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1 Connecting variance of Gumbel random vari-
ables and temperature of Gibbs models

We focus on the Gumbel distribution with zero mean, which is described by its
a double exponential cumulative distribution function

G(t) = P (γ(y) ≤ t) = e−e
−(t+c)

(1)

where c ≈ 0.5772 is the Euler-Mascheroni constant.
We will show that then one obtains the following identity:

e
µw(x,y)
σ(x) = Pγ∼g[y

∗ = y] (2)

, when
y∗ = argmax

ŷ
{µw(x, ŷ) + σ(x)γ(ŷ)}. (3)

Let us define: Ẑ(µ, σ) =
∑
y∈Y e

µ(x,y)
σ(x) and Z(µ) =

∑
y∈Y e

µ(x,y)

Theorem 1. Let γ = {γ(y) : y ∈ Y } be a collection of i.i.d. Gumbel random
variables with cumulative distribution function (1). Then, the random variable
maxy∈Y {µ(x,y)σ(x) + γ(y)} is distributed according to the Gumbel distribution whose

mean is the log-partition function logẐ(µ, σ).

Proof. We denote by F (t) = P (γ(y) ≤ t) the cumulative distribution function
of γ(y).

The independence of γ(y) across y ∈ Y implies that:

Pγ(max
y∈Y
{µ(x, y)
σ(x)

+ γ(y)} ≤ t) = Pγ(∀y∈Y {
µ(x, y)

σ(x)
+ γ(y)} ≤ t)

= Pγ(∀y∈Y {γ(y)} ≤ t−
µ(x, y)

σ(x)
)

=
∏
y∈Y

F (t− µ(x, y)

σ(x)
)
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The Gumbel, Frechet, and Weibull distributions, used in extremal statistics,
are max-stable distributions: the product

∏
y∈Y F (t−

µ(x,y)
σ(x) ) can be described

in terms of F(·) itself. Under the said setting, the double exponential form of
the Gumbel distribution yields the result:

∏
y∈Y

F (t− µ(x, y)

σ(x)
) = e−

∑
y∈Y e

−(t−µ(x,y)
σ(x)

+c)

= e−e
−(t+c−log Ẑ(µ,σ))

= F (t− log Ẑ(µ, σ))

Corollary 1. Let γ = {γ(y) : y ∈ Y } be a collection of i.i.d. Gumbel random
variables with cumulative distribution function (1). Then, for all ŷ:

e
µ(x,y)
σ(x)

Ẑ(µ, σ)
= Pγ(ŷ = argmax

y∈Y
{µ(x, y) + σ(x)γ(y)})

Proof. For Gumbel random variables with cumulative distribution function (1)
it holds:

G′(t) = e−tG(t) = e−te−e
−t

= e−t−e
−t

= e−(t+e
−t) = g(t) (4)

g(t) is the probability density function of the standard Gumbel distribution.
We note that:

Pγ(max
y∈Y
{µ(x, y) + σ(x)γ(y)}) = σ(x)

σ(x)
Pγ(max

y∈Y
{µ(x, y) + σ(x)γ(y)})

= σ(x)Pγ(max
y∈Y
{µ(x, y)
σ(x)

+ γ(y)})

From Theorem 1, we have Eγ [maxy∈Y {µ(x,y)σ(x) + γ(y)}] = log Ẑ(µ, σ)

Putting it together we have that: Eγ(maxy∈Y {µ(x, y)+σ(x)γ(y)}) = σ(x) log Ẑ(µ, σ).
We can derive w.r.t. some µ′(x, y).

