
Supplementary Material of “ Crowdsourcing via Annotator Co-occurrence Imputation and
Provable Symmetric Nonnegative Matrix Factorization”

A. Notation

Notation Definition
x scalar in R
x vector in Rn, i.e., x = [x1, . . . , xn]>

X matrix in Rm×n withX(i, j) = xi,j
[X]i,j orX(i, j) (i, j)th entry ofX

X ≥ 0 X(i, j) ≥ 0 ∀ (i, j)
κ(X) condition number ofX

σmax(X) maximum singular value ofX
σmin(X) minimum singular value ofX
‖X‖2 2-norm ofX (same as σmax(X))
‖X‖F Frobenius norm ofX
R(X) range space ofX

cone(X) conic hull ofX: {y | y = Xθ, ∀θ ≥ 0}
‖x‖2 `2-norm of x
‖x‖1 `1-norm of x

Diag(x) diagonal matrix with x1, . . . , xn in the diagonal
† pseudo-inverse
> transpose
|C| the cardinality of the set C
[T ] {1, . . . , T} for an integer T
I identity matrix with proper size
1 all-one vector with proper size
0 all-zero vector or matrix with proper size
ei unit vector with the ith element being 1
Rn+ nonnegative orthant of Rn

B. More Details of The Robust Co-occurrence Imputation Algorithm
B.1. Iteratively Reweighted Algorithm for Robust Co-occurrence Imputation

In order to design an algorithm for solving Problem (9), we approximate (9) using a smooth version of the objective function.
Specifically, we propose to use

minimize
Um,Uj , ∀(m,j)∈Ω

∑
(m,j)∈Ω

(
‖R̂m,j −UmU>j ‖2F + ξ

) 1
2

(17a)

subject to ‖Um‖F ≤ D, ‖U j‖F ≤ D, ∀m, (17b)

where ξ > 0 is a small number.

We update Um by fixing {wm,j}(m,j)∈Ω and Uj’s where j 6= m. Then, we can update {wm,j}(m,j)∈Ω , by fixing Um and
Uj , for all (m, j) ∈ Ω. In each iteration t, the sub-problem to solve Um can be written as

minimize
Um

∑
j∈Sm

w
(t)
m,j‖R̂m,j −Um(U

(t)
j )>‖2F (18a)

subject to ‖Um‖F ≤ D, (18b)

where Sm = {j | R̂m,j or R̂j,m is observed}. The problem in (18) is a second-order cone-constrained quadratic program,
and can be solved using any off-the-shelf convex optimization algorithm. We propose to use the projected gradient descent



(PGD) algorithm due to its simplicity. Specifically, in iteration r of the PGD conducted during the tth outer iteration, Um is
updated via

U (t,r+1)
m ← ProjD

(
U (t,r)
m − βG(t,r)

m

)
,

where β > 0 is the step size, ProjD (·) : RK×K → RK×K denotes the orthogonal projection onto the set D = {X ∈
RK×K | ‖X‖F ≤ D}, andG(t,r)

m is the gradient of the objective function (18a) w.r.t to Um. Specifically, we have

G(t,r)
m =

∑
j∈Sm

w
(t)
m,j

(
U (t,r)
m (U

(t)
j )>U

(t)
j − R̂m,jU

(t)
j

)
.

The step size is selected as the inverse of the Lipschitz constant of the gradient. In addition, the projection is simply
re-scaling; i.e., for any Z ∈ RK×K ,

ProjD(Z) =

{
Z, Z ∈ D
Z
‖Z‖F , Z /∈ D.

Note that we let
U (t+1)
m ← U (t,r?t )

m , U (t+1,0)
m ← U (t+1)

m ,

where r?t is the number of iterations where the PGD stops for updating U (t)
m . After Um for all m are updated using PGD,

we update wm,j , for all (m, j) ∈ Ω, by the following:

w
(t+1)
m,j ←

(
‖R̂m,j −U (t)

m (U
(t)
j )>‖2F + ξ

)− 1
2

, ∀(m, j) ∈ Ω.

B.2. Complexity and Convergence

The per-iteration complexity of the algorithm is often not large, due to its first-order optimization nature. The complexity-
dominating step are the computation of the step size and constructing the gradient, which both cost O(MK3) flops. This is
acceptable since K is normally small.

Iteratively reweighted algorithms’ stationary-point convergence properties have been well understood. By a connection
between the algorithm and the block successive upper bound minimization (BSUM) (Razaviyayn et al., 2013), it is readily
seen that the solution sequence converges to a stationary point of (17). Although global optimality of the algorithm may be
much harder to establish, such a procedure often works well in practice—which presents a valuable heuristic for tackling the
stability-guaranteed co-occurrence imputation criterion in Theorem 2, i.e., Problem (9).

C. More Details of Experiments
Parameters. The stopping criterion for all the iterative algorithms in the experiments is set such that the algorithms are
terminated when the relative change of their respective cost functions is less than 10−6. For the proposed SymNMF
algorithm, we set α(0) = 10−6, and we use two α(t) scheduling rules in our simulations and real data experiments,
respectively. Specifically, for simulations that demonstrate the convergence properties of the proposed algorithm, we use
α(t) = ψt+1 where 0 < ψ < 1. For the rest of the simulations and real data experiments, we let α(t) = α(0) for simplicity.
We run all the experiments in Matlab 2018b on Windows 10 on an Intel I7 CPU running at 3.40 GHZ.

C.1. Synthetic Data Simulations

C.1.1. IDENTIFIABILITY

In this section, we analyze the D&S model identifiability of the proposed framework using synthetic data experiments.

First, we consider the noiseless case where we directly generate Rm,j = AmDA
>
j for (m, j) ∈ Ω and observe if the

confusion matrices and the prior can be identified by the algorithms up to a common column permutation. We fix M = 25
annotators and the number of classes K = 3. An annotator is chosen randomly from M annotators and is made as a “class
specialist” of all the classes 1, . . . ,K. This is achieved by setting its confusion matrixAm to be close to an identity matrix.
Specifically, for the chosen “class specialist”, we set ‖Am(k, :)− e>k ‖2 ≤ ε.∀k, with ε = 0.10. In this way, theH matrix



Table 6. Average MSE of the proposed methods for M = 25, K = 3 with different block missing proportions (noiseless case).
Algorithms Miss=70% Miss=50% Miss=30%
RobSymNMF 4.10× 10−3 1.70× 10−3 3.44× 10−4

DesSymNMF 2.84× 10−4 4.59× 10−4 3.05× 10−4

Table 7. Average MSE and the runtime of the proposed methods and baselines for M = 25,K = 3, p = 0.3 for different values of N
Algorithms N = 1000 N = 5000 N = 10000 Time (s)
RobSymNMF 0.0099 0.0019 0.0012 0.342
DesSymNMF 0.0127 0.0038 0.0029 0.072
MultiSPA 0.2248 0.1645 0.1575 0.0148
CNMF 0.0314 0.0036 0.0009 22.475
TensorADMM 0.0218 0.0041 0.0011 27.263
Spectral-D&S 0.0465 0.0259 0.0050 17.492
MV-EM 0.0495 0.0866 0.1051 0.055

as defined in (6) approximately satisfy the SSC (see Definition 1). The columns of the confusion matrices for the rest of the
annotators and the prior probability vector λ ∈ RK are generated using Dirichlet distribution with parameter µ = 1 ∈ RK .
We generate different missing proportions by observing each pairwise blocks with a probability smaller than one. Using
these observed pairwise blocks, the proposed algorithms are run and the mean squared error (MSE) of the confusion matrices
and the prior vector are estimated. The MSE is computed as follows:

MSE = min
Π

1

MK + 1

(
‖Π>λ− λ̂‖22 +

M∑
m=1

‖AmΠ − Âm‖2F

)
, (19)

whereΠ is a permutation matrix and Âm,m = [M ] and λ̂ are the outputs by the algorithms.

