
How to Learn when Data Reacts to Your Model: Performative Gradient Descent

Throughout the following proofs, we use O(·) to denote the leading order behavior of various quantities as T (the total
number of steps taken by the method) becomes large and δ (the size of the error in the estimate for f ) becomes small.

A. Bounding the error of f̂ ′

Before we prove Lemma 1 (bounding the error of the full performative gradient), we must first bound the error of our
approximation to f ′. Let ft = f(θt), f ′t = f ′(θt), and define f̂t and f̂ ′t similarly.

Lemma 6. Under the assumptions of Section 4, we have |f̂ ′t − f ′t | = O
(
δ
g

1
η +MGη

)
.

Proof. By definition, we have

f̂ ′t =
f̂t+1 − f̂t
θt+1 − θt

=
ft+1 − ft
θt+1 − θt

+
εt+1 − εt
θt+1 − θt

. (8)

By Taylor’s theorem, we have

ft+1 = ft + f ′t · (θt+1 − θt) +
1

2
f ′′(ξ)(θt+1 − θt)2 =⇒ f ′t =

ft+1 − ft
θt+1 − θt

+
1

2
f ′′(ξ)(θt+1 − θt), (9)

where ξ is some number between θt and θt+1. Next, note that since θt+1 = θt − η∇̂Lt and g ≤ |∇̂Lt| ≤ G, we have
ηg ≤ |θt+1 − θt| ≤ ηG. Using this fact and combining equations (8) and (9), we find that

|f̂ ′t − f ′t | ≤
|εt+1|+ |εt|

ηg
+

1

2
|f ′′(ξ)|ηG

≤ 2δ

g

1

η
+
MG

2
η

where we have also used the assumption that |f ′′(ξ)| ≤M . This is the desired bound.

B. Proof of Lemma 1
Proof. We write |∇̂Lt −∇Lt| ≤ |∇̂1Lt −∇1Lt|+ |∇̂2L−∇2Lt| and bound each term on the right-hand side separately.
We begin by bounding the error on ∇1L. We have

|∇̂1Lt −∇1Lt| ≤
∫
|∇`(z; θ)||p(z; f̂t)− p(z; ft)| dz

≤ `max

∫
|p(z; f̂t)− p(z; ft)| dz

≤ `max

(∫
|z−ft|≤R

|p(z; f̂t)− p(z; ft)| dz︸ ︷︷ ︸
(A)

+

∫
|z−ft|>R

|p(z; f̂t)| dz︸ ︷︷ ︸
(B)

+

∫
|z−ft|>R

|p(z; ft)| dz︸ ︷︷ ︸
(C)

)
, (10)

where for simplicity we assume that `max ≥ |∇`(z; θ)| is also an upper bound on the derivative of the point loss, and for
any R > 0.

To bound (A), we bound the Lipschitz constant of p in its second argument. It suffices to bound ∂2p. Observe that

∂2p(z;w) = c(z − w)e−
1

2σ2
(z−w)2 . (11)

Letting x = z − w and α = 1
2σ2 , we want to bound the maximum of xe−αx

2

. Taking the derivative with respect to x, this
has critical points at x = ± 1√

2α
. Since |∂2p(z;w)| → 0 as w → ±∞ for any z, these critical points are global maxima for

|∂2p|. Thus max |∂2p| = O(1) and p is O(1)-Lipschitz in its second argument. It follows that

(A) ≤
∫
c|f̂t − ft| dz = O(Rδ).
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To bound (B), oberserve that

(B) ≤
∫
|z−f̂t|+|f̂t−ft|>R

|p(z; f̂t)| dz

≤
∫
|z−f̂t|>R−δ

|p(z; f̂t)| dz

= PN (f̂t,σ2)(|z − f̂t| > R− δ)

≤ 2e−(R−δ)2/2σ2

for any R ≥ δ. A similar calculation shows that (C) ≤ 2e−R
2/2σ2 ≤ 2e−(R−δ)2/2σ2

for R ≥ δ. Thus

(A) + (B) + (C) = O
(
Rδ + exp

(
− (R− δ)2

2σ2

))

for any R ≥ δ. Setting R = δ +
√

2σ2 log 1
δ and substituting our bound back into (10), we obtain

|∇̂1Lt −∇1Lt| = O

(
`max

(
δ

√
log

1

δ

))
. (12)

Next we bound the error |∇̂2Lt −∇2Lt|. We have

|∇̂2Lt −∇2Lt| =
∣∣∣∣∫ `(z; θt)∂2p(z; f̂t)f̂ ′t dz −

∫
`(z; θt)∂2p(z; ft)f

′
t dz

∣∣∣∣
≤
∫
|`(z; θt)||∂2p(z; f̂t)||f̂ ′t − f ′t | dz︸ ︷︷ ︸

(I)

+

∫
|`(z; θt)||∂2p(z; f̂t)− ∂2p(z; ft)||f ′t | dz︸ ︷︷ ︸

(II)

. (13)

We proceed to bound the terms (I) and (II) separately.