We note that by differentiating the right hand side we get:

∂(σ(x) log Ẑ(µ, σ))

∂µ′(x, y)
=
e
µ′(x,y)
σ(x)

Ẑ(µ, σ)

Differentiate the left hand side: First, we can differentiate under the integral
sign:

∂

∂µ′(x, y)

∫
IR|Y|

max
y∈Y
{µ(x, y)+σ(x)γ(y)}dγ =

∫
IR|Y|

∂

∂µ′(x, y)
max
y∈Y
{µ(x, y)+σ(x)γ(y)}dγ
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We can write a subgradient of the max-function using an indicator function (an
application of Danskin’s Theorem):

∂

∂µ′(x, y)
maxy∈Y {µ(x, y) + σ(x)γ(y)} = 1(ŷ = argmax

y∈Y
{µ(x, y) + σ(x)γ(y)})

The corollary then follows by applying the expectation to both sides of the last
equation.

An alternative proof of the preceding corollary can also be made. We
begin by noting that: Pγ(ŷ = argmaxy∈Y {µ(x, y) + σ(x)γ(y)}) = Pγ(ŷ =

argmaxy∈Y {µ(x,y)σ(x) + γ(y)}). Then,

Pγ(ŷ = argmax
y∈Y
{µ(x, y) + σ(x)γ(y)}) =

∫
t

G′(t− µ(x, y)

σ(x)
)
∏
ŷ 6=y

G(t− µ(x, ŷ)

σ(x)
)dt

? =

∫
t

e−(t−
µ(x,y)
σ(x)

)G(t− µ(x, y)

σ(x)
)
∏
ŷ 6=y

G(t− µ(x, ŷ)

σ(x)
)dt

= e
µ(x,y)
σ(x)

∫
t

e−t
∏
ŷ

G(t− µ(x, ŷ)

σ(x)
)dt

= e
µ(x,y)
σ(x) ∗ constant

Therefore the probability that ŷ maximizes µ(x, y)+σ(x)γ(y) is proportional
to e

µ(x,y)
σ(x) .
? is due to the probability density function of the Gumbel distribution as

shown in (4).

2 Proof of Corollary 2
Recall that we defined the prediction y∗w,γ =

argmax
ŷ

{∑
α∈A

µu,α(x, ŷα) +

n∑
i=1

σv(x)γi(ŷi)
}

(5)

The loss-perturbed prediction y∗w,γ(ε) =

argmax
ŷ

{∑
α∈A

µu,α(x, ŷα) +

n∑
i=1

σv(x)γi(ŷi) + ε`(y, ŷ)
}

(6)

w = (u, v) are the learned parameters.
Our aim is to prove the following gradient steps: ∂

∂uEγ [`(y, y
∗
w,γ)] =

lim
ε→0

1

ε
Eγ
[ ∑
α∈A

(∇µu,α(x, y∗α(ε))−∇µu,α(x, y∗α))
]

(7)
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and ∂
∂vEγ [`(y, y

∗
w,γ)] =

lim
ε→0

1

ε
Eγ
[ n∑
i=1

∇σv(x)
(
γi(y

∗
i (ε))− γi(y∗i )

)]
. (8)

When we use the shorthand notation y∗α = y∗w,γ,α and y∗i = y∗i,w,γ and
similarly y∗α(ε) = y∗w,γ,α(ε) and y∗i (ε) = y∗i,w,γ(ε) and recall that w refers to u
and v.

The main challenge is to show that G(u, v, ε), as defined in Equation (11), is
differentiable, i.e., there exists a vector

∑
α∇uµu,α(x, y∗u,v,γ,α(ε)) such that for

any direction z, its corresponding directional derivative limh→0
G(u+hz,v,ε)−G(u,v,ε)

h
equals Eγ∼G [

∑
α∇uµu,α(x, y∗u,v,γ,α(ε))>z].

Similarly, we will show that there exists a vector
∑n
i=1∇vσv(x)γi(y∗i,v,u,γ(ε))

such that for any direction z, its corresponding directional derivative
limh→0

G(u,v+hz,ε)−G(u,v,ε)
h equals Eγ∼G [

∑n
i=1∇vσv(x)γi(y∗i,u,v,γ(ε))>z].

This challenge is addressed in Theorem 2, which also utilizes Lemma 1. This
lemma relies of the discrete nature of the label space, ensuring that the optimal
label does not change in the vicinity of y∗u,v,γ(ε). The proof concludes by the
Hessian of G(u, v, ε) symmetric entries in Corollary 2.