Table 6 presents the MSE of the proposed methods for different proportions of the missing co-occurrences, averaged over
20 different trials. Both the proposed methods output low MSE values in all the cases. One can see that the MSE of
the RobSymNMF decreases when more blocks are observed, which is consistent with Theorem 2. Since we consider the
noiseless case by observing Rm,j = AmDA

>
j for all (m, j) ∈ Ω, the algorithm DesSymNMF is able to impute all the

missing pairwise co-occurrences accurately via (7)-(8). Therefore, the MSE of the DesSymNMF is more or less unaffected
with changing co-occurrence missing proportions.

Table 7 presents the average MSE and the runtime of the methods under test using various numbers of data items. We
fix M = 25, K = 3 and vary the number of data items N . The generating process for the confusion matrices and the
prior vector is the same as that used in Table 6. Once the confusion matricesAm,m = [M ] are generated, the labels from
each annotator m for a data item with true label c ∈ [K] is randomly chosen from [K] using the probability distribution
Am(:, c). An annotator label for each data item is retained with probability p < 1 which is fixed at 0.3. Using such
labels, the co-occurrences are estimated via (3). In all the cases in Table 7, there are 4% of the pairwise co-occurrences
missing. One can see that the proposed methods, especially RobSymNMF, outperform the other methods in most of the
cases and also enjoy promising runtime performance. The DesSymNMF imputes all the missing blocks, even though there
are no designated annotators and still provides good performance. This is because most co-occurrences are available and
the conditions for using (7)-(8) are almost always satisfied. Particularly, the MSEs of the proposed methods are at least
40% lower than the best-performing baseline, when the number of data items are small (see N = 1000). This shows the
advantages of the pairwise co-occurrence based methods in the sample-starved regime. As N increases, the MSEs of all the
methods become better and closer.

C.1.2. CONVERGENCE

In this section, we compare the convergence behaviors of the proposed SymNMF algorithm [cf. Eq. (13)] and the SymNMF
algorithm proposed in (Huang et al., 2014). The proposed algorithm uses a shifted ReLU function for theH update with
α(t) > 0. The algorithm in (Huang et al., 2014) has nonnegative thresholding, i.e., a ReLU function with α(t) = 0 for all t.

In our proof of Theorem 3, we assume that α(t) is chosen such that a key condition is always satisfied; see Eqs. (49) and (50).
In practice, these conditions may not be checkable. A heuristic way of selecting {α(t)} is to use a diminishing sequence
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Figure 2. Convergence of the SymNMF algorithm with α(t) = ψt+1 (proposed) and αt = 0 for different levels of sparsity of H ∈
R1000×3 (noiseless case). Dashed line represents each trial and the bold line denotes the median of the 20 independent trials.
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Figure 3. Convergence of the SymNMF algorithm with α(t) = ψt+1 (proposed) and αt = 0 for different levels of sparsity of H ∈
R1000×3 and SNR=30dB. Dashed line represents each trial and the bold line denotes the median of the 20 independent trials.

{α(t)}. In simulations, we found that using such sequences {α(t)} can often accelerate convergence.

We consider a nonnegative matrix H ∈ RJ×K+ and control its sparsity (i.e., the number of zero entries in H) using a
parameter ϕ such that 1− ϕ = Pr([H]j,k = 0). The nonzero entries are randomly sampled from a uniform distribution
between 0 and 1. Using the matrix H , the symmetric nonnegative matrix X ∈ RJ×J+ is formed by X = HH> and its
rank-K square root decomposition is performed, i.e.,X = UU>. The matrix U ∈ RJ×K resulted from the rank-K square
root decomposition is input to the algorithms. Both the algorithms are initialized byQ(0) = I .

Fig. 2 shows ‖HΠ −H(t)‖2F/K, where Π is a permutation matrix, against the iteration index t. One can see that for
different sparsity levels, the proposed SymNMF algorithm converges faster. It can also be observed that as the sparsity level
increases (i.e., ϕ decreases), both SymNMF algorithms converge quickly to low MSE levels.

Fig. 3 shows the convergence behaviour of the algorithms when zero-mean i.i.d. Gaussian noise with variance σ2 is added
to the matrixX . The signal-to-noise ratio (SNR) in dB is defined as SNR = 10 log10

(
‖X‖2F/J

2

σ2

)
. The rank-K square root

decomposition is performed on the resulted noisy matrix X̂ , i.e., X̂ = ÛÛ> and the matrix Û is input to the algorithms.
In this case as well, one can observe faster convergence for the proposed SymNMF for different sparsity levels.

C.2. Details of The UCI Data Experiments

MATLAB Classifiers for UCI Data Experiments. For UCI data (https://archive.ics.uci.edu/ml/
datasets.php) experiments, we choose 10 different classifiers from the MATLAB statistics and machine learning
toolbox (https://www.mathworks.com/products/statistics.html); see Table 8.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://www.mathworks.com/products/statistics.html


Table 8. Ten Classifiers used As Machine Annotators.
Coarse k-nearest neighbor classifier

Medium k-nearest neighbor classifier
Fine k-nearest neighbor classifier

Cosine k-nearest neighbor classifier
Coarse decision tree classifier

Medium decision tree classifier
Fine decision tree classifier

Linear support vector machine (SVM) classifier
Quadratic support vector machine (SVM) classifier

Coarse Gaussian support vector machine (SVM) classifier

Table 9. Classification error (%) and runtime (sec.) on the LabelMe dataset (N = 1000, M = 59, K = 8). The “SymNMF” family are
the proposed methods.

Algorithms Error (%) Time (s)
RobSymNMF 32.10 1.25
RobSymNMF-EM 22.10 1.29
DesSymNMF 29.10 0.11
DesSymNMF-EM 22.20 0.20
CrowdLayer 20.90 15.80
DL-MV 23.10 14.31

Simulation Setup of Table 3. For the experiment in Table 3, we employ the following strategy in order to generate
different proportions of the missing blocks:

1. Consider N items to be labeled by the annotators (machine classifiers). We split the test data into three disjoint parts
having sizes of 0.1N, 0.3N and 0.6N , respectively.

2. Each disjoint part of the test data is co-labeled by only P annotators, which are chosen randomly from M available
annotators and P �M . We also make sure that every annotator labels at least one part out of the three test data parts.

By varying P for the three test data parts, we are able to control the proportions of missing co-occurrences. For each column
of the table, we adjust P and generate the cases such that the corresponding missing proportion (Miss) is achieved.

In addition, since we have chosen different sizes for the three sets, different annotator pairs co-label varying number of data
items. This makes the estimation accuracy for the pairwise statistics R̂m,j’s unbalanced—and we use this setting to test the
robustness of our co-occurrence imputation algorithm.

C.3. Additional Real-Data Experiment

In this section, we present an additional real-data experiment. Specifically, we compare the proposed algorithms with
a number of deep learning (DL)-based crowdsourcing methods, namely, CrowdLayer and DL-MV from the work in
(Rodrigues & Pereira, 2018).

Note that the DL-based methods are implemented under fairly different settings relative to classic D&S learning methods.
For example, both DL baselines train a deep neural networks using data items (e.g., images) as (part of the) input, whereas
the classic D&S methods do not need to know or see the data items.

The dataset used in this experiment is the LabelMe data that is posted by the authors of (Rodrigues & Pereira, 2018). We use
1,000 data items that belong to 8 classes and are labeled by 59 annotators. The methods CrowdLayer and DL-MV are
trained with 50 epochs. Table 9 presents the results of the algorithms under test. In the table, the results of CrowdLayer
and our method are averaged from 100 trials (to observe performance under random initialization and stochastic algorithms).
We observed that CrowdLayer’s and our method’s average error rates are close, but CrowdLayer has an almost 10 times
larger standard deviation (RobSymNMF-EM 22.1%± 0.5% v.s. CrowdLayer 20.9%± 4.7%). The proposed method is
also around 12 times faster (1.3 sec. vs 15.8 sec.).



