
Local Correlation Clustering with Asymmetric Classification Errors

A. Proof of Theorem 3.1
In this section, we present the proof of our main tech-
nical result – Theorem 3.1 – an algorithm for partition-
ing a given metric space (X, d) into a number of clusters
P = (P1, . . . , Pk) (where k is not fixed).

Recall our iterative process for obtaining this partitioning
– Algorithm 2 – which makes use of Theorem 5.1 in each
iteration to select a cluster from the set of not-yet clustered
vertices.

The proof of Theorem 5.1 is presented in Appendix B.
We now present the proof of Theorem 3.1 assuming Theo-
rem 5.1.

Proof of Theorem 3.1. Property (a) of Theorem 5.1 guaran-
tees that diam(Pi) ≤ 2R for every i ∈ [k] and thus property
(1) of Theorem 3.1 holds.

We now show that property (2) holds. Fix u ∈ X . Consider
iteration i ∈ [k]. Note that set Pi satisfies