Appendix
A. Proofs
A.1. Proof of Theorem 4.1

In this section, we prove Theorem 4.1. First, we show two lemmas.

Lemma A.1. Let § € (0,1), and define 8; = 2log(|X x Q|7%t?/(65)). Then, with a probability of at least 1—4,
the following inequality holds:

|f (2, w) — p—1 (2, w)| < Bg/ZUt,l(m,wL v(:Jz,w) exXx0Nt>1.

Proof. By replacing D and 7; in Lemma 5.1 of [23] with X x Q and 7%t2/6, respectively, we have Lemma
Al O

Lemma A.2. Let § € (0,1), £ > 0 and 5 = min{ggoé’“",%}. Then, with a probability of at least

1 —§/2, the following holds for any € X and p(w) € A:

Fop(@) = > 1[h> f(z,w) > h—nlp(w) <&

weN
Proof. From Chebyshev’s inequality, for any v > 0 and (z,w) € X x €, the following inequality holds:
V[gn (x, w)]

]P’(|gn(:r:,w) - ,u(g”)(:l:,w)\ >v) < 3 ,

where g, (x,w) = 1[h > f(z,w) > h —n] and pl9)(z, w) = E[g,(x, w)]. Hence, by replacing v with (§/(2|X x
Q)" Y%(V]g,(z, w)])}/?, with a probability of at least 1 — §/2, the following holds for any (z,w) € X' x

V[gn(a:, w)]

Vo/2lx x Q)

|gn($a w) - M(gn)(a:a ’I.U)| <

This implies that

V[gn(xv w)]

Vo/(2lx x Q)

Moreover, noting that g, (z,w) follows Bernoulli distribution, we get

Vigy(, w)] = Elgy (2, w))(1 — Elgy(z, w)]) < Elgy(, w)] = p9) (z, w). (A.2)

gn (@, w) < p9) (@, w) +

In addition, p(97) (2, w) can be expressed as

Furthermore, by using Taylor’s expansion, for any a < b it holds that
0(b) = @(a) + ¢(c)(b - a) < ®(a) + $(0)(b — a) < P(a) + (b - a),
where ¢ € (a,b). Thus, we obtain

n n
< . A3
O’o(.’l),’w) B 00,min ( )

Thus, by substituting (A.2) and (A.3) into (A.1), we have

" 20X x O
T, w) < + .
gn( ) 00,min 600,min

Hence, from the definition of 1, we get
§ &
g,,(a:,w)<§+ ZZE'

Therefore, for any p(w) € A, the following holds:

Fyp(@) = Z gy(@, w)p(w) < Z Ep(w) = €.

weN weN

plon) (@, w) <




By using Lemma A.1 and A.2, we prove Theorem 4.1.

Proof. Let § € (0,1) and B, = 2log(|X x Q|7?t?/(36)). Then, from Lemma A.1, with a probability of at least
1 —§/2 the following holds:

Lz, w) < f(z,w) <ux,w), "(z,w)eX xQ t>1. (A.4)
Thus, from the definition of Qt(w, w;n), it holds that

1[f (2, w) > h] < (2, w;n).

This implies that

= inf Z]l (z,w) > hlp(w) < inf Zﬂt(w,w;n)p(w):ugm(w;n).

p(w)eA p(w)eA "=
Therefore, noting that the definition of L;, we have
xeL = F(x) < ugF)(ac; n) < a. (A.5)

On the other hand, for any € X and p(w) € A, it holds that

> (e, w) > hip(w) + Fyp(@) = ) Af(@,w) > h—nlp(w).

weR weN

Moreover, from Lemma A.2, with a probability of at least 1 — §/2, the following holds:

> A[f(mw) > hlp(w) +£> > A[f(z,w) > h—nlp(w). (A.6)

weN weN

Thus, we get the following inequality:

inf <Z 1[f (x, w) > hlp(w) +€> =F(x)+¢> inf Z 1[f (x, w) > h — nlp(w). (A.7)

p(w)eA \ £ P)EA 20

Furthermore, from the definition of Q;(x, w;n), the following inequality holds:

1[f (2, w) > h =] = ly(z, w;n).