Figure 4. Histograms of error rates from 100 trials. The CrowdLayer method could work very well to attain low error rate in some
trials, but multiple failed trials with error rate≥ 30% are also observed.

Fig. 4 presents the histogram of the error rates for our method and CrowdLayer. From Fig. 4, one can see that there
are trials where CrowdLayer offers impressively low error rate, but there are also multiple trials where CrowdLayer
gives high error rates (∼ 30%− 37%). The large variance is perhaps because DL methods’ computational problem is more
challenging, since DL algorithms such as SGD/Adam may not always converge well. However, the proposed method with
convergence guarantees offers stable results.

D. Proof of Theorem 1

Theorem 1 Assume that R̂m,n is estimated by (7)-(8) using the sample-estimated R̂m,r, R̂n,` and R̂`,r [using (3)
with at least S items]. Also assume that κ(Am) ≤ γ and rank(Am) = rank(D) = K for all m ∈ [M ]. Let

% = min
(m,j)∈Ω

σmin(Rm,j). Suppose that S = Ω
(
K2γ2 log(1/δ)

%4

)
for δ > 0. Then, for any (m,n) /∈ Ω, with probability

of at least 1− δ, we have:

‖R̂m,n −Rm,n‖F = O

(
K2γ3

√
log(1/δ)

%2
√
S

)
,

whereRm,n = AmDA
>
n is the missing ground-truth.

The missing pairwise co-occurrenceRm,n is imputed by (7)-(8) using available co-occurrencesRm,r,Rn,` andR`,r. In
practice, we do not observe the true pairwise co-occurrencesRm,r,Rn,` andR`,r. Therefore, we first form the matrix Ĉ
by using the corresponding sample estimated co-occurrences as below:

Ĉ = [R̂
>
m,r, R̂

>
`,r]
>.

To characterize ‖Ĉ −C‖F, we use Lemma 13 from (Zhang et al., 2016) which gives the result that, with probability at least
1− δ,

‖R̂m,j −Rm,j‖F ≤
1 +

√
log(1/δ)√
S

:= φ, ∀m 6= j, (20)

where S > 0 is the number of samples that the annotators m and j have co-labeled. Then we have

‖Ĉ −C‖2F = ‖R̂m,r −Rm,r‖2F + ‖R̂`,r −R`,r‖2F ≤ 2φ2

=⇒ ‖Ĉ −C‖F ≤
√

2φ. (21)

Let us denote the thin SVD operation on Ĉ as follows:

Ĉ = [Û>m, Û
>
` ]>Σ̂m,`,rV̂

>
r . (22)

We consider the below lemma to characterize this SVD operation:



Lemma 1 (Yu et al., 2014) Let C ∈ Rm×n and Ĉ ∈ Rm×n have singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) and
σ̂1 ≥ σ̂2 ≥ . . . σ̂min(m,n), respectively. Fix 1 ≤ t ≤ s ≤ rank(C) and assume that min(σ2

t−1 − σ2
t , σ

2
s − σ2

s+1) > 0,
where σ2

0 := ∞ and σrank(C)+1 := 0. Let q := s − t + 1 and let U =
[
ut,ut+1, . . . ,us

]
∈ Rm×q and Û =[

ût, ût+1, . . . , ûs
]
∈ Rm×q have orthonormal columns satisfyingC>uj = σjvj and Ĉ>ûj = σ̂j v̂j for j = t, t+1, . . . , s

and let V =
[
vt,vt+1, . . . ,vs

]
∈ Rn×q and V̂ =

[
v̂t, v̂t+1, . . . , v̂s

]
∈ Rn×q have orthonormal columns satisfying

Cvj = σjuj and Ĉv̂j = σ̂jûj for j = t, t+ 1, . . . , s. Then there exists an orthogonal matrixO ∈ Rq×q such that

‖Û −UO‖F ≤
23/2(2σ1 + ‖Ĉ −C‖2) min(q1/2‖Ĉ −C‖2, ‖Ĉ −C‖F)

min(σ2
t−1 − σ2

t , σ
2
s − σ2

s+1)

and the same upper bound holds for ‖V̂ − V O‖F.

For now, let us assume

rank(C) = K, ‖Ĉ −C‖2 ≤ ‖C‖2 = σmax(C). (23)

By applying Lemma 1 in (22), we get

‖Ûm −UmO‖F ≤
23/2
√
K3σmax(C)‖Ĉ −C‖2

σ2
min(C)

.

whereO ∈ RK×K is orthogonal.

By substituting the bound (21) in the above, we get that with probability of at least 1− δ,

‖Ûm −UmO‖F ≤
12
√
Kσmax(C)φ

σ2
min(C)

, (24)

‖Û` −U`O‖F ≤
12
√
Kσmax(C)φ

σ2
min(C)

. (25)

The missing co-occurrenceRm,n is imputed by using Ûm, Û` and R̂n,` via the following operation:

R̂m,n = ÛmÛ
−1
` R̂>n,`.

The first term Ûm is characterized by (24). To characterize the term Û−1` , we use the following lemma:

Lemma 2 Consider any matrices Y ,Z,E ∈ RK×K such that Z = Y +E and Y is invertible. Suppose that rank(Z) =
rank(Y ) and that ‖E‖2 ≤ σmin(Y )/2 . Then, we have

‖Z−1 − Y −1‖2 ≤
2‖E‖2
σ2
min(Y )

.

The proof of the lemma can be found in Section G.

Applying Lemma 2 by letting Y := U`O and Z := Û`, we get

‖Û−1` − (U `O)−1‖2 ≤
2

σ2
min(U`)

‖Û` − (U `O)‖2. (26)

We proceed to characterize σmin(U`) in the above relation by utilizing the following result:

Lemma 3 Suppose that κ(Am) ≤ γ, for all m. Then, we have

σmin(U`) ≥
1√

2Kγ
, σmax(U`) ≤ γ

and the above bounds are applicable for Um as well.



The proof of the lemma can be found in Section H.

Applying Lemma (3) in (26), we get

‖Û−1`1 − (U `1
O)−1‖2 ≤ 4Kγ2‖Û`1 − (U `1

O)‖2

≤ 48K
√
Kγ2σmax(C)φ

σ2
min(C)

, (27)

where we applied (25) in the last inequality.

Using the above derived upper bounds, we proceed to bound the following term:

‖R̂m,n −Rm,n‖2 = ‖ÛmÛ−1` R̂>n,` −UmU−1` R>n,`‖2,

where we can see that UmU−1` R>n,` = UmO(U`O)−1R>n,` for the orthogonal matrixO. To simplify the notations, let us
define Z1 := UmO, Z2 := (U`O)−1 and Z3 := R>n,`. We also define Ẑ1 := Ûm, Ẑ2 := Û−1` and Z3 := R̂>n,`. Using
these notations, we have the following set of relations:∥∥∥Ẑ1Ẑ2Ẑ3 −Z1Z2Z3

∥∥∥
2

=
∥∥∥Ẑ1Ẑ2Ẑ3 −Z1Z2Z3 − Ẑ1Z2Z3 + Ẑ1Z2Z3

∥∥∥
2

=
∥∥∥(Ẑ1 −Z1

)
Z2Z3 + Ẑ1

(
Ẑ2Ẑ3 −Z2Z3

)∥∥∥
2

≤
∥∥∥(Ẑ1 −Z1

)
Z2Z3

∥∥∥
2

+
∥∥∥Ẑ1

(
Ẑ2Ẑ3 −Z2Z3

)∥∥∥
2

=
∥∥∥(Ẑ1 −Z1

)
Z2Z3

∥∥∥
2

+
∥∥∥Ẑ1(Ẑ2 −Z2)Z3 + Ẑ1Ẑ2

(
Ẑ3 −Z3

)∥∥∥
2

≤ ‖Z2‖2‖Z3‖2
∥∥∥Ẑ1 −Z1

∥∥∥
2

+ ‖Ẑ1‖2‖Z3‖2
∥∥∥Ẑ2 −Z2

∥∥∥
2

+ ‖Ẑ1‖2‖Ẑ2‖2
∥∥∥Ẑ3 −Z3

∥∥∥
2
,

where we have used triangle inequality to obtain the first inequality and used the fact that ‖XY ‖2 ≤ ‖X‖2‖Y ‖2 in the last
inequality. Applying this result, we get