Lemma 1. Assume {µu,α(x, yα)} is a set of continuous functions of u for α ∈ A
and assume σv(x) is a smooth function of v. Let γi(yi) be i.i.d. random variables
with a smooth probability density function G. Assume that the loss-perturbed
maximal arguments y∗

u+ 1
n z,v,γ

(ε) and y∗
u,v+ 1

n z,γ
(ε), as defined in Equation (6),

are unique for any z and n. Then, there exists n0 such that for n ≥ n0 there
holds

y∗u+ 1
n z,v,γ

(ε) = y∗u,v,γ(ε) (9)

and there exists n1 such that for n ≥ n1 there holds

y∗u,v+ 1
n z,γ

(ε) = y∗u,v,γ(ε). (10)

Proof. We will first prove Equation (9). Let fn(ŷ) =
∑
α µu+ 1

n z,α
(x, ŷα) +∑n

i=1 σv(x)γi(ŷi) + ε`(y, ŷ) so that y∗
u+ 1

n z,v,γ
(ε) = argmaxŷ fn(ŷ). Also, let

f∞(ŷ) =
∑
α µu,α(x, ŷα)+

∑n
i=1 σv(x)γi(ŷi)+ε`(y, ŷ) so that y

∗
u,v,γ(ε) = argmaxŷ f∞(ŷ).

Since fn(ŷ) is a continuous function then maxŷ fn(ŷ) is also a continuous function
and limn→∞maxŷ fn(ŷ) = maxŷ f∞(ŷ). Since maxŷ fn(ŷ) = fn(y

∗
u+ 1

n z,v,γ
(ε)) is

arbitrarily close to maxŷ f∞(ŷ) = f∞(y∗u,v,γ(ε)), and y∗u,v,γ(ε), y∗u+ 1
n z,v,γ

(ε) are
unique then for any n ≥ n0 these two arguments must be the same, otherwise
there is a δ > 0 for which |f∞(y∗u,v,γ(ε))− fn(y∗u+ 1

n z,v,γ
(ε))| ≥ δ.

To prove Equation (10), one can define
f ′n(ŷ) =

∑
α µu,α(x, ŷα) +

∑n
i=1 σv+ 1

n z
(x)γi(ŷi) + ε`(y, ŷ) and follow the

same steps to show that for any n ≥ n1 it holds that f ′∞(y∗u,v,γ(ε)) and
f ′n(y

∗
u,v+ 1

n z,γ
(ε)) are arbitrarily close and since y∗

u,v+ 1
n z,γ

(ε) and y∗u,v,γ(ε) are
unique then y∗

u,v+ 1
n z,γ

(ε) = y∗u,v,γ(ε).
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Theorem 2. Assume that Eγ∼G‖∇uµu,α(x, yα)‖ ≤ ∞, and that Eγ∼G‖∇vσv(x)‖ ≤
∞. Define the prediction generating function G(u, v, ε) =

Eγ∼G
[
max
ŷ∈Y

{∑
α∈A

µu,α(x, ŷα) +

n∑
i=1

σv(x)γi(ŷi) + ε`(y, ŷ)
}]
. (11)

If the conditions of Lemma 1 hold then G(u, v, ε) as defined in Equation (11) is
differentiable and

∂G(u, v, ε)

∂u
= Eγ

[∑
α

∇uµu,α(x, y∗α(ε))
]

(12)

∂G(u, v, ε)

∂v
= Eγ

[ n∑
i=1

∇σv(x)γi(y∗i (ε))
]

(13)

Proof. We will first prove Equation (12). Let fn(ŷ) =
∑
α µu+ 1

n z,α
(x, ŷα) +∑n

i=1 σv(x)γi(ŷi) + ε`(y, ŷ) as in Lemma 1.
The proof builds a sequence of functions {gn(z)}∞n=1 that satisfies

lim
h→0

G(u+ hz, v, ε)−G(u, v, ε)
h

= lim
n→∞

Eγ∼G [gn(z)] (14)