Therefore, we have

inf Z 1[f (z,w) > h — n)p( inf Z le(x, w;n)p(w) = l( )(:c;n). (A.8)
weR

p(w)eA p(w eA
Hence, by combining (A.7) and (A.8), we obtain
1 (@m) < P(a) + €.
Thus, from the definition of Hy, it holds that
reH,=a<F(z)+€f=a—-¢< F(x). (A.9)
Hence, from (A.5), (A.9) and the definition of e, (x), the following inequality holds:

<&
max eq (x) <¢

Finally, since both (A.4) and (A.6) hold with a probability of at least 1 — §, the following holds for any ¢ > 1:

P(ﬁlea;ea( M) =1-0



A.2. Proof of Theorem 4.2 and 4.3

In this section, we prove Theorem 4.2 and 4.3. First, we show related lemmas.

Lemma A.3. Let n > 0 and S; > 0. Suppose that the following holds for some T" > 1:
281 %0 1 (z,w) <n, Y(z,w) € X x Q. (A.10)
Then, Algorithm 1 terminates after at most T iterations.

Proof. From the definition of Q;(x, w; n), if Iy (2, w) > h—n, then Ip(x, w;n) = Gr(x, w;n) = 1. On the other
hand, noting that ur(z, w) — Ir(z,w) = 2ﬂ;~/20'T_1(CC,w) and (A.10), if ip(z, w) < h —n, then up(z, w) < h.
This implies that l7 (@, w;n) = tr(x, w;n) = 0. Thus, under (A.10), the following holds for any (x,w) € X xQ:

Iy (@, w;n) = dr(z, w;n).
Hence, from the definitions of l,EF) (z;n) and ugF) (z;7n), we have l,EF) (x;n) = u,EF)(a:;n). Therefore, for any
x € X, x satisfies x € Hy or © € Lp, i.e., Up = (). O

Lemma A.4. Let n > 0 and 3; > 0. Suppose that the following inequalities hold for some (x*, w*) € X x {2

o207 (2" w) < 3, (A.11)
o207 | (xF,w*) < n?/4. (A.12)
Then, (3.2) can be bounded as
- 1 o*n?
a1 (z*, w") < X217 oz P (_802(w*w*)> '
t—1 ’

Proof. First, we define the set B as
1]
B=1{b=(by,...,bgq) € {0,1}1 p(gl)feA;p(wj)bj >a
Moreover, for each b € B, let N® be a subset of {1,...,|Q|} satisfying
Vse N®) p =1.
Then, the following holds for any « € Uy:

Ey*[]l[l,EF)(:c;O\:v*,w*,y*) > o]

=Py [(1[l(, w1 |z, w*, y*) > B, ..., [l;(z, wq|z*, w*,y*) > b)) " € B

= ZIP’y*[]l[lt(w,w1|w*7w*7y*) > h]l = by,..., W[li(x, wq)|z*, w*,y") > h] = bjq]
beB

< Z]P’y*[vs e NO® 1[ly(z, ws|x*, w*,y*) > h] = by], (A.13)
bes

where l;(x, w;|x*, w*, y*) is the lower confidence bound of f(z, w;) after adding (z*, w*, y*) to {(x;, w;, yi) }i_;.
Next, for any N®), there exists s € N(® such that

li(z,ws,) < h—n. (A.14)
In fact, if I;(z, ws,) > h —n for any s € N® then we get
(]l[lt(mﬂ 11)1) >h— 7’}7 ceey ﬂ[lt(m7w|9|) >h— 77])T € Ba

which contradicts @ € U;. Furthermore, from Lemma 2 of [30], Py« [l;(x, ws, |2*, w*,y*) > h] can be calculated
as