‖ÛmÛ−1` R̂>n,` −UmO(U`O)−1R>n,`‖2 ≤ ‖(U`O)−1‖2‖Rn,`‖2‖Ûm −UmO‖2
+ ‖Ûm‖2‖Rn,`‖2‖Û−1` − (U`O)−1‖2
+ ‖Ûm‖2‖Û−1` ‖2‖R̂n,` −Rn,`‖2. (28)

In (28), we need to apply the below characterizations to derive the final bound:

1. Upper bound for ‖Ûm‖2

‖Ûm‖2 = ‖Ûm −UmO +UmO‖2 ≤ ‖Ûm −UmO‖2 + ‖UmO‖2
≤ σmax(Um) + σmax(Um) = 2σmax(Um) ≤ 2γ.

where we have used triangle inequality for the first inequality, used the assumption that ‖Ûm−UmO‖2 ≤ σmin(Um)/2
for the second inequality and invoked Lemma 3 for the last inequality.

2. Upper bound for ‖(U`O)−1‖2

‖(U`O)−1‖2 = 1/σmin(U`) ≤
√

2Kγ,

where we have applied Lemma 3 for the last inequality.

3. Upper bound for ‖Û−1` ‖2

‖Û−1` ‖2 = 1/σmin(Û`) ≤ 2/σmin(U`) ≤ 2
√

2Kγ,

where we have used the assumption that ‖Û` −U`O‖2 ≤ σmin(U`)/2 for the first inequality and invoked Lemma 3
for the last inequality.



4. Upper bound for ‖Rn,`‖2

‖Rn,`‖2 ≤ ‖Rn,`‖F ≤ 1,

where we used the fact that the entries of the matrixRn,` are nonnegative and sum to one and therefore ‖Rn,`‖2F ≤ 1.

Applying these upper bounds to (28), we attain the following:

‖R̂m,n −Rm,n‖2 ≤
√

2Kγ‖Ûm −UmO‖2 + 2γ‖Û−1` − (U`O)−1‖2 + 4
√

2Kγ2‖R̂n,` −Rn,`‖2
=⇒ ‖R̂m,n −Rm,n‖F ≤

√
2Kγ‖Ûm −UmO‖F + 2

√
Kγ‖Û−1` − (U`O)−1‖2 + 4

√
2Kγ2‖R̂n,` −Rn,`‖F,

where we used the matrix norm equivalence ‖X‖2 ≤ ‖X‖F ≤
√
K‖X‖2, for a matrixX of rank K, in the last inequality.

By substituting the bounds (20), (24) and (27) in the above, we get

‖R̂m,n −Rm,n‖F ≤
12
√

2KKγσmax(C)φ

σmin(C)2
+

96K2γ3σmax(C)φ

σ2
min(C)

+ 4
√

2Kγ2φ.

where we have C = [R>m,r,R
>
`,r]
> and can immediately see that ‖C‖2F ≤ 2, which implies that σmax(C) ≤ ‖C‖F ≤

√
2

and φ =
1+
√

log(1/δ)√
S

. Combining this, we get that with probability at least 1− δ, for a certain constant C1 > 0,

‖R̂m,n −Rm,n‖F ≤
C1K

2γ3
√

log(1/δ)

σ2
min(C)

√
S

. (29)

Finally, we will summarize the conditions to be satisfied to obtain (29). From (23), we can see that the below condition
needs to be satisfied:

‖Ĉ −C‖2 ≤ ‖C‖2 = σmax(C) =⇒
√

2φ ≤ σmax(C)

=⇒ S ≤
2(1 +

√
log(1/δ))2

σ2
max(C)

. (30)

From Lemma 2, the condition to be satisfied is:

‖Û` −U`O‖2 ≤ σmin(U`)/2. (31)

By applying (25) and Lemma 3 in the left and right hand sides of (31), respectively, the condition to be satisfied can be
re-written as:

12
√
Kσmax(C)φ

σmin(C)2
≤ 1√

2Kγ
=⇒

12
√

2
√
Kσmax(C)(1 +

√
log(1/δ))

σmin(C)2
√
S

≤ 1√
2Kγ

,

=⇒ S ≥ C2K
2γ2 log(1/δ)

σmin(C)2
, (32)

for a certain constant C2 > 0. Combining (30) and (32), we get the final condition on S as stated in the theorem.

E. Proof of Theorem 2

Theorem 2 Assume that the R̂m,j’s are estimated using (3) with Sm,j = |Sm,j | for all (m, j) ∈ Ω. Also assume
that each R̂m,j is observed with the same probability. Let {U∗m,U∗j }(m,j)∈Ω be any optimal solution of (9). Define
L = M(M − 1)/2. Then we have

1

L

∑
m<j

‖U∗m(U∗j )>−Rm,j‖F ≤ C

√
MK2 log(M)

|Ω|
+

(
1

|Ω|
+

1

L

) ∑
(m,j)∈Ω

1 +
√
M√

Sm,j
,

with probability of at least 1− 3 exp(−M), where C > 0.



LetR∗m,j = U∗mU
∗>
j , where {U∗m,U∗j }(m,j)∈Ω be any optimal solution of (9) andNm,j = R̂m,j −Rm,j for every m, j.

Note that we treatNm,j = 0 for (m, j) /∈ Ω, since the co-occurrences are unobserved. We define the following quantity
that will be useful in our proof:

τ(Ω) =

∣∣∣∣∣∣ 1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j −R∗m,j‖F −
1

L

∑
m<j

‖R̂m,j −R∗m,j‖F

∣∣∣∣∣∣ , (33)

where L = M(M − 1)/2. Then we have

1

L

∑
m<j

‖R∗m,j −Rm,j‖F =
1

L

∑
m<j

‖R∗m,j − R̂m,j +Nm,j‖F

(a)

≤ 1

L

∑
m<j

‖R∗m,j − R̂m,j‖F +
1

L

∑
m<j

‖Nm,j‖F

(b)

≤ 1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j −R∗m,j‖F + τ(Ω) +
1

L

∑
m<j

‖Nm,j‖F

(c)

≤ 1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j −Rm,j‖F + τ(Ω) +
1

L

∑
m<j

‖Nm,j‖F

=
1

|Ω|
∑

(m,j)∈Ω

‖Nm,j‖F + τ(Ω) +
1

L

∑
m<j

‖Nm,j‖F, (34)

where (a) is due to triangle inequality, (b) is due to the definition of τ(Ω) and triangle inequality, and (c) is due to the fact
thatR∗m,j is the optimal solution of (9).

Next, we will characterize τ(Ω). For this, let us define the set

SK = {X = UV > ∈ RMK×MK : rank(X) ≤ K, ‖U‖F ≤ B, ‖V ‖F ≤ B},

where the constant B =
√
MD and D is the constant from Problem (9).

If ‖U‖F ≤ B and ‖V ‖F ≤ B, then ‖X‖F ≤ ‖U‖F‖V ‖F = B2. Therefore, we can rewrite the definition of the set SK as
below:

SK = {X ∈ RMK×MK : rank(X) ≤ K, ‖X‖F ≤ B2}. (35)

We will invoke the following lemma to characterize the covering number of the set SK .

Lemma 4 (Wang & Xu, 2012) Let Sr = {X ∈ Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤ C}. Then there exists an ε-net Sr for
the Frobenius norm obeying

|Sr(ε)| ≤ (9C/ε)(n1+n2+1)r.