Eγ∼G [ lim
n→∞

gn(z)] = Eγ∼G [
∑
α

∇uµu,α(x, y∗u,v,γ,α(ε))>z]. (15)

The functions gn(z) correspond to the loss perturbed prediction y∗u,v,γ(ε) through
the quantity

∑
α µu+ 1

n z,α
(x, ŷα) +

∑n
i=1 σv(x)γi(ŷi) + ε`(y, ŷ). The key idea we

are exploiting is that there exists n0 such that for any n ≥ n0 the maximal
argument y∗

u+ 1
n z,v,γ

(ε) does not change.
Thus, let

gn(z) ,
maxŷ∈Y fn(ŷ)−maxŷ∈Y f∞(ŷ)

1/n
(16)

We apply the dominated convergence theorem on gn(z), so that limn→∞ Eγ∼G [gn(z)] =
Eγ∼G [limn→∞ gn(z)] in order to prove Equations (14,15). We note that we may
apply the dominated convergence theorem, since the conditions Eγ∼G‖∇uµu,α(x, yα)‖ ≤
∞, and Eγ∼G‖∇vσv(x)‖ ≤ ∞ imply that the expected value of gn is finite (We
recall that fn is a measurable function, and note that since ŷ ∈ Y is an element
from a discrete set Y , then gn is also a measurable function.).

From Lemma 1, the terms `(y, y∗) and
∑n
i=1 σv(x)γi(y

∗
i ) are identical in both

maxŷ∈Y fn(ŷ) and maxŷ∈Y f∞(ŷ). Therefore, they cancel out when computing
the difference maxŷ∈Y fn(ŷ)−maxŷ∈Y f∞(ŷ). Then, for n ≥ n0:

max
ŷ∈Y

fn(ŷ)−max
ŷ∈Y

f∞(ŷ) =
∑
α

µu+ 1
n z,α

(x, y∗α(ε))−
∑
α

µu,α(x, y
∗
α(ε))

and Equation (16) becomes:

gn(u) =

∑
α µu+ 1

n z,α
(x, y∗α(ε))−

∑
α µu,α(x, y

∗
α(ε))

1/n
. (17)
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Since {µu,α(x, yα)} is a set of continuous functions of u , then limn→∞ gn(z) is
composed of the derivatives of µu,α(x, y∗α(ε)) in direction z, namely, limn→∞ gn(z) =∑
α∇uµu,α(x, y∗α(ε))>z.
We now turn to prove Equation (13).
Let f ′n(ŷ) =

∑
α µu,α(x, ŷα) +

∑n
i=1 σv+ 1

n z
(x)γi(ŷi) + ε`(y, ŷ) as in Lemma 1.

The proof builds a sequence of functions {g′n(z)}∞n=1 that satisfies

lim
h→0

G(u, v + hz, ε)−G(u, v, ε)
h

= lim
n→∞

Eγ∼G [g′n(z)] (18)

Eγ∼G [ lim
n→∞

g′n(z)] = Eγ∼G [
n∑
i=1

∇vσv(x)γi(y∗i,u,v,γ(ε))>z]. (19)

The functions g′n(z) correspond to the loss perturbed prediction y∗u,v,γ(ε) through
the quantity

∑
α µu,α(x, ŷα) +

∑n
i=1 σv+ 1

n z
(x)γi(ŷi) + ε`(y, ŷ).

As before, we are exploiting the fact that there exists n1 such that for any
n ≥ n1 the maximal argument y∗

u,v+ 1
n z,γ

(ε) does not change.
Thus, let

g′n(z) ,
maxŷ∈Y f

′
n(ŷ)−maxŷ∈Y f

′
∞(ŷ)

1/n
(20)

We apply the dominated convergence theorem on g′n(z), so that limn→∞ Eγ∼G [g′n(z)] =
Eγ∼G [limn→∞ g′n(z)] in order to prove Equations (18,19), with the same justifi-
cation as before for the expected value of g′n(z) being finite.