\/‘7?71(33*7711*) + o2 y
|kt71((w,’UJ$b)7 (m*, w*))| (Mt_1($7wsb) — Bt

Py- [l (z, w, |2*, w*, y*) > h] = 01 (m, wg, |z, w*) — h) |,

(A.15)



where 041 (x, ws, |T*, w*) is the posterior variance of f(x,ws,) after adding (z*, w*,y*) to {(z;, ws, yi)}_,
Moreover, by using (A.14) we obtain
1/2 -
pe—1(x, ws,) — By o1 (T, ws, [T, w*) — h
= 1 (@ ws,) = 5,201 (@ws,) + 8o (@ ws,) = B o (@ wy, et w) — b
= Uz, ws,) + B, 2o (@, ws,) — B 2o (2, w2, w*) — h

< —n+ B2 (011 (mws,) — 01 (T, W, |27, WT)). (A.16)

In addition, the following three inequalities hold:

o< \/ (x*, w*) + 02, (A.17)
k-1 ((x, ws,,), (27, w"))| < 01 (@, ws, )01 (™, W") < oo(T, W, )or—1 (2", W*) < 0y (", W),
(A.18)
* * thl(wvw%)agfl(w*aw*) ao(wvab)Jgfl(w*vw*) Jgfl(w*vw*)
o-1(T, ws,) — 01—1(x, ws, [2", wW") < o2, (z*,w*) + o2 = o2 < o2 )
(A.19)

where the first, second and third inequalities in (A.18) can be derived from Holder’s inequality, monotonicity
of the posterior variance and the assumption maxz w)exxo o2(x,w) < 1, respectively. Similarly, the first
inequality in (A.19) can be derived from the equation (39) of [30]. Therefore, by substituting (A.16)—(A.19)
and (A.11) into (A.15), we obtain the following inequality:

Py« [li(x, ws, |2*, w*,y*) > h] < O ( (—7]/2)) , (A.20)

op—1(x*, w*)

Moreover, noting that the assumption (A.12) is equal to the condition 1 < oo, ' (x*,w*)(n/2), the right hand
side in (A.20) can be bounded as

o e e (T1/2)
o (W(—nﬂ)) =/_ d(2)dz

= o(2)dz
T item ey (1/2)
< z¢(z)dz

at_l(i*,w*) ("7/2)

= [—05(2)]2%(77/2)

1 a’n )
= ——¢ ——— | . A21
V2m R < 807y (%, w*) ( )
Finally, from (A.13), (A.20) and (A.21), Ey*[]l[l,EF)(a:;O\m*,w*,y*) > ] can be bounded as

B, (115 (z; 0|z, w*, y*) > o]
<> Py["s € NO A[ly(@, wi|z*, w*, y*) > h] = b,]

beB

<> Py [l (@, we, |, w*, y*) > h] = by,]
beB

= Z]P)y* [lt(wvwsb|w*7U’*7y*) > h]
beB

0_27,]2
< /*e p ( **>
bEZB 802&*1(33 , W )

0.2,'72 1 0.27,]2
- 18 5 p<8%1@ﬁwﬂ>‘ V2r P\ TR ()




Therefore, from the definition of a;—1(x*, w*), we have

a1 (", w*) = Z Ey*[ﬂ[lgF)(:r,;O\x*,w*,y*) > o]

xcU,
1 02,,72
R L LI <_
wgt v 2 80',52_1($*,’LU*)
1 0.2772 1 0.2,,72
— U2 ex <_) < a2 L o <_>
U] Vor P 802, (z*, w*) < %] Vor P 802, (z*,w*)

O

Lemma A.5. Let n > 0, 8; > 0 and v > 0. Also let (z;,w;) € X x Q be a maximum point of ai?l(w*,w*).
Assume that the following inequalities hold for some T > 1:

07208 (7, wr)By” < g (A.22)

o 20t_i(xr, wr) < 1°/4, (A.23)

o7y (@r, wr)Br < n*/4, (A.24)