By denoting the ε-net of SK defined in (35) as SK(ε) and applying Lemma 4, we get that

|SK(ε)| ≤ (9B2/ε)(2MK+1)K . (36)

Let X̃ ∈ SK(ε) and we can define the following:

L̂(X̃) =
1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j − X̃m,j‖F (37a)

L(X̃) =
1

L

∑
m<j

‖R̂m,j − X̃m,j‖F, (37b)



where X̃m,j ∈ RK×K is the (m, j)th block of X̃ ∈ RMK×MK .

To proceed, consider the below lemma:

Lemma 5 (Serfling, 1974) Let X = [X1, . . . , Xn] be a set of samples taken without replacement from a set {x1, . . . , xN}
with mean u where n ≤ N . Denote a := maxi xi and b := maxi bi. Then, we have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi − u

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2nt2(

1− n−1
N

)
(b− a)2

)
.

Notice that {‖R̂m,j − X̃m,j‖F}m<j forms a set of L elements with L(X̃) as its mean and L̂(X̃) as the mean estimated
from |Ω| samples, drawn without replacement. Also, we have

max
m,j
‖R̂m,j − X̃m,j‖F ≤ max

m,j
‖R̂m,j‖F + ‖X̃m,j‖F ≤ 2,

min
m,j
‖R̂m,j − X̃m,j‖F = 0.

Therefore, by applying Lemma 6, we have

Pr
(∣∣∣L̂(X̃)− L(X̃)

∣∣∣ ≥ t) ≤ 2 exp

− 2|Ω|t2(
1− |Ω|−1L

)
4

 .

Applying union bound over every X̃ ∈ SK(ε), we get

Pr

(
sup

X̃∈SK(ε)

∣∣∣L̂(X̃)− L(X̃)
∣∣∣ ≥ t) ≤ 2|SK(ε)| exp

− 2|Ω|t2(
1− |Ω|−1L

)
4

 .

By letting |SK(ε)| exp

(
− 2|Ω|t2

(1− |Ω|−1
L )4

)
= exp(−M), we get that

log |SK(ε)| − 2L|Ω|t2

(L− |Ω|+ 1) 4
= −M

=⇒ M + log |SK(ε)| = 2L|Ω|t2

(L− |Ω|+ 1) 4

=⇒ t =

√
(M + log |SK(ε)|)(L− |Ω|+ 1)4

2L|Ω|

Therefore, we get that with probability at least 1− 2 exp(−M), we have

sup
X̃∈SK(ε)

∣∣∣L̂(X̃)− L(X̃)
∣∣∣ ≤

√
(M + log |SK(ε)|)(L− |Ω|+ 1)4

2L|Ω|
.

By applying (36), we have

sup
X̃∈SK(ε)

∣∣∣L̂(X̃)− L(X̃)
∣∣∣ ≤√ (M + (2MK + 1)K log(9B2/ε))(L− |Ω|+ 1)4

2L|Ω|
:= ζ. (38)



With the above result, we proceed to relate SK and SK(ε). Let X ∈ SK and for every X , there exists X̃ ∈ SK(ε)

satisfying ‖X − X̃‖F ≤ ε. This implies that

|L(X)− L(X̃)| =

∣∣∣∣∣∣ 1L
∑
m<j

‖R̂m,j −Xm,j‖F −
1

L

∑
m<j

‖R̂m,j − X̃m,j‖F

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1L
∑
m<j

(
‖R̂m,j −Xm,j‖F − ‖R̂m,j − X̃m,j‖F

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1L
∑
m<j

(
‖Xm,j − X̃m,j‖F

)∣∣∣∣∣∣ ≤ ε
where we have used the relation that ‖Xm,j − X̃m,j‖F ≤ ‖X − X̃‖F ≤ ε. Similarly, we have

|L̂(X)− L̂(X̃)| =

∣∣∣∣∣∣ 1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j −Xm,j‖F −
1

|Ω|
∑

(m,j)∈Ω

‖R̂m,j − X̃m,j‖F

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|Ω|
∑

(m,j)∈Ω

(
‖R̂m,j −Xm,j‖F − ‖R̂m,j − X̃m,j‖F

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

|Ω|
∑

(m,j)∈Ω

(
‖Xm,j − X̃m,j‖F

)∣∣∣∣∣∣ ≤ ε.

From the above results, we further have

sup
X∈SK

∣∣∣L̂(X)− L(X)
∣∣∣ ≤ sup

X∈SK

(∣∣∣L̂(X)− L̂(X̃)
∣∣∣+
∣∣∣L(X̃)− L(X)

∣∣∣+
∣∣∣L̂(X̃)− L(X̃)

∣∣∣)
≤ ε+ ε+ sup

X̃∈SK(ε)

∣∣∣L̂(X̃)− L(X̃)
∣∣∣

≤ 2ε+ ζ,

where we have applied (38) in the last inequality.

Setting ε = 1/L, we get the below with probability at least 1− 2 exp(−M):

sup
X∈SK

∣∣∣L̂(X)− L(X)
∣∣∣ ≤ 2

1

L
+

√
(M + (2MK + 1)K log(9LB2))(L− |Ω|+ 1)4

2L|Ω|

≤ 2
1

L
+

√
(M + 3MK2 log(9LB2))(L− |Ω|+ 1)4

2L|Ω|

≤ 2
1

|Ω|
+

√
2(M + 3MK2 log(9LB2))

|Ω|

≤ 2
1

|Ω|
+

√
2(M + 3MK2 log(9M2B2))

|Ω|

where we have used the relation that L = M(M − 1)/2 in the last inequality. Note that B is defined such that ‖X‖F ≤ B2,
whereX ∈ SK . In our case, we haveRm,j ≥ 0,

∑
p,qRm,j(p, q) = 1 and therefore we get ‖Rm,j‖2F ≤ 1 for all m, j. It

implies that all the elementsX of the feasible set SK can be set to have ‖X‖2F ≤M2. Therefore, we can set B2 = M .



Using the definition of τ(Ω) given by (33), L̂(X) and L(X) given by (37) and setting B2 = M , we can then see that,
there exists a constant C > 0 such that

τ(Ω) ≤ C

√
MK2 log(M)

|Ω|
. (39)

Substituting (39) in (34), we get that with probability at least 1− 2 exp(−M),

1

L

∑
m<j

‖R∗m,j −Rm,j‖F ≤
1

|Ω|
∑

(m,j)∈Ω

‖Nm,j‖F +
1

L

∑
m<j

‖Nm,j‖F + C

√
MK2 log(M)

|Ω|
. (40)

Using Lemma 13 from (Zhang et al., 2016), we get that with probability at least 1− δ,

‖Nm,j‖F ≤
1 +

√
log(1/δ)√
Sm,j

, if (m, j) ∈ Ω, (41)

where Sm,j is the (nonzero) number of samples that the annotators m and j have co-labeled. Also, without loss of any
generality, we can let R̂m,j = Rm,j , for all (m, j) /∈ Ω. Therefore, we have

‖Nm,j‖F = 0, (m, j) /∈ Ω. (42)

By substituting δ = exp(−M), combining (40)-(42) with union bound, we have the below with probability at least
1− 3 exp(−M),

1

L

∑
m<j

‖R∗m,j −Rm,j‖F ≤
(

1

|Ω|
+

1

L

) ∑
(m,j)∈Ω

1 +
√
M√

Sm,j
+ C

√
MK2 log(M)

|Ω|
, (43)

where L = M(M − 1)/2.

F. Proof of Theorem 3
We restate the assumptions and the convergence theorem here:

Assumption 1 The nonnegative factorH ∈ RMK×K
+ satisfies: (i) rank(H) = K and ‖H‖F = σ; (ii) ‖H(j,:)Θ‖22

‖HΘ‖2F
≤

ζ, ∀j, ∀Θ ∈ RK×K ; (iii) the locations of the nonzero elements ofH are uniformly distributed over [MK]× [K], and
the set∆ = {(j, k) : [H]j,k > 0} has the following cardinality bound

|∆| = O

(
MKγ20

(1 +MKζ)σ4

)
; (44)

and (iv) 0 < γ0 ≤ min1≤k≤K{β2
k − β2

k+1}, where βk is the kth singular value ofH and βK+1 = 0.