The bound for (I) is straightforward. Recall that |`(z; θt)| ≤ `max and f̂ ′t and f ′t are independent of z, so we have

(I) ≤ `max|f̂ ′t − f ′t |
∫
|∂2p(z; f̂t)| dz.

Since p(z; f̂t) is the pdf for a Gaussian with mean f̂t and variance σ2, a standard computation reveals that
∫
|∂2p(z; f̂t)| dz =√

2
πσ2 = O(1). Using the bound on |f̂ ′t − f ′t | from Lemma 6, we have

(I) = O
(
`max

(
MGη +

δ

g

1

η

))
. (14)

Next, we bound (II). First, since |`(z; θt)| ≤ `max and |f ′t | ≤ F , we have

(II) ≤ `maxF

∫
|∂2p(z; f̂t)− ∂2p(z; ft)| dz (15)

so it suffices to bound the integrand in (15).

For any R ≥ δ, we have∫
|∂2p(z; f̂t)− ∂2p(z; ft)| dz =

∫
|z−ft|≤R

|∂2p(z; f̂t)− ∂2p(z; ft)| dz︸ ︷︷ ︸
(i)

+

∫
|z−ft|>R

|∂2p(z; f̂t)− ∂2p(z; ft)| dz︸ ︷︷ ︸
(ii)

.
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To bound (i), it suffices to bound the Lipschitz constant of ∂2p(z;w) in the second variable (if one exists). We can do this by
bounding |∂2

2p|. A direct computation shows that

∂2
2p(z;w) =

1

σ2
√

2πσ2
e−

1
2σ2

(z−w)2
(

1

σ2
(z − w)2 − 1

)
. (16)

Let α = σ−2 and x = (z − w)2. Bounding (16) is equivalent to upper bounding an expression of the form e−
α
2 x(αx− 1)

over x ≥ 0. Taking a derivative with respect to x shows that the only critical point is at x = 2e−3/2; the only other point to
check is the boundary point x = 0. Checking both of these manually shows that the absolute value is maximized at x = 0,
and we obtain the bound

|∂2
2p(z;w)| ≤ 1

σ2
√

2πσ2
= O(1),

i.e. ∂2p(z;w) is O(1)-Lipschitz in w. Applying this fact to (i), we have

(i) ≤
∫
|z−ft|≤R

c|f̂t − ft| dz = c

∫
|z−ft|≤R

|εt| dz = O(Rδ). (17)

Next we turn our attention to (ii). We have

(ii) ≤
∫
|z−ft|>R

|∂2p(z; f̂t)| dz +

∫
|z−ft|>R

|∂2p(z; ft)| dz

≤
∫
|z−(ft+εt)|>R−|εt|

|∂2p(z; f̂t)| dz +

∫
|z−ft|>R

|∂2p(z; ft)| dz

≤
∫
|z−f̂t|>R−δ

|∂2p(z; f̂t)| dz +

∫
|z−ft|>R

|∂2p(z; ft)| dz. (18)

These inequalities follow from several applications of the triangle inequality and the bound |εt| ≤ δ. Now since p(z;w) is a
Gaussian pdf, we have ∂2p(z;w) = 1

σ2 (z − w)p(z;w), and therefore∫
|z−w|>r

|∂2p(z;w)| dz =

∫
|z−w|>r

1

σ2
|z − w|p(z;w) dz

= σ−2EN (w,σ2) [1{|z − w| ≥ r|}|z − w|]

≤ σ−2
√

E[1{|z − w| ≥ r}2]E[|z − w|2] (19)

= σ−1
√

P(|z − w| ≥ r)

≤
√

2σ−1e−
r2

4σ2 , (20)

where (19) follows from the Cauchy-Schwarz inequality and (20) follows from a standard Gaussian tail bound. Applying
(20) to (18), we obtain

(ii) ≤ c
(

exp

(
− (R− δ)2

4σ2

)
+ exp

(
− R2

4σ2

))

= O
(

exp

(
− (R− δ)2

4σ2

))
(21)

for any R ≥ δ. Combining the bound (17) on (i) and (21) on (ii) with (15), we have

(II) = O
(
`maxF

[
Rδ + exp

{
− (R− δ)2

4σ2

}])
. (22)
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If we take R = δ +
√

4σ2 log(1/δ) and substitute into (22), we obtain

(II) = O
(
`maxFδ

√
log(1/δ)

)
. (23)

We now substitute our bounds on (I) and (II) into (13), which yields

|∇2L − ∇̂2L| ≤ O
(
`max

[
MGη +

δ

g

1

η
+ Fδ

√
log(1/δ)

])
. (24)

To conlude, observe that the bound on the error of∇1Lt in (12) can be completely absorbed into (24), and we obtain the
desired result.