1 Br — ___wet < log(|X|~*27 1% py271V/2r). (A.25)
9 08 PT 802, (zr,wr) 8 m

Then, Algorithm 1 terminates after at most T iterations.
Proof. From the definitions of a§1_)1 (z*, w*) and (@, w;), the following holds for any (z,w) € X x Q:

yor_1(z,w) < &(Tlll(l',’w) < a(lel(mTawT) = max{ar_1(x7, wr), yor_1 (T, wr)}. (A.26)

In addition, from (A.22), (A.23) and Lemma A.4, ap_1 (21, wr) can be bounded as

(@, wr) < | X[22 — oy (A.27)
aT— ex —_—— . .
T-1\L7,WT) = o p 80%71(wT,wT)

Thus, by substituting (A.27) into (A.26), we have

1 0.2,,72
_ < B Pt p— S — N .
Yor 1(3'37’111) S max {| | \/ﬁ exp 80%71(:1:T,wT) »YOT 1(ZCT,’U)T)

This implies that
o2

1 ~151/2 ppglel L ( 7
or—1(x, w) < max X|2 exXp | —
By ori(x,w) {7 PR o o\ T 5or (wrwn)

) 7511/2UT1($TawT)}~ (A.28)

On the other hand, (A.24) and (A.25) are equal to the following inequalities, respectively:

By 2or 1 (zr, wr) < n/2, (A.29)
2 2 X 7127|Q| 92-1,/9
exp ( 5 o ) < ¥ 1773 4 (A.30)
80’T71(wT>wT) T/

Hence, by combining (A.28), (A.29) and (A.30), we get ﬂqlﬂ/gaT_l(a:T, wr) < n/2. Therefore, from Lemma A.3,
we have Lemma A.5. O

Lemma A.6. Let n > 0 and §; > 0. Assume that (A.11) and (A.12) hold for some (z*,w*) € X x Q. Then,
MILE;_;(x*,w™) can be bounded as

MILE, (2", w") < | X x Q| — o
e Var P\ 8ot (@ w) )



Proof. From Lemma 2 of [30] and the definition of MILE;_; (z, w), the following holds:

MILE;_;(z*, w™*)
= > Byl wle’wyt) > k] - {(@w) € Uy x Q| (2, w) > h —n}]

(2, w)eU; xQ
= Z Py« [li(z, w|x*, w*,y*) > h] — {(z,w) € Uy x Q| l;(z,w) > h —n}|
(z,w)eU xQ
2 * * 2
¢0t71(w ,w*) + o s
< ) (-1 (z,w) — B 201 (m, w]x*, w*) — h)
(ac,w)zegfth |kt71((w,w),(:c*,w*))| ' ! !

—{(z,w) € Uy x Q| ly(x,w) > h —n}.

Yot et w) + o "
- Z P o (@) (@ w0")] (pi—1(z,w) — B, o1 (z, wz*, w*) — h) | — [l;(x,w) > h — 1)
(z,w)eU; xQ ’

(A.31)

Next, for each (x,w) € Uy x €, we consider the two cases of l;(z,w) > h —n and Li(x,w) < h—n. If
li(x,w) > h — n, then the following inequality holds:

\/0752*1(90*’“’*”02 (pre—1 (z, w) — B}
|ki—1((z, w), (z*, w*))| pi—1(T, w X

<0< 1 e ( sl >
—exp|l————5—7—- .
= Ve PSR w)
On the other hand, if I;(x, w) < h —n, then using (A.15)—(A.21) we have

01 (m, wlz*, w*) — h) | — Ul(z,w) > h — 1)

v
|kt71((w= w)7 (w*,w*))\

2 * * 2

\/at_l(ac ,W*) + o ) 1 o2n2

/2 % % n

=& _ — _ —h)| < —_— .
oo 1 (@), (2, *m(ut 1(x,w) — B, "o (z, w|x™, w") )| < exp( . ))