From Lemma 1, the terms `(y, y∗) and
∑
α µu,α(x, y

∗
α) are identical in both

maxŷ∈Y f
′
n(ŷ) and maxŷ∈Y f

′
∞(ŷ).

Therefore, they cancel out when computing the difference maxŷ∈Y f
′
n(ŷ)−

maxŷ∈Y f
′
∞(ŷ). Then, for n ≥ n1 Equation (20) becomes:

g′n(u) =

∑n
i=1 σv+ 1

n z
(x)γi(y

∗
i (ε))−

∑n
i=1 σv(x)γi(y

∗
i (ε))

1/n
. (21)

Since σv(x) is a smooth function of v, then limn→∞ g′n(z) is composed
of the derivatives of σv(x)γi(y∗i (ε)) in direction z, namely, limn→∞ g′n(z) =∑n
i=1∇vσv(x)γi(y∗i (ε))>z.

Corollary 2. Under the conditions of Theorem 2, G(u, v, ε) as defined in Equa-
tion (11), is a smooth function and ∂

∂uEγ [`(y, y
∗
w,γ)] =

lim
ε→0

1

ε
Eγ
[ ∑
α∈A

(∇µu,α(x, y∗α(ε))−∇µu,α(x, y∗α))
]

(22)

and ∂
∂vEγ [`(y, y

∗
w,γ)] =

lim
ε→0

1

ε
Eγ
[ n∑
i=1

∇σv(x)
(
γi(y

∗
i (ε))− γi(y∗i )

)]
. (23)

6



Proof. We will first prove Equation (22). Since Theorem 2 holds for every
direction z:

∂G(u, v, ε)

∂u
= Eγ

[∑
α

∇uµu,α(x, y∗α(ε))
]
.

Adding a derivative with respect to ε we get:

∂

∂ε

∂G(u, v, 0)

∂u
=

lim
ε→0

1

ε
Eγ
[∑

α

∇uµu,α(x, y∗α(ε))−
∑
α

∇uµu,α(x, y∗α)
]

The proof follows by showing that the gradient computation is apparent in
the Hessian, namely Equation (22) is attained by the identity ∂

∂u
∂G(u,v,0)

∂ε =
∂
∂ε
∂G(u,v,0)

∂u .
Now we turn to show that ∂

∂u
∂G(u,v,0)

∂ε = ∇uEγ [`(y, y∗w,γ)]. Since ε is a real
valued number rather than a vector, we do not need to consider the direc-
tional derivative, which greatly simplifies the mathematical derivations. We
define fn(γ, ŷ) ,

∑
α µu,α(x, ŷα) + σv(x)

∑n
i=1 γi(ŷi) +

1
n`(y, ŷ) and follow the

same derivation as above to show that ∂G(u,v,0)
∂ε = Eγ [`(y, y∗w,γ)]. Therefore

∂
∂u

∂G(u,v,0)
∂ε = ∇uEγ [`(y, y∗w,γ)].

We now turn to prove Equation (23).
Since Theorem 2 holds for every direction z:

∂G(u, v, ε)

∂v
= Eγ

[ n∑
i=1

∇vσv(x)γi(y∗i (ε))
]
. (24)

Adding a derivative with respect to ε we get:

∂

∂ε

∂G(u, v, 0)

∂v
=

lim
ε→0

1

ε
Eγ
[ n∑
i=1

∇vσv(x)γi(y∗i (ε))−
n∑
i=1

∇vσv(x)γi(y∗i )
]

(25)

Following the above steps, it holds that ∂
∂v

∂G(u,v,0)
∂ε = ∇vEγ [`(y, y∗w,γ)]. Equa-

tion (23) is attained by the Hessian symmetric entries ∂
∂v

∂G(u,v,0)
∂ε = ∂

∂ε
∂G(u,v,0)

∂v ,
when considering Equation (25).