C. Proof of Theorem 2
Proof. To simplify notation, we will let L = LLip; this should not be confused with the decoupled performative loss
function L(θ1, θ2) defined in Section 2. Let Lt = L(θt) and let Et = ∇̂Lt −∇Lt. Since L is L-smooth and convex, we
have the standard inequality

Lt+1 ≤ Lt +∇Lt · (θt+1 − θt) +
L

2
|θt+1 − θt|2. (25)

Since θt+1 − θt = η∇̂Lt, we can rewrite (25):

Lt+1 ≤ Lt + η(|∇Lt||Et| − |∇Lt|2) + η2L(|∇Lt|2 + |Et|2) (26)

Rearranging and using the fact that |∇Lt| ≤ G, we have

(η − η2L)|∇Lt|2 ≤ Lt − Lt+1 + ηG|Et|+ η2L|Et|2. (27)

If we sum both sides of (27) from t = 1 to T , we find that

T min
1≤t≤T

|∇Lt|2 ≤
T∑
t=1

|∇Lt|2 ≤
L1 − LT+1 + ηG

∑T
t=1 |Et|+ η2L

∑T
t=1 |Et|2

η − Lη2
. (28)

Note that with η =
√

1
MG2T + δ

MGg as specified by the theorem, we have η2 = o(η). Furthermore, by Lemma 1, we have

|Et| = O

(
`max

√
M

T
+
MGδ

g

)
≡ E. (29)

(In obtaining the above bound, we have assumed WLOG that G ≥ 1.) Note that since E = o(1), we have E2 = o(E).
Lastly, since Lt = Ep(z;θt)[`(z; θt)] we have |Lt| ≤ `max for all t. Applying these facts to (28), we have

min
1≤t≤T

|∇Lt|2 = O
(
`max + ηGTE + η2LTE2

Tη

)

= O
(
`max

Tη
+G`max

[
MGη +

δ

g

1

η

])

= O

(
`max

√
MG2

T
+
MG3δ

g

)
(30)

where the last equation follows from our choice of η.

Lastly, recall that our bound on |Et| required that |∇̂Lt| ≥ g for all 1 ≤ t ≤ T . If at any point we have |∇̂Lt| < g, then we
can terminate and return this iterate. But then we have

|∇Lt|2 ≤ 2|∇̂Lt|2 + 2|Et|2 = O(g2 + E2).
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Note that E2 = O
(
`2max

(
M
T + MGδ

g

))
, which implies that

|∇Lt|2 = O
(
g2 + `2max

(
M

T
+
MGδ

g

))
. (31)

We can guarantee that PerfGD reaches at least the max of the two bounds (30) and (31), yielding the desired result.

We remark that, for a given accuracy level δ, we should take a time horizon T ∝ δ−1. Increasing T beyond this point will
not cause the error bound from Theorem 2 to decay any further.

C.1. Proof of corollaries

Proof of Corollary 4. Suppose nt ≥ n samples are collected at time t. Then the error f̂(θt) − f(θt) follows a centered
Gaussian distribution with variance σ2/nt ≤ σ2/n. It follows that

P(|f̂(θt)− f(θt)| > ε) ≤ Pz∼N (0,σ2/n)(|z| > ε)

≤ 2e−nε
2/2σ2

≤ δ/T

where the second inequality follows from a standard Gaussian tail bound and the third follows from the lower bound on n.
Taking a union bound over all T steps of the algorithm, we see that |f̂t− ft| < ε for all t with probability at least 1− γ.

D. Proofs for higher dimensions
The analysis used to prove Theorem 2 applies in general dimensions when we replace all absolute value signs with the
Euclidean norm, provided that we have a bound on the error Et = ∇̂Lt −∇Lt. To bound Et, we will proceed as before,
first bounding the error on the estimate for df/dθ and then translating this to a bound on the error of the full performative
gradient.

Throughout this section, when applied to vectors, ‖ · ‖ will always denote the Euclidean norm. When applied to matrices,
‖ · ‖2 denotes the matrix 2-norm and ‖ · ‖F denotes the Frobenius norm. For a PSD matrix Σ, we will also sometimes write
λmax(Σ) and λmin(Σ) for the maximum and minimum eigenvalues of Σ, respectively.