P (-1 (z,w) — B o1 (@, wla*, w*) — h) | — W[ly(z,w) > h— 1]

Therefore, in both cases, the following inequality holds:

Vo (@, w) + o2 (11 (2, w) — B/
|ke—1((z, w), (z*, w*))| pr—1(, w X

o2
—— | . A.32
< 7o (e 432

Thus, by substituting (A.32) into (A.31), we obtain

MILE, (2", w") < > ex L = |U; x Q] —— ex L
t—1 ) TT p 80 Sz, w*) = Ut o P t1($*7’w*)

(z,w)eUs xQ
0.2,,72
<12 x 0o )
V2 8oy (@, w*)

i 01 (m, wz*, w*) — h) | — Ul(z,w) > h — 1)

Lemma A.7. Let n > 0, 5 > 0, v > 0 and 4 > 0. Also let (x;,w;) € X X  be a maximum point of
a@l (z*, w*). Assume that the inequalities (A.22), (A.23) and (A.24) hold for some T > 1. In addition, assume
that the following inequalities hold:

2 2

1 n-o o |Q, xo—

~1 R — R P D U Ve D R VD) A.33
5 log Ar R —— og(|X| nyy ), (A.33)
Liogs ———jﬁi——<b(Wer17*V%) (A.34)
2108 B = S ) g my : :

Then, Algorithm 1 terminates after at most T iterations.



Proof. From the definition of aﬁ)l(m*, w*) and (x4, wy), the following holds for any (z,w) € X x Q:

vior—1(z,w) < ARMILEr_ (2, w) < af | (z,w) < af | (xr, wr)
= max{ar_1(zr,wr), YRMILE7_;(x7,wr)}. (A.35)

Furthermore, from (A.22), (A.23) and Lemma A.6, we have
YRMILEr_1 (7, wr) = max{yMILEy_; (1, wr),vyor—1(xr, wr)}

1 o?n? _
< max VIXxQIEeXp ——————— |, Yyor—1(xT, WT) ¢ . (A.36)

80%71 (wT7 wT)
Moreover, from (A.24) and (A.34), we get the following inequalities:
1/2
or— 1(:cT,wT) < ﬁT /2, (A37)

1 a n -1/2 ~
—_ ———— | < 2. A.38
7 (o) <7 (A3

Thus, by substituting (A.37) and (A.38) into (A.36), we obtain

|X x Q]

AYRMILE 1 (27, wr) < 7387 *n/2. (A.39)

Similarly, from (A.22), (A.23), (A.33) and Lemma A.4, ar_; (@, wr) can be bounded as

0'2 2 o
ar_i(@r,wr) < [X]2% —— exp (—”) <7387 *n/2. (A.40)

80%—1 (mTa wT)

1
V21
Hence, by combining (A.39) and (A.40) into (A.35), we get

Yior-i(e,w) <1387 *n/2.
This implies that 26;/ 20T_1(:c, w) < 7. Therefore, from Lemma A.3, we have Lemma A.7. O

Lemma A.8. Let (z1,w),...,(x:, w;) be selected points, and define C; = 2/log(1+0~2). Then, there exists
a natural number ¢’ < ¢ such that

Ciky

o7y (Ty,wy) < :

Proof. From Lemma 5.3 in [23], the mutual information I(y4; f) can be expressed as

I(ya; f Zlog (1407262 | (z;, w;)). (A.41)
Similarly, from Lemma 5.4 in [23], 02 ; (z;, w;) can be bounded as
log(1+ 07202 | (z;,w;))
2 e i—1\®i, Wi A.42
o1 (zi, w;) < log(1+o2) ( )
Hence, by using (A.41) and (A.42), we get
ZU 1 :Bz wz) #I@/t.f.) < Cl'“;t- (A43)
— " ’ ~ log(1+072) =
Next, we define ¢’ as t' = argmin, .;, 07 | (@;,w;). Then, it follows that
¢
tot, 1y, wy) < Z (@, w;). (A.44)
Therefore, by combining (A.43) and (A.44), we have the desired inequality. O

Finally, using Lemma A.5, A.7 and A.8, we prove Theorem 4.2 and 4.3.