3 Training and architecture details
Both experiments are run on NVIDIA Tesla K80 standard machine.
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3.1 Bipartite matching
Training We set maximum of 2000 training epochs, and deploy early stopping
with patience of 50 epochs.

Our signal embedding network µ is trained with ADAM optimizer with
learning rate (lr) = 0.1 and default parameters. The noise variance network σ is
trained with Stochastic Gradient Descent optimizer, with lr=1e-6.

Hyper-parameters We set epsilon to -12. To escape zero gradients when
loss is positive, we attempt increasing epsilon by 10%.

We learn from five noise perturbations for each permutation representation.
Signal embedding architecture The network µ has a first fully connected

layer that links the sets of samples to an intermediate representation (with 32
neurons), and a second (fully connected) layer that turns those representations
into batches of latent permutation matrices of dimension d by d each.

Noise variance architecture The network σ has a single layer connecting
input sample sequences to a single output which is then activated by a softplus
activation. We have chosen such an activation to enforce a positive sigma value.

3.2 k-nn for image classification
Datasets We consider three benchmark datasetes: MNIST dataset of handwrit-
ten digits, Fashion-MNIST dataset of fashion apparel, and CIFAR-10 dataset
of natural images (no data augmentation) with the canonical splits for training
and testing.

Training We train for 220 epochs.
Our signal embedding network µ is trained with ADAM optimizer, with

learning rate set to 0.001 in all experiments.
The noise variance network σ is trained with Stochastic Gradient Descent

optimizer. We perform a grid search over a small number of learning rates
of the noise variance network σ. For MNIST and Fashion-MNIST datasets
lr ∈ {1e− 05, 1e− 06}, and for CIFAR-10 dataset lr ∈ {1e− 06, 1e− 07}.

Hyper-parameters We set the number of candidate image to 800 for
MNIST and Fashoin-MNIST and to 600 for CIFAR-10. Generally, our method
is benefited from an increased number of candidate images due to the sparsity
of the gradients resulting from the max predictors nature. The number of query
images in a batch is 100 in all experiments.

We grid search over a small number of ε values. For MNIST dataset ε ∈
{−0.05,−0.1,−0.2}, for Fashion-MNIST dataset ε ∈ {−0.1,−0.2}, for CIFAR-10
dataset ε = −0.2. To escape zero gradients when loss is positive, we attempt
increasing epsilon by 10% up to a threshold of −0.9999.

In our ’Direct Stochastic Learning’ settings, we attempt a single perturbation
as well as five perturbations, though in almost all cases, a single perturbation is
better for k > 1, while five perturbations are better for k=1.

Signal embedding architecture For MNIST dataset the following embed-
ding µ network is deployed:
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Conv[Kernel: 5x5, Stride: 1, Output: 24x24x20, Activation: Relu]
Pool[Stride: 2, Output: 12x12x20]
Conv[Kernel: 5x5, Stride: 1, Output: 8x8x50, Activation: Relu]
Pool[Stride: 2, Output: 4x4x50]
FC[Units: 500, Activation: Relu]

For the Fashion-MNIST and CIFAR datasets embedding networks µ, we
use the ResNet18 architecture as described in https://github.com/kuangliu/
pytorch-cifar.

Noise variance architecture For MNIST and Fashion-MNIST datasets,
the noise learning network σ is as follows:

Conv[Kernel: 5x5, Stride: 1, Output: 24x24x20, Activation: Relu]
Pool[Stride: 2, Output: 12x12x20]
Conv[Kernel: 5x5, Stride: 1, Output: 8x8x50, Activation: Relu]
Pool[Stride: 2, Output: 4x4x50]
FC[Units: 500, Activation: Relu]
FC[Units: 1, Activation: Softplus]

For CIFAR-10 dataset, the noise learning network σ is as follows:
Conv[Kernel: 5x5, Stride: 1, Output: 28x28x20, Activation: Relu]

Pool[Stride: 2, Output: 14x14x20]
FC[Units: 1, Activation: Softplus]

We have chosen the Softplus activation to enforce a positive sigma value.
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