Lemma 7. When H ≥ d and ∆θ has full row rank d, we have
∥∥∥∥ d̂ftdθ − dft

dθ

∥∥∥∥
2

≤
(
MdG2H3

2 η + 2δ
√
H 1
η

)
g−1

Proof. Observe that, for each 1 ≤ i ≤ H and for each 1 ≤ j ≤ d, we have

fj(θt−i)− fj(θt) = ∇fj(θt)>(θt−i − θt) +
1

2
(θt−i − θt)>∇2fj(ξij)(θt−i − θt),

where ξij ∈ [θt−i, θt] lies on the line segment joining θt−i and θt. This is a consequence of Taylor’s theorem. If we assume
that ‖∇2fj‖2 ≤M is bounded, then we have

f(θt−i)− f(θt) =
df

dθ

∣∣∣∣
θ=θt

(θt−i − θt) + errTaylor
i

and ‖errTaylor
i ‖2 ≤ Md

2 ‖θt−i − θt‖
2. Denote dft

dθ = df
dθ

∣∣
θ=θt

. Observe that
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∆f =

 | |
f̂t−1 − f̂t · · · f̂t−H − f̂t
| |


=

 | |
dft
dθ (θt−1 − θt) + errTaylor

1 + εt−1 − εt · · · dft
dθ (θt−H − θt) + errTaylor

H + εt−H − εt
| |


=
dft
dθ

∆θ +

 | |
errTaylor

1 · · · errTaylor
H

| |


︸ ︷︷ ︸

errTaylor

+

 | |
εt−1 − εt · · · εt−H − εth
| |


︸ ︷︷ ︸

ε

=⇒ d̂ft
dθ

=
dft
dθ

+ (errTaylor + ε)(∆θ)†.

This final equation holds because ∆θ was assumed to have full row rank, therefore (∆θ)† is the right inverse of ∆θ. It
follows that ∥∥∥∥∥ d̂ftdθ − dft

dθ

∥∥∥∥∥
2

≤ (‖errTaylor‖F + ‖ε‖F )‖∆θ†‖2

≤


√√√√ H∑

i=1

‖errTaylor
i ‖2 +

√√√√ H∑
i=1

‖εt−i − εt‖2

σmin(∆θ)−1

≤

(
Md

2

H∑
i=1

‖θt−i − θt‖2 + 2δ
√
H

)
(gη)−1

≤
(
MdG2H3

2
η + 2δ

√
H

1

η

)
g−1.

Before bounding ‖∇̂Lt −∇Lt‖, we first need some regularity results for multivariate Gaussian distributions. We have not
attempted to optimize our bounds with respect to the dependence on dimension or other problem-dependent quantities (e.g.
properties of the covariance matrix, etc.). Our goal is to show that the performance of PerfGD in moderately-sized data
dimension (i.e. 1 < d�∞) is qualitatively similar to its performance in 1D.

Lemma 8. Let p(z;µ) = c exp{− 1
2 (z − µ)>Σ−1(z − µ)} be the d-dimensional normal pdf with (fixed) covariance Σ and

mean µ. If the normalizing constant c = (2π)−d/2(det Σ)−1/2 = O(1), then p is O(1)-Lipschitz in µ.

Proof. It suffices to bound∇µp(z;µ). We have

‖∇µp(z;µ)‖ =

∥∥∥∥−cΣ−1(µ− z) exp

{
−1

2
(µ− z)>Σ−1(µ− z)

}∥∥∥∥
≤ cλmin(Σ)−1‖µ− z‖ exp

{
−1

2
λmax(Σ)−1‖µ− z‖2

}
= Cxe−αx

2

, (32)

where x = ‖µ− z‖ and C and α collect constant terms. By the analysis of (11), it follows that (32) is also bounded by a
constant, and thus p is O(1)-Lipschitz in the mean µ. (Note: Here we implicitly assume that problem-specific parameters
such as (det Σ)−1/2, λmin(Σ)−1, and λmax(Σ) are all O(1).)

Lemma 9. If Z ∼ N (µ,Σ) is a d-dimensional Gaussian vector, then P(‖Z − µ‖ ≥ R) ≤ 2d exp{− R2

2dλmax(Σ)}.
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Proof. A pigeonhole principle-esque argument shows that P(‖Z − µ‖ ≥ R) ≤ P(|Zi − µi| ≥ R/
√
d for some i), where

Zi, µi denote the i-th coordinate of Z and µ respectively. Note that each Zi is normally distributed with mean µi and
variance at most λmax(Σ). By a union bound, it follows that

P(‖Z − µ‖ ≥ R) ≤
d∑
i=1

P(|Zi − µi| ≥ R/
√
d)

≤ dPz∼N (0,λmax(Σ))(|z| ≥ R/
√
d)

≤ 2d exp

{
−R2

2dλmax(Σ)

}
where the final inequality follows from a standard one-dimensional Gaussian tail bound.