Proof. From Lemma A.8 and monotonicity of 3;, for any ¢ > 1, there exists a natural number ¢’ < ¢ such that

—_2,1/2 —9,1/2
o 26/ Ci ke < zﬁt/ Chky

0-_20'1%’71(mt’7wt')6tl’ 2 S P ~ n 5
_QC
o %0h_y(p,wy) < %
(A.45)
C1 B8y C

U?’fl(wtﬂwt’)ﬁt' S 1ﬂtt it S 1ftlit7
1 17202 1 T77202 1 T772 2
—logfBy — ————— < =log By — < -1lo .
3108~ e ) = 2198 T 5o, < 31080 T e,

Hence, from (A.45), if the inequality conditions in Theorem 4.2 hold, then the inequality conditions in Lemma
A5 also hold for some T' < T'. Therefore, from Lemma A.5, Algorithm 1 terminates after at most T iterations,
i.e., Theorem 4.2 holds. By using the same argument, Theorem 4.3 can also be proved. O

A.3. Proof of Lemma 3.1 and 3.2

First, we prove Lemma 3.1

Proof. From GP properties, the posterior mean y; 1 (z, w|z*,w*,y*) and the posterior variance o7_, (z, w|z*, w*)
of f(z,w) after adding (z*, w*, y*) can be written as follows (see, e.g., [29]):

* N ktfl((wi)a(m*vw*))
,ut—l(m7w|m W L,y )*,u’t—l(a%w) U?_I(CB*,’UJ*)"‘U2

ki (2, w), (2%, w*))
2 * *\ 2 _ M1 ) ) )
O't—l(w’w‘x , W ) - Ot—l(m’w) 0371(113*7’10*) —|—02

" = (2", w")),

*

Thus, ;(x, w|z*, w*,y*) is a linear function with respect to (w.r.t.) y*. Hence, the indicator function
1l (z, wj|z*, w*,y*) > h] is a piecewise constant function w.r.t. y*, where the breakpoint is y* = r;. Therefore,
for any s € {1,...,|Q| + 1}, the following holds:
(:ﬂ[lt(wa ’l.U1|CU*,’UJ*, C) > h]v ceey ]l[lt(wval\ ‘ZB*, w*ﬂ C) > hDT
= (I[ly(z, w1 |z, w*, ) > B, ..., Ul(z, wo|z*, w*, ) > h])", e €R,.
This implies that
7 (@02 w* ) = 117 (@; )", w, ), Ve, € Ry

Hence, using this we have
E,- (1117 (a; 0]*, w*, y*) > af]

- /]l[lt(F)(-’mOW*,w*vy*) > aolp(y”)dy”
[Q+1
F * * ok * *
= / 1017 (; 0]2*, w*, y*) > alp(y*)dy
s=1 ER

[Q+1

=3 1 (@ 0l w* e) > a]/ p(y")dy”

s=1 y*ER;
12/ +1
= Z P(y* € RS)II[ZEF)(:B;O\x*,w*,cS) > al.

s=1

Next, we prove Lemma 3.2.
Proof. From the definition of lgF)(:n; Olz*, w*, cs), ZEF) (z; 0lx*, w*, ¢s) can be expressed as

1 z; 0z, w*, ¢c;) = inf 1l (z, w|x*, w*, cs) > hlp(w).
i (x;0] ) p(w)esze; [l¢(z, w] ) > hlp(w)

Moreover, since p*(w) € A, the following holds:

inf 1l (x, w|x*, w*, cs) > h 1l (x, w|x*, w*, cs) > h
p(w)eAZ;Qt \ ) > hlp( wZEQt | ) > hlp*(w).