Theorem 3 Under Assumption 1, consider Û = HQ>+N , whereQ ∈ RK×K is orthogonal, and apply (13). Denote
ν = ‖N‖F, h(t) = ‖H(t) −HΠ‖2F and q(t) = ‖Q(t) −QΠ‖2F, whereΠ is any permutation matrix. Suppose that
ν ≤ σmin{(1− ρ)

√
ηq(0), 1} for ρ := O(Kησ

4
/γ2

0) ∈ (0, 1), where η = (|∆|/MK2)(1 +MKζ), and that

2σq(0) + 2ν < min
(j,k)∈∆

[H]j,k. (45)

Then, there exists α(t) = α > 0 such that with probability of at least 1− δ the following holds:

q(t) ≤ ρq(t−1) +O
(
Kσ2ν2

/γ2
0

)
, (46a)

h(t) ≤ 2ησ2q(t−1) + 2ν2, (46b)



where δ = 2 exp
(
−2|∆|/K2(1− |∆|−1

MK2 )
)
.

Let X̂ be the estimatedX in (6). Consider the rank-K square root decomposition of X̂ ∈ RMK×MK :

X̂ = ÛÛ
>
.

It can be shown that Û = U +N = HQ>+N with bounded noiseN , if X̂ is a reasonable estimate forX (cf. Lemma 1).

Using Û ∈ RMK×K , the proposed SymNMF algorithm has the following updates:

H(t+1) ← ReLUα(t)

(
ÛQ(t)

)
(47a)

W(t+1)Σ(t+1)V
>
(t+1) ← svd

(
H>(t+1)Û

)
(47b)

Q(t+1) ← V(t+1)W
>
(t+1), (47c)

where α(t) > 0.

In the proof, we omit the permutation notationΠ for notation simplicity, since all the column-permuted version ofH and
Q are considered equally good—i.e., the column permutation ambiguity in NMF problems is intrinsic; see (Fu et al., 2019;
Huang et al., 2014).

Suppose thatQ>Q(t) = I +EQ(t)
. Note that

‖EQ(t)
‖F = ‖Q−Q(t)‖F

per the orthogonality ofQ andQ(t).

Also define
EH(t+1)

:= H(t+1) −H.

F.1. TheH-update

From the update in (47a), the below set of relations can be obtained:

||EH(t+1)
‖F =

∥∥∥ReLUα(t)

(
ÛQ(t)

)
−H

∥∥∥
F

=
∥∥ReLUα(t)

(
(HQ> +N)Q(t)

)
−H

∥∥
F

=
∥∥ReLUα(t)

(
H(Q>Q(t)) +NQ(t)

)
−H

∥∥
F

=
∥∥ReLUα(t)

(
H(I +EQ(t)

) +NQ(t)

)
−H

∥∥
F

=
∥∥ReLUα(t)

(
H +HEQ(t)

+NQ(t)

)
−H

∥∥
F
. (48)

Recall that∆ := {(j, k) : [H]j,k > 0}. Assume that the following conditions are satisfied for α(t) (at the end of the proof,
using Lemma 8, we will establish the feasibility of α(t) satisfying the below conditions),

α(t) ≤ [H +HEQ(t)
+NQ(t)]j,k, ∀(j, k) ∈∆, (49)

α(t) ≥ [HEQ(t)
+NQ(t)]j,k, ∀j, k. (50)

Then, we have

‖EH(t+1)
‖2F

=
∑

(j,k)∈∆

∣∣[ReLUα(t)

(
H +HEQ(t)

+NQ(t)

)
]j,k − [H]j,k

∣∣2 +
∑

(j,k)/∈∆

∣∣[ReLUα(t)

(
H +HEQ(t)

+NQ(t)

)
]j,k − [H]j,k

∣∣2
=

∑
(j,k)∈∆

∣∣[ReLUα(t)

(
H +HEQ(t)

+NQ(t)

)
]j,k − [H]j,k

∣∣2 +
∑

(j,k)/∈∆

∣∣[ReLUα(t)

(
HEQ(t)

+NQ(t)

)
]j,k
∣∣2

=
∑

(j,k)∈∆

∣∣[HEQ(t)
+NQ(t)]j,k

∣∣2 , (51)



where we used [H]j,k = 0,∀(j, k) /∈∆ to get the second equality and applied the conditions in (49) and (50) to obtain the
last equality.

Note that the below holds:∣∣[HEQ(t)
+NQ(t)]j,k

∣∣2 = |[HEQ(t)
]j,k|2 + |[NQ(t)]j,k|2 + 2[HEQ(t)

]j,k[NQ(t)]j,k

≤ |[HEQ(t)
]j,k|2 + |[NQ(t)]j,k|2 + |[HEQ(t)

|2 + |[NQ(t)]j,k|2

= 2|[HEQ(t)
]j,k|2 + 2|[NQ(t)]j,k|2, (52)

where we have applied the Young’s inequality in the first inequality.

Combining (51) and (52), we get that

‖EH(t+1)
‖2F ≤ 2

∑
(j,k)∈∆

∣∣[HEQ(t)
]j,k
∣∣2 + 2

∑
(j,k)∈∆

∣∣[NQ(t)]j,k
∣∣2 . (53)

Next, we consider the following lemma to bound the first term in (53).

Lemma 6 (Serfling, 1974) Let X = [X1, . . . , Xn] be a set of samples taken without replacement from a set {x1, . . . , xN}
with mean u where n ≤ N . Denote a := mini xi and b := maxi xi. Then, we have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi − u

∣∣∣∣∣ ≥ s
)
≤ 2 exp

(
− 2ns2(

1− n−1
N

)
(b− a)2

)
.

Applying Lemma 6, and by the assumption that nonzero elements ofH are located over [MK]× [K] uniformly at random,
we get

Pr

 1

|∆|
∑

(j,k)∈∆

|[HEQ(t)
]j,k|2 −

1

JK
‖HEQ(t)

‖2F ≥ s

 ≤ 2 exp

(
− 2|∆|s2

(1− |∆|−1JK )(b− a)2

)
,

where J = MK. Using the assumption that ‖H(j,:)Θ‖22
‖HΘ‖2F

≤ ζ, ∀j, ∀Θ ∈ RK×K , we get

b = max
j,k
|[HEQ(t)

]j,k|2 ≤ max
j
‖H(j, :)EQ(t)

‖22 ≤ ζ‖HEQ(t)
‖2F (54a)

a = min
j,k
|[HEQ(t)

]j,k|2 ≥ 0. (54b)

Using the bounds (54) and by letting s = ζ‖HEQ(t)
‖2F/K, we get that

Pr

 1

|∆|
∑
i,k∈∆

|[HEQ(t)
]j,k|2 −

1

JK
‖HEQ(t)

‖2F ≥
1

K
ζ‖HEQ(t)

‖2F

 ≤ 2 exp

(
− 2|∆|
K2(1− |∆|−1JK )

)
.

It implies that with probability at least 1− 2 exp

(
− 2|∆|
K2(1− |∆|−1

JK )

)
, we get

∑
(j,k)∈∆

|[HEQ(t)
]j,k|2 ≤

|∆|
JK

(1 + Jζ)‖HEQ(t)
‖2F ≤

|∆|
JK

(1 + Jζ)‖H‖2F‖EQ(t)
‖2F. (55)

Letting η = |∆|
JK (1 + Jζ) and applying (55) in (53), we get that

‖EH(t+1)
‖2F ≤ 2η‖H‖2F‖EQ(t)

‖2F + 2
∑

(j,k)∈∆

∣∣[NQ(t)]j,k
∣∣2

≤ 2η‖H‖2F‖EQ(t)
‖2F + 2‖NQ(t)‖2F

= 2η‖H‖2F‖EQ(t)
‖2F + 2ν2, (56)

where we have used ‖N‖F = ν and the orthogonality ofQ(t) in the last equality.



