on the validation set of demonstrations.

5. Summary/Conclusion
In this work, we highlighted a major flaw in current evalu-
ation protocols of IL methods. Although the promise is to
design agents learning from demonstrations, the standard
practice is to select agents on the reward of the task. In order
to align research progress with the problem it attempts to
solve, we advocate for a new evaluation protocol, where the
HP selection is based on criteria available in the IL setting.
We investigated multiple proxies to the environment return
for HP selection and early stopping. We evaluated, on 9 con-
tinuous control tasks, model selection using proxy metrics
or through transfer. We demonstrated the brittleness of clas-

sical algorithms when the HP selection cannot be performed
on the unknown environment return. We also showed that
it is possible to select good HPs by estimating the diver-
gence between the distribution of states encountered by the
demonstrator and the agent. This work opens the interest-
ing question of new proxy metrics design, that can adapt
to harder IL settings including suboptimal demonstrations,
partial observability or visual-based inputs.

Acknowledgments
We thank Lucas Beyer, Johan Ferret and Nino Vieillard for
their feedback on earlier versions of the manuscript.



Hyperparameter Selection for Imitation Learning

References
Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,

Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters in on-policy rein-
forcement learning? a large-scale empirical study. arXiv
preprint arXiv:2006.05990, 2020.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B.
A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5):469–483, 2009.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2), 2012.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In International conference on machine learn-
ing, pp. 2048–2056. PMLR, 2020.

Dadashi, R., Hussenot, L., Geist, M., and Pietquin, O.
Primal wasserstein imitation learning. arXiv preprint
arXiv:2006.04678, 2020.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590(7847):
580–586, 2021.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep policy gradients: A case study on ppo and trpo.
arXiv preprint arXiv:2005.12729, 2020.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Feldt, R. Generating diverse software versions with genetic
programming: an experimental study. IEE Proceedings-
Software, 145(6):228–236, 1998.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49–58.
PMLR, 2016.

Flamary, R. and Courty, N. Pot python optimal transport
library, 2017. URL https://pythonot.github.
io/.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Ghasemipour, S. K. S., Zemel, R., and Gu, S. A divergence
minimization perspective on imitation learning methods.
In Conference on Robot Learning, pp. 1259–1277. PMLR,
2020.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Col-
menarejo, S. G., Zolna, K., Agarwal, R., Merel, J.,
Mankowitz, D., Paduraru, C., et al. Rl unplugged: Bench-
marks for offline reinforcement learning. arXiv preprint
arXiv:2006.13888, 2020.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning, pp. 1861–1870. PMLR,
2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2020. URL http://
github.com/google/flax.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that mat-
ters. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T.,
Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband, I.,
et al. Deep q-learning from demonstrations. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

http://github.com/google/jax
https://pythonot.github.io/
https://pythonot.github.io/
http://github.com/google/flax
http://github.com/google/flax


Hyperparameter Selection for Imitation Learning

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. arXiv preprint arXiv:1606.03476, 2016.

Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron, G.,
Behbahani, F., Norman, T., Abdolmaleki, A., Cassirer, A.,
Yang, F., Baumli, K., et al. Acme: A research framework
for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., et al. Population based training of
neural networks. arXiv preprint arXiv:1711.09846, 2017.

Ke, L., Barnes, M., Sun, W., Lee, G., Choudhury, S., and
Srinivasa, S. Imitation learning as f -divergence mini-
mization. arXiv preprint arXiv:1905.12888, 2019.

Kim, B., Farahmand, A.-m., Pineau, J., and Precup, D.
Learning from limited demonstrations. In Advances in
Neural Information Processing Systems, pp. 2859–2867,
2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Kumar, V. Manipulators and Manipulation in
high dimensional spaces. PhD thesis, Uni-
versity of Washington, Seattle, 2016. URL
https://digital.lib.washington.edu/
researchworks/handle/1773/38104.

Lagoudakis, M. G. and Parr, R. Least-squares policy it-
eration. The Journal of Machine Learning Research, 4:
1107–1149, 2003.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45–73.
Springer, 2012.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y. An empirical evaluation of deep architectures
on problems with many factors of variation. In Proceed-
ings of the 24th international conference on Machine
learning, pp. 473–480, 2007.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
Efficient backprop. In Neural networks: Tricks of the
trade, pp. 9–48. Springer, 2012.

Lee, K.-H., Fischer, I., Liu, A., Guo, Y., Lee, H., Canny, J.,
and Guadarrama, S. Predictive information accelerates
learning in rl. arXiv preprint arXiv:2007.12401, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Ng, A. Y., Russell, S. J., et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, pp. 2, 2000.

Paine, T. L., Paduraru, C., Michi, A., Gulcehre, C., Zolna,
K., Novikov, A., Wang, Z., and de Freitas, N. Hyper-
parameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Piot, B., Geist, M., and Pietquin, O. Learning from demon-
strations: Is it worth estimating a reward function? In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 17–32. Springer,
2013.

Piot, B., Geist, M., and Pietquin, O. Boosted bellman resid-
ual minimization handling expert demonstrations. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pp. 549–564. Springer,
2014.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural computation,
3(1):88–97, 1991.

Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-
Maron, G., Vecerik, M., Lampe, T., Tassa, Y., Erez,
T., and Riedmiller, M. Data-efficient deep reinforce-
ment learning for dexterous manipulation. arXiv preprint
arXiv:1704.03073, 2017.

Riedmiller, M. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317–
328. Springer, 2005.

Russell, S. Learning agents for uncertain environments. In
Conference on Computational learning theory, 1998.

Schaal, S. Is imitation learning the route to hu-
manoid robots? Trends in Cognitive Sciences,
3(6):233 – 242, 1999. ISSN 1364-6613. doi:
https://doi.org/10.1016/S1364-6613(99)01327-3. URL
http://www.sciencedirect.com/science/
article/pii/S1364661399013273.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sims, K. Evolving virtual creatures. In Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques, pp. 15–22, 1994.

https://digital.lib.washington.edu/researchworks/handle/1773/38104
https://digital.lib.washington.edu/researchworks/handle/1773/38104
http://www.sciencedirect.com/science/article/pii/S1364661399013273
http://www.sciencedirect.com/science/article/pii/S1364661399013273


Hyperparameter Selection for Imitation Learning

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. Dropout: A simple way
to prevent neural networks from overfitting. Jour-
nal of Machine Learning Research, 15(56):1929–1958,
2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decou-
pling representation learning from reinforcement learning.
arXiv preprint arXiv:2009.08319, 2020.

Tesauro, G. Temporal difference learning and td-gammon.
Communications of the ACM, 38(3):58–68, 1995.

Villani, C. Optimal transport: old and new. 2008.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., Makhzani, A., Küttler, H., Agapiou,
J., Schrittwieser, J., et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wang, R., Ciliberto, C., Amadori, P. V., and Demiris, Y.
Random expert distillation: Imitation learning via expert
policy support estimation. In International Conference
on Machine Learning, pp. 6536–6544. PMLR, 2019.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