Table 2: Parameter setting in synthetic data experiments

L1-Uniform L1-Normal L2-Uniform L2-Normal
7 =100, a = 0.62 h =100, a = 0.5, h =100, a = 0.5, h =100, a = 0.5,
0® =107*, o} = 1300?, 0® =107%, o} = 1300?, 0% =107, 0% = 13007, 0% =107%, % = 13007,
Booth L=4,8"=2 =065 | L=4,8"7=2¢e=065 || L=4,8/"=2 =005 | L=4,8/2=2€e=01,
Ly = —10, Uy = 10, Ly = —10, Uy = 10, Ly = —10, Uy = 10, Ly = —10, Uy = 10,
Ly=—10, Uy = 10 Ly=—10, Uy = 10 Ly =—10, Uy = 10 Ly=—10, Uy = 10
h =5 aa=0.53 h =5, a=0.53, h =5, a=0.5, h =5, a=0.5,
0% =10"*, 0% = 507, 0% =10"*, o7 = 507, 0% =10"*, o} = 507, 0% =10"*, o} = 507,
Matyas L=4,8"2=2 =015 | L=4,8"=2€e=015 || L=4,8/=2 =005 | L=4,8/>=2€e=01,
Ly = —10, Uy = 10, L, = —10, Uy = 10, Ly = —10, Uy = 10, Ly = —10, Uy = 10,
Ly=—10, Uy = 10 Ly =—-10, Uy = 10 Ly=—10, Uy = 10 Ly=—10, Uy = 10
h=1,a=057 h=1,a=059, h=2 a=05, h=1, =055,
o2 =104, O"2f =202, 02 =105, 0"2f =202, 02 =105, a? =202, 02 =105, O"2f =202,
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Figure 4: Average F-score over 50 simulations with four benchmark functions when the distance function and
reference distribution are L2-norm and Uniform, respectively.

Therefore, we have

lgF)(w;O|w*,w*,cs) < Z 1l (e, wlz*, w*, cs) > hlp*(w).
weN

Hence, if the inequality assumption in Lemma 3.2 holds, then we get lgF) (x; Olx*, w*, cs) < a. This implies
that 1[I") (x; 0|z*, w*, ¢;) > a] = 0. O

B. Additional Experiments
B.1. Synthetic and Simulation Experiments in the L2-norm Setting

In this section, we performed the same experiment as in Subsection 5.1 and 5.3 under the setting that the
distance function is L2-norm. Similarly, we used Uniform and Normal as the reference distribution. Here, the
parameters used in the synthetic data experiments are listed in Table 2. On the other hand, the same parameters
as in Subsection 5.3 were used in infection simulation experiments. Under this setup, we took one initial point
at random, and ran the algorithms until the number of iterations reached 300 (resp. 100) in the synthetic data
(resp. infection simulation) experiments. We performed 50 Monte Carlo simulations and obtained the average
F-score. From Figures 4 and 5, it can be confirmed that our proposed methods outperform other existing
methods as well as the results of synthetic data experiments using L1-norm as the distance function. From
Figure 6, it can also be confirmed that the same results as in Subsection 5.3 are obtained in infection simulation
experiments.

B.2. Computation Time Experiments in the Other Benchmark Function Setting

In this section, we performed the same experiment as in Subsection 5.2 for the Matyas, McCormick and
Styblinski-Tang benchmark functions. We evaluated the computation time of (3.2) when we performed the
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Figure 6: Average F-score over 50 simulations in the infection control problem when the distance function is
L2-norm.

same experiment as in Subsection 5.2 using Proposed1_0.01 and Proposed2_0.01. Here, as for the parameter
settings, we considered only the case of L1-Normal in Table 2. Under this setup, we took one initial point at
random and ran the algorithms until the number of iterations reached to 300. Furthermore, for each trial ¢, we
evaluated the computation time to calculate (3.2) for all candidate points (x*, w*) € X x €, and calculated the
average computation time over 300 trials. From Tables 3, 4 and 5, it can be confirmed that the same results as
in Subsection 5.2 are obtained in the three benchmark function settings.