Lemma 10.
∫
‖∇µp(z;µ)‖ dz ≤ ‖Σ−1/2‖2

√
d.

Proof. ∫
‖∇µp(z;µ)‖ dz =

∫
‖Σ−1(z − µ)‖p(z;µ) dz

≤ ‖Σ−1/2‖2
∫
‖Σ−1/2(z − µ)‖p(z;µ) dz

= ‖Σ−1/2‖2Ez∼N (0,Id)[‖z‖]

≤ ‖Σ−1/2‖2
√
d.

Lemma 11. ∇µp(z;µ) is O(1)-Lipschitz in µ.

Proof. It suffices to show that ‖∇2
µp‖2 = O(1). A simple calculation yields

∇2
µp = Σ−1(pI + Σ−1p(µ− z)(µ− z)>).

From this it follows that
‖∇2

µp‖2 ≤ ‖Σ−1‖2((sup p) + ‖Σ−1‖2p(z;µ)‖µ− z‖2).

All of the quantities in this expression are O(1) by assumption except for p(z;µ)‖µ− z‖2, which has the form

p(z;µ)‖µ− z‖2 = c‖µ− z‖2 exp

{
−1

2
(µ− z)>Σ−1(µ− z)>

}
≤ c‖µ− z‖2 exp

{
− 1

2λmax(Σ)
‖µ− z‖2

}
= cx2e−αx

2

,

where again x = ‖µ− z‖ and α collects the relevant constants. By the analysis from (16), this final quantity is bounded by
a constant. It follows that ‖∇2

µp‖2 = O(1) as desired.

Lemma 12. ‖∇̂Lt −∇Lt‖ = O
(
`max

[√
dg−1(MdG2H3η + δ

√
H 1
η ) + Fδ

√
d log d

δ

])
.

Proof. We plug the results of the previous four lemmas into the proof of Lemma 1. The error on∇1Lt is bounded by

‖∇̂1Lt −∇1Lt‖ ≤ `max

(∫
‖z−ft‖≤R

|p(z; f̂t)− p(z; ft)| dz︸ ︷︷ ︸
(A)

+

∫
‖z−ft‖>R

|p(z; f̂t)| dz︸ ︷︷ ︸
(B)

+

∫
‖z−ft‖>R

|p(z; ft)| dz︸ ︷︷ ︸
(C)

)
,

(33)
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Since p is O(1)-Lipschitz in its second argument by Lemma 8, (A) is bounded by O(Rδ). For (B), when R ≥ δ we have

(B) ≤
∫
‖z−f̂t‖>R−δ

|p(z; f̂t)| dz

≤ 2d exp{−(R− δ)2/2dσ2},

where σ2 = λmax(Σ) and the second inequality follows from Lemma 9. We similarly have (C) ≤ 2d exp{−(R−δ)2/2dσ2}.
Taking R = δ +

√
2dσ2 log d

δ , we have

‖∇̂1Lt −∇1Lt‖ = O

(
δ

√
d log

d

δ

)
. (34)

Next we bound ‖∇̂2Lt −∇2Lt‖. As before, we have

‖∇̂2Lt −∇2Lt‖ ≤ `max

∥∥∥∥∥∥ d̂ftdθ
>

− dft
dθ

>
∥∥∥∥∥∥

2

∫
‖∇2p(z; f̂t)‖ dz

︸ ︷︷ ︸
(I)

+ `maxF

∫
‖∇2p(z; f̂t)−∇2p(z; ft)‖ dz︸ ︷︷ ︸

(II)

.

By Lemma 10, the integral in (I) is bounded by O(
√
d). Plugging in the bound from Lemma 7 and noting that∥∥∥∥ d̂ftdθ > − dft

dθ

>
∥∥∥∥

2

=

∥∥∥∥ d̂ftdθ − dft
dθ

∥∥∥∥
2

, we have

(I) = O
(
`max

√
dg−1

(
MdG2H3η + δ

√
H

1

η

))
.

Bounding (II) is similar to before. For R ≥ δ, we write∫
‖∇2p(z; f̂t)−∇2p(z; ft)‖ dz =

∫
‖z−ft‖≤R

‖∇2p(z; f̂t)−∇2p(z; ft)‖ dz︸ ︷︷ ︸
(i)

+

∫
‖z−ft‖>R

‖∇2p(z; f̂t)−∇2p(z; ft)‖ dz︸ ︷︷ ︸
(ii)

.

By Lemma 11,∇2p is O(1)-Lipschitz in the mean parameter, so (i) = O(Rδ).