F.2. TheQ-update

We will now consider the update in (47b):

H>(t+1)Û = (H +EH(t+1)
)>(U +N)

= H>U +E>H(t+1)
U +H>N +E>H(t+1)

N .

We bound the below:

‖H>(t+1)Û −H
>U‖2F = ‖E>H(t+1)

U +H>N +E>H(t+1)
N‖2F

≤ 3‖E>H(t+1)
U‖2F + 3‖H>N‖2F + 3‖E>H(t+1)

N‖2F
≤ 3‖H‖2F‖EH(t+1)

‖2F + 3‖H‖2Fν2 + 3ν2‖EH(t+1)
‖2F

= 3(‖H‖2F + ν2)‖EH(t+1)
‖2F + 3‖H‖2Fν2

≤ 3(‖H‖2F + ν2)
(
2η‖H‖2F‖EQ(t)

‖2F + 2ν2
)

+ 3‖H‖2Fν2

= 6η(‖H‖2F + ν2)‖H‖2F‖EQ(t)
‖2F + 6(‖H‖2F + ν2)ν2 + 3‖H‖2Fν2

≤ 12η‖H‖4F‖EQ(t)
‖2F + 15‖H‖2Fν2, (57)

where we have used the Young’s inequality for the first inequality, used the fact that ‖U‖F = ‖H‖F for the second
inequality, applied the result in (56) for the third inequality and used the assumption that ‖N‖F = ν ≤ ‖H‖F for the last
inequality.

Let us proceed to characterize the SVD operation in (47b). Denote the full SVD ofH>U using the following notation:

WΣV>= svd
(
H>U

)
.

We invoke the below lemma:

Lemma 7 (Fan et al., 2018; Mirsky, 1960; Wedin, 1972) Let C ∈ Rm×n and Ĉ ∈ Rm×n have singular values σ1 ≥
σ2 ≥ · · · ≥ σmin(m,n) and σ̂1 ≥ σ̂2 ≥ . . . σ̂min(m,n), respectively. Let r ≤ min{m,n}. Denote w1, . . . ,wr ∈ Rm and
ŵ1, . . . , ŵr ∈ Rm as the orthonormal columns satisfying C>wi = σivi and Ĉ>ŵi = σ̂iv̂i for i = 1, . . . , r and let
v1, . . . ,vr ∈ Rn and v̂1, . . . , v̂r ∈ Rn are orthonormal columns satisfying Cvi = σiwi and Ĉv̂i = σ̂iŵi for i = 1, . . . , r.
Denote γ0 = min{σi − σi+1 : i = 1, . . . , r} where σr+1 = 0. Then, if ‖Ĉ −C‖2 ≤ γ0/2, we have

max
1≤i≤r

{‖ŵi −wi‖2 ∨ ‖v̂i − vi‖2} ≤
2
√

2‖Ĉ −C‖2
γ0

, (58)

where the operation a ∨ b = max{a, b}.

A short proof of how the bound in (58) is obtained from the classic result in (Wedin, 1972) is given in Section I.

By letting C := H>U , Ĉ := H>(t+1)Û and applying Lemma 7, we have

‖W(t+1) −W ‖F ≤
2
√

2K‖H>(t+1)Û −H
>U‖F

γ0
, (59)

‖V(t+1) − V ‖F ≤
2
√

2K‖H>(t+1)Û −H
>U‖F

γ0
, (60)

where we have used the fact that for any matrix Θ = [θ1, . . . ,θK ], the equality ‖Θ‖F =
√∑K

i=1 ‖θi‖22 holds. We have
also applied matrix norm equivalence ‖Θ‖2 ≤ ‖Θ‖F. Note that since the singular values ofH>U are the same as that of
H>H , we re-define γ0 as

γ0 = min
1≤k≤K

{β2
k − β2

k+1},

where βk’s are the singular values ofH .



By squaring the term in the right hand side of (59), we get

‖W(t+1) −W ‖2F ≤
8K‖H>(t+1)Û −H

>U‖2F
γ20

≤
8K

(
12η‖H‖4F‖EQ(t)

‖2F + 15‖H‖2Fν2
)

γ20
, (61)

where we applied (57) to obtain the last inequality. We can similarly get that

‖V(t+1) − V ‖2F ≤
8K

(
12η‖H‖4F‖EQ(t)

‖2F + 15‖H‖2Fν2
)

γ20
. (62)

Consider EQ(t+1)
= Q(t+1) −Q. Then,

‖EQ(t+1)
‖2F = ‖Q(t+1) −Q‖2F = ‖V(t+1)W

>
(t+1) − VW

>‖2F
= ‖V(t+1)(W

>
(t+1) −W

>) + (V(t+1) − V )W>‖2F
≤ 2‖W(t+1) −W ‖2F + 2‖V(t+1) − V ‖2F,

where the last inequality is by the Young’s inequality and the fact that ‖ΘΦ‖2F ≤ ‖Θ‖22‖Φ‖2F for two matrices Θ and Φ;
we have also used that ‖W ‖2 = ‖V(t+1)‖2 = 1. The above leads to

‖EQ(t+1)
‖2F ≤

CK
(
η‖H‖4F‖EQ(t)

‖2F + ‖H‖2Fν2
)

γ20
. (63)

for a certain constant C > 1. Let us denote ρ :=
CKη‖H‖4F

γ2
0

. Then we have

‖EQ(t+1)
‖2F ≤ ρ‖EQ(t)

‖2F +
ρν2

η‖H‖2F
. (64)

We can see that if the below condition is satisfied, then ρ < 1:

η =
|∆|
JK

(1 + Jζ) ≤ γ20
CK‖H‖4F

,

=⇒ |∆| ≤ Jγ20
C(1 + Jζ)‖H‖4F

. (65)

Therefore, under the conditions of α(t) in (49) and (50) and the condition on |∆| in (65), we get the bound for
‖EQ(t+1)

‖2F and ‖EH(t+1)
‖2F given by (64) and (56), respectively, with ρ < 1 and with probability greater than

1− 2 exp

(
− 2|∆|
K2(1− |∆|−1

JK )

)
.

Regarding the feasibility of α(t) satisfying the conditions (49) and (50), we have the following lemma:

Lemma 8 Assume that the following conditions are satisfied:

ν ≤ (1− ρ)
√
η‖H‖F‖EQ(0)

‖F, min
(j,k)∈∆

[H]j,k > 2‖H‖F‖EQ(0)
‖F + 2ν.

Then there exists α(t) = α > 0, for all t, specified as below such that the bounds given by (64) and (56) hold true:

‖H‖F‖EQ(0)
‖F + ν ≤ α ≤ min

(j,k)∈∆
[H]j,k − ‖H‖F‖EQ(0)

‖F − ν.

The proof can be found in Sec. J.



G. Proof of Lemma 2
Consider the below:

‖(Y +E)−1 − Y −1‖2 = ‖(Y +E)−1(I − (Y +E)Y −1‖2
= ‖(Y +E)−1EY −1‖2

≤ ‖E‖2
σmin(Y )σmin(Y +E)

. (66)

Next, we consider the following relations for any vector x ∈ RK satisfying ‖x‖ = 1:

‖(Y +E)x‖2 = ‖Y x+Ex‖2
≥ ‖Y x‖2 − ‖Ex‖2,

=⇒ min
x
‖(Y +E)x‖2 ≥ min

x
‖Y x‖2 −max

x
‖Ex‖2,

=⇒ σmin(Y +E) ≥ σmin(Y )− ‖E|2,

where the first inequality is by applying the triangle inequality. Using the assumption that ‖E‖2 ≤ σmin(Y )/2, we get
σmin(Y +E) ≥ σmin(Y )/2. Applying this relation in (66), we get the bound in the lemma.