B.3. Hyperparameter Sensitivity in the Proposed Acquisition Function

In this section, we evaluated how the performance is affected by the hyperparameter v in the proposed
acquisition function. We calculated the F-score for the cases with acquisition functions Proposedl_y and Pro-
posed2_y when we performed the same experiment as in Subsection 5.1 for Booth, Matyas, McCormick and
Styblinski-Tang functions. Here, Proposedl_y and Proposed2_v respectively represent the acquisition functions
agl)(w*,w*) and a?)(az*,w*) with the parameter v, and we considered v as 0, 10795, 10~', 1072, 103 and
10~%. In this experiment, as for the parameter settings, we considered only the case of L1-Uniform in Table 2.
Under this setup, we took one initial point at random and ran the algorithms until the number of iterations
reached 300 (or 200). We performed 50 Monte Carlo simulations and calculated the average F-score.

From Figure 7, it can be confirmed that the acquisition function does not work for all benchmark functions
when v = 0. The reason is that a,(x*, w*) was zero for all (z*, w*) € X x Q when the number of data was small.
Furthermore, when « > 0, it can be seen that the performance of Proposedl_y decreases as -y increases. One
reason is that although agl)(m*, w™) is closer to uncertainty sampling (US) as v becomes large, US is not the
acquisition function for efficiently estimating H;. On the other hand, it can be confirmed that the performance
of Proposed2_v is not necessarily better when ~ is smaller. From the definition of Proposed2_y, when ~ is large,



Table 3: Computation time (second) for the Matyas function setting

Naive L1 L2 L3 (10-7) | L3 (10°%) | L3 (10 1)
Proposed1_0.01 || 112403.30 £ 24588.33 | 6211.88 +1514.06 | 1297.19+ 726.31 | 32.12+7.36 | 32.76 £ 7.18 | 33.25 £ 7.06
Proposed2_0.01 98478.43 £ 19995.68 | 5504.84 £ 1362.62 | 1831.17 £ 1109.59 | 32.86 &+ 5.43 | 37.50 £ 3.58 | 38.24 +4.90

Table 4: Computation time (second) for the McCormick function setting

Naive L1 L2 L3 (107%) L3 (1079) L3 (10712)
Proposed1_0.01 || 83608.24 + 39551.78 | 4692.96 + 2274.72 | 1094.40 + 523.81 | 39.66 £6.27 | 41.25+6.20 | 42.74 + 6.86
Proposed2_0.01 | 79782.95 £ 39221.70 | 4383.04 & 2286.23 | 1525.80 & 931.80 | 49.67 & 10.33 | 56.79 £ 17.54 | 62.59 & 23.83

a§2) (z*,w*) behaves similarly to RMILE. RMILE is the acquisition function that works to efficiently identify
(z,w) that satisfies f(x,w) > h. However, since F(z) is given as the function of 1[f(x,w) > h], as a result,
RMILE also works to efficiently estimate H;. This is one of the reasons why Proposed2_vy sometimes has good
performance even at large .



Table 5: Computation time (second) for the Styblinski-Tang function setting

Naive

L1

L2

L3 (10 %)

L3 (10°5)

L3 (10-12)

Proposed1.0.01 || 118443.10 4+ 16290.13

6297.18 £+ 1039.76

900.67 £ 698.84

44.88 £+ 18.66

47.32 £ 20.67

48.35 +21.82

Proposed2_0.01 || 96731.93 £ 25845.16

5240.58 +1516.16

686.64 + 796.10

26.77 +£10.92

27.42 £11.87

28.25 £12.78
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Figure 7: Difference in average F-score for different hyperparameters with four benchmark functions when the

distance function and reference distribution are L1-norm and Uniform, respectively.