To bound (ii), we use a similar strategy as from the proof of Lemma 1. We first observe that

(ii) ≤
∫
‖z−f̂t‖>R−δ

‖∇2p(z; f̂t)‖ dz +

∫
‖z−ft‖>R

‖∇2p(z; ft)‖ dz. (35)

We then have∫
‖z−f̂t‖>R−δ

‖∇2p(z; f̂t)‖ dz =

∫
‖z−f̂t‖>R−δ

‖Σ−1(z − f̂t)‖p(z; f̂t) dz

= Ez∼N (f̂t,Σ)[1{‖z − f̂t‖ > R− δ}‖Σ−1(z − ft)‖]

≤
√
P(‖z − f̂t‖ > R− δ) · ‖Σ−1/2‖2EN (f̂t,Σ)[‖Σ−1/2(z − f̂t)‖2]

≤

√
2d exp

{
−(R− δ)2

2dλmax(Σ)

}
· ‖Σ−1/2‖2d

= O
(
d exp

{
−(R− δ)2

4dλmax(Σ)

})
.
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The same bound holds for the other integral in (35), so (ii) = O(d exp{ −(R−δ)2
4dλmax(Σ)}). Combining this with the bound on (i),

we have

(II) = O
(
`maxF

[
Rδ + d exp

{
−(R− δ)2

4dλmax(Σ)

}])
.

If we take again set σ2 = λmax(Σ) and take R = δ +
√

4dσ2 log d
δ , then we finally arrive at

(II) = O

(
`maxFδ

√
d log

d

δ

)
.

Combining the bounds on (I) and (II), we have

‖∇̂2Lt −∇2Lt‖ = O

(
`max

[
√
dg−1

(
MdG2H3η + δ

√
H

1

η

)
+ Fδ

√
d log

d

δ

])
.

Note that once again, the error bound on ∇1Lt can be completely absorbed into this expression, yielding the desired
result.

Proof of Theorem 5. The proof of Theorem 2 from Appendix C applies with two slight modifications. First, all absolute
values should be replaced with the Euclidean norm. Second, we use a different value for η. With this step size, we still have
η2 = o(η) and E2 = o(E) (recall that E is defined as the bound on the performative gradient error from Lemma 12), so the
exact same logic as before gives

min
1≤t≤T

‖∇Lt‖2 = O
(
`max

Tη
+GE

)
.

Plugging in the new value for η as well as the expression for E from Lemma 12 yields the desired bound.

E. Convergence of PerfGD with stochastic errors and general H
When the errors on the estimate for f are bounded and deterministic, we gain no advantage by increasing the length of the
estimation horizon H . However, when the errors are centered and stochastic, the estimation horizon now plays a critical roll.
Increasing H allows for concentration of the errors, leading to overall better estimates for f . At the same time, increasing H
causes the deterministic bias from our finite difference approximations to increase. In the following section, we show how to
balance these two factors and choose an optimal H . First, we state our main theorem.

Theorem 13. With step size

η =
g2/3

M1/2G5/3τ1/3(log T
γ )1/6T 5/6

and estimation horizon

H =
τ2/5(log T

γ )1/5

M2/5g4/5
η−4/5

the iterates of PerfGD satisfy

min
1≤t≤T

|∇Lt|2 = max

{
O
(
`max

[
τ1/3

g2/3T 1/6
·M1/2G5/3(log

T

γ
)1/6

])
,O
(
g2 + `max · poly(M,G, log

T

γ
) · τ3/5

g2/3T 1/6

)}
with probability at least 1−O(γ) as τ → 0 and T →∞.

We remark briefly that we choose to analyze τ → 0 since if the estimates for ft are computed from random samples of
increasing size, then we expect the variance of these estimates (measured by τ ) to decay to zero as the sample size n→∞.
For instance, for estimating the mean of a Gaussian we will have τ2 = O(1/n).

The proof of Theorem 13 follows from two key lemmas.

Lemma 14. If X is τ2-subgaussian and Y is any random variable with |Y | ≤ B w.p. 1, then XY is B2τ2-subgaussian.
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A critical fact about this lemma is that the random variables involved need not be independent.

Proof. By definition, Z is s2-subgaussian if EeZ2/s2 ≤ 2. Observe that since the exponential function is monotonic, we
have

EeX
2Y 2/B2τ2

≤ EeX
2B2/B2τ2

= EeX
2/τ2

≤ 2.

Thus XY is B2τ2-subgaussian.

Lemma 15. We have f̂ ′t = f ′t + bt + et, where bt is a deterministic bias term with |bt| = O(MGHη). Under the additional

assumption that θt converge monotonically, et is O
(

G2τ2

H3g4η2

)
-subgaussian.