H. Proof of Lemma 3
Recall the below relation:

C = [R>m,r,R
>
`,r]
> = [A>m,A

>
` ]>DAr. (67)

The SVD of C results the below:

C = [U>m,U
>
` ]>Σm,`,rV

>
r (68)

From (67) and (68), we get that there exists a nonsingular matrix Θ ∈ RK×K such that

[U>m,U
>
` ]> = [A>m,A

>
` ]>Θ, (69)

where the matrix [U>m,U
>
` ]> is semi-orthogonal. Therefore, we get

σmax(Θ) =
1

σmin([A>m,A
>
` ]>)

and σmin(Θ) =
1

σmax([A>m,A
>
` ]>)

. (70)

SinceAm is full row-rank, we have

σmin(Um) = min
‖x‖2=1

‖AmΘx‖2

≥ min
‖x‖2=1

σmin(Am)‖Θx‖2 = σmin(Am) min
‖x‖2=1

‖Θx‖2

= σmin(Am)σmin(Θ) =
σmin(Am)

σmax([A>m,A
>
` ]>)

. (71)

where we have applied (70) to obtain the last equality.

We proceed to bound σmax([A>m,A
>
` ]>). Under the assumption κ(Am) ≤ γ, for all m, there exists a positive scalar ωmax

and ωmin, such that for all m,

σmax(Am) ≤ ωmax, σmin(Am) ≥ ωmin, γ :=
ωmax

ωmin
.

Then we have,

σ2
max([A>m,A

>
` ]>) = ‖[A>m,A>` ]>‖22 ≤ ‖[A>m,A>` ]>‖2F

= ‖Am‖2F + ‖A`‖2F ≤ K‖Am‖22 +K‖A`‖22 ≤ 2Kω2
max,



where we have utilized the norm equivalence for the first and second inequalities. Hence, we have

σmax([A>m,A
>
` ]>) ≤

√
2Kωmax.

Applying the above results in (71), we get

σmin(Um) ≥ ωmin√
2Kωmax

=
1√

2Kγ
.

Similarly, we can easily show the above lower bound for σmin(U`).

Next, we consider upper bounding σmax(Um) and σmax(U`). From (69) and (70), we have

σmax(Um) ≤ σmax(Θ)σmax(Am) =
σmax(Am)

σmin([A>m,A
>
` ]>)

≤ σmax(Am)

σmin(Am)
≤ ωmax

ωmin
= γ,

where we have applied σmin([A>m,A
>
` ]>) ≥ σmin(Am) for second inequality. Similarly, we can easily show the above

upper bound for σmax(U`).

I. Proof of Lemma 7
The perturbation theorem in (Wedin, 1972) gives the below bound if ‖Ĉ −C‖2 ≤ γ̃0/2,√√√√ r∑

i=1

(sin2 θ(ŵi,wi) + sin2 θ(v̂i,vi)) ≤
2‖Ĉ −C‖2

γ̃0
, (72)

where θ(ŵi,wi) is the canonical angle between the left singular vectors ŵi and wi. We can easily see that

max{sin θ(ŵi,wi), sin θ(v̂i,vi)} ≤
√

sin2 θ(ŵi,wi) + sin2 θ(v̂i,vi) ≤

√√√√ r∑
i=1

(sin2 θ(ŵi,wi) + sin2 θ(v̂i,vi)). (73)

Also, consider the below:

‖ŵi −w‖22 = 2− 2ŵ>i w

≤ 2(1− cos θ(ŵi,wi))

≤ 2(1− cos2 θ(ŵi,wi))

= 2 sin2 θ(ŵi,wi)

=⇒ ‖ŵi −w‖2 ≤
√

2 sin θ(ŵi,wi).

The above inequality combined with (72) and (73) gives the bound in Lemma 7.

J. Proof of Lemma 8
The conditions on α(t) given by (49) and (50) can be re-written as:

max
(j,k)

[HEQ(t)
+NQ(t)]j,k ≤ α(t) ≤ min

(j,k)∈∆
[H]j,k + min

(j,k)∈∆
[HEQ(t)

+NQ(t)]j,k. (74)

We can bound the term min(j,k)∈∆[HEQ(t)
+NQ(t)]j,k as below:

min
(j,k)∈∆

[HEQ(t)
+NQ(t)]j,k ≥ − max

(j,k)∈∆

∣∣[HEQ(t)
+NQ(t)]j,k

∣∣ ≥ −max
(j,k)

∣∣[HEQ(t)
+NQ(t)]j,k

∣∣ . (75)



Using (75), we can re-write the conditions on α(t) in (74) as below:

max
(j,k)

|[HEQ(t)
+NQ(t)]j,k| ≤ α(t) ≤ min

(j,k)∈∆
[H]j,k −max

(j,k)
|[HEQ(t)

+NQ(t)]j,k|. (76)

To proceed, we bound the term max(j,k) |[HEQ(t)
+NQ(t)]j,k| as below:

max
(j,k)

∣∣[HEQ(t)
+NQ(t)]j,k

∣∣ ≤ ‖HEQ(t)
+NQ(t)‖F ≤ ‖H‖F‖EQ(t)

‖F + ν, (77)

where we used ‖N‖F = ν and the orthogonality ofQ(t) to obtain the last inequality. Applying (77) in (76), we can further
re-write the conditions as:

‖H‖F‖EQ(t)
‖F + ν ≤ α(t) ≤ min

(j,k)∈∆
[H]j,k − ‖H‖F‖EQ(t)

‖F − ν. (78)

Next, we proceed to bound ‖EQ(t)
‖F using ‖EQ(0)

‖F. To accomplish this, we can recursively apply the results in (64) to
obtain the below relation for any t > 1:

‖EQ(t)
‖2F = ‖Q(t) −Q‖2F ≤ ρt‖EQ(0)

‖2F +
ν2

η‖H‖2F

t∑
q=1

ρq,

= ρt‖EQ(0)
‖2F +

ν2(1− ρt+1)

η‖H‖2F(1− ρ)
. (79)

With the above result, we consider the following:

‖EQ(t)
‖2F − ‖EQ(0)

‖2F ≤

(
ρt‖EQ(0)

‖2F +
ν2

η‖H‖2F

t∑
q=1

ρq

)
− ‖EQ(0)

‖2F

=

(
(ρt − 1)‖EQ(0)

‖2F +
ν2

η‖H‖2F

t∑
q=1

ρq

)
, (80)

where we applied (79) to get the first inequality. If the R.H.S of (80) is smaller than zero, then we have ‖EQ(t)
‖2F ≤

‖EQ(0)
‖2F. The condition to make the R.H.S of (80) smaller than zero can be written as below:

(ρt − 1)‖EQ(0)
‖2F +

ν2

η‖H‖2F

t∑
q=1

ρq ≤ 0

=⇒ ν2

η‖H‖2F

t∑
q=1

ρq ≤ (1− ρt)‖EQ(0)
‖2F

=⇒ ν2

η‖H‖2F
1

1− ρ
≤ (1− ρ)‖EQ(0)

‖2F

=⇒ ν ≤ (1− ρ)
√
η‖H‖F‖EQ(0)

‖F, (81)

where the third inequality is obtained using the facts that
∑t
q=1 ρ

q ≤
∑∞
q=1 ρ

q ≤ 1
1−ρ and 1− ρt ≥ 1− ρ since ρ < 1. It

implies that if the conditions on ν given by (81) is satisfied,

‖EQ(t)
‖2F ≤ ‖EQ(0)

‖2F, ∀t. (82)

Applying (82) in (78), the condition on α(t) can be further re-written as:

‖H‖F‖EQ(0)
‖F + ν ≤ α(t) ≤ min

(j,k)∈∆
[H]j,k − ‖H‖F‖EQ(0)

‖F − ν. (83)

From (83), it is clear that we can find α(t) = α for every iteration t as long as

min
(j,k)∈∆

[H]j,k > 2‖H‖F‖EQ(0)
‖F + 2ν.
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