Proof. The pseudoinverse used to compute f̂ ′t is equivalent to solving the least-squares problem

f̂ ′t = argmin
α

1

2

H∑
i=1

(α(θt−i − θt)− (f̂t−i − f̂t))2 =⇒ f̂ ′t =

∑H
i=1(f̂t−i − f̂t)(θt−i − θt)∑H

i=1(θt−i − θt)2
. (36)

Writing f̂t = ft + εt with εt τ -subgaussian, we can apply Taylor’s theorem to rewrite

f̂t−i − f̂t = f ′t(θt−i − θt) +
1

2
f ′′(ξi)(θt−i − θt)2 + εt−i − εt. (37)

Using the explicit solution in (36) and substituting (37) for f̂t−i − f̂t, we find that

|f̂ ′t − f ′t | ≤
1
2

∑H
i=1 |f ′′(ξi)||θt−i − θt|3∑H

i=1(θt−i − θt)2︸ ︷︷ ︸
bt

+

∑H
i=1(εt−i − εt)(θt−i − θt)∑H

i=1(θt−i − θt)2︸ ︷︷ ︸
et

.

To bound bt, observe that since θt = θt−i−η(∇̂Lt−i+· · ·+∇̂Lt−1) and |∇̂Ls| ≤ G and i ≤ H , we have |θt−i−θt| ≤ HGη
for all i, t. Since |f ′′(ξi)| ≤M , we have

|bt| ≤
1
2

∑H
i=1MHGη(θt−i − θt)2∑H

i=1(θt−i − θt)2

= O(MGHη).

Next we bound et. Since we have assumed that θt converge monotonically and |∇̂Lt| ≥ g, we have

1∑H
i=1(θt−i − θt)2

≤ 1∑H
i=1(igη)2

= O(
1

H3g2η2
).

In the numerator, we have ∣∣∣∣∣
H∑
i=1

(εt−i − εt)(θt−i − θt)

∣∣∣∣∣ ≤ HGη
H∑
i=1

|εt−i − εt|.

Combining these, we have

et = O
(

G

H2g2η

) H∑
i=1

|εt−i − εt|. (38)

We make the additional simplifying assumption that the |εt−i − εt| are independent. We can accomplish this splitting our
dataset drawn from D(θt) into H parts and estimating ft once with each component, then replacing the terms (f̂t−i − f̂t)
with (f̂t−i − f̂t,i) in equation (36), where f̂t,i is the estimate of ft from the i-th partition of the dataset. The errors εt in the
expression for et now become independent copies εt,i, and the terms in equation (38) are indeed independent.
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Under this assumption, |εt−i− εt,i| are independent 2τ2-subgaussian random variables. Their sum is therefore
∑H
i=1 2τ2 =

O(Hτ2)-subgaussian. Finally, by Lemma 14, it follows that et is O( G2τ2

H3g4η2 )-subgaussian.

With these two lemmas, we can now prove the main theorem. The structure of the proof is similar to that of Theorem 2.

Proof of Theorem 13. We first establish a high-probability bound on |et|. By the subgaussian tail bound and a union bound
over t = 1 to T , a simple calculation shows that

|et| = O

Gτ
√

log T
γ

g2ηH3/2


with probability at least 1− γ for all t = 1, . . . , T . Combining this bound with the bound on |bt| from Lemma 15, we find
that

|f̂ ′t − f ′t | = O

MGηH +
Gτ
√

log T
γ

g2η
H−3/2

 .

With H chosen as is in the theorem, this bound simplifies to

|f̂ ′t − f ′t | = O

(
M3/5Gτ2/5(log T

γ )1/5

g4/5
η1/5

)
≡ E1. (39)

From the proof of Lemma 1, we know that

|∇̂Lt −∇Lt| = O

(
`max

[
E1 + Fδ

√
log

1

δ

])
, (40)

where δ is a (high-probability) bound on the error of ft. Again assuming that this error is τ2-subgaussian, we have that

(error on ft) = O

(
τ

√
log

T

γ

)

for all t = 1, . . . , T with probability at least 1− γ. Thus we can take δ = τ
√

log(T/γ), in which case the second term in
equation (40) is O(E1) as τ ↓ 0. It follows that |∇̂Lt −∇Lt| = O(`maxE1) ≡ E2 with high probability.

Finally, by the same analysis used in the proof of Theorem 2, we have that

min
1≤t≤T

|∇Lt|2 = O
(
`max + ηGTE2

Tη

)
.

Choosing η as in the theorem statement and substituting our bound on E2 yields the desired result. The max in the theorem
statement follows from the same logic as in Theorem 2 plus the bound on the error performative gradient error E2. We also
note that similarly to Theorem 2, we can choose the stopping criterion to match the leading order behavior in the two terms
in the max in the theorem statement so that min1≤t≤T |∇Lt|2 → 0 as τ → 0 and T →∞.

F. Experiment details
In all of the following experiments, whenever the stated estimation horizon H is longer than the entire history on a particular
iteration of PerfGD, we simply use H = length of the existing history for that iteration instead. Furthermore, in all of the
experiments, RGD, FLX, and PerfGD were all run using a learning rate of η = 0.1. Code for reproducing these experiments
can be found at https://github.com/zleizzo/PerfGD.

https://github.com/zleizzo/PerfGD
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F.1. Mixture of Gaussians and nonlinear mean (§5.1)

For the nonlinear mean experiment, we set a0 = a1 = 1 and σ2 = 1. At each iteration, we drew n = 500 data points. We
initialized PerfGD using only one step of RGD, and at each step after the initialization we used the previous H = 4 steps to
estimate f ′(θ). For FLX, we tried δ ∈ {0.1, 0.3, 1} and selected the best result, which was δ = 0.3. The analytical values
for θOPT and θSTAB are given by

θOPT = −2a0

3a1
, θSTAB = −a0

a1
.

For the Gaussian mixture experiment, we set γ = 0.5, σ2
1 = 1, a1,0 = −0.5, a1,1 = 1, s2

2 = 0.25, a2,0 = 1, and
a2,1 = −0.3. At each iteration, we drew n = 1000 data points. We initialized PerfGD using only one step of RGD, and at
each step after the initialization we use the entire history to estimate f ′i(θ). For FLX, we tried δ ∈ {0.1, 0.3, 1} and selected
the best result, which was δ = 0.1. The analytical values for θOPT and θSTAB are given by

θOPT = −1

2

γa1,0 + (1− γ)a2,0

γa1,1 + (1− γ)a2,1
, θSTAB =

γa1,0 + (1− γ)a2,0

γa1,1 + (1− γ)a2,1
.

F.2. Pricing (§5.2)

We set d = 5 for this experiment. We then set µ0 = 6 · 1 + Unif[0, 1]5 with a fixed random seed; in this case, it came out to
µ0 ≈ [6.55, 6.72, 6.60, 6.54, 6.42]>. We set Σ = I ∈ R5×5 (i.e. the 5× 5 identity matrix) and ε = 1.5. At each iteration,
we drew n = 500 data points. We initialized PerfGD with 14 steps of RGD, and at each step after initialization we used
the previous H = 25 steps to estimate df/dθ. For FLX, we first searched over δ ∈ {3, 4, 5, 6}, then refined the grid and
searched over δ ∈ {4.25, 4.5, 4.75}. We selected the best value δ = 4.75. The analytical values for θOPT and θSTAB are
given by

θOPT =
µ0

2ε
, θSTAB =

µ0

ε
.

We also plot the minimum singular value of ∆θ over the course of the trajectory. It remains bounded away from 0, so the
lower bound assumption on the minimum singular value in Theorem 5 is valid in this case.
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Figure 6. Minimum singular value of ∆θ over the course of training.

F.3. Binary classification (§5.3)

Here the features x ∈ R are one-dimensional, while our model parameters θ ∈ R2 allow for a bias term. We set σ2
0 = 0.25,

µ0 = 1, σ2
1 = 0.25, µ1 = −1, and ε = 3. The regularization strength for ` was λ = 10−2, i.e.

`(x, y; θ) = −y log hθ(x)− (1− y) log(1− hθ(x)) +
10−2

2
‖θ‖2.
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When approximating the derivatives of the means of the mixtures with respect to θ, we assume that it is known that the
derivative of the non-spam email mean is independent of θ, and we also assume knowledge of the fact that the mean of the
spam email features depends only on θ1 (i.e. the non-bias parameter). At each iteration, we drew n = 500 data points. We
initialize PerfGD using only one step of RGD, and at each step after the initialization we use the entire history to estimate
f ′(θ). For FLX, despite an extensive grid search over δ ∈ {0.1, 0.2, 0.3, . . . , 4.0}, FLX was unable to converge.

F.4. Regression (§5.4)

We set µx = 1.67, σ2
x = 1, a0 = a1 = 1.67, and regularization strength λ = 3.33 for the loss, i.e.

`(x, y; θ) =
1

2
(θx− y)2 +

3.33

2
|θ|2.

The variance of y|x was set to 4.12. At each iteration, we drew n = 500 data points and used the entire history to estimate
dβ/dθ. For FLX, we searched over δ ∈ {1.5, 2, 2.5, 3, 3.5, 4}, then selected the best value δ = 2.The analytical values for
θOPT and θSTAB are given by

θOPT =
c · a0

c · (1− a1) + λ
1−a1

, θSTAB =
c · a0

c · (1− a1) + λ
,

where c = µ2
x + σ2

x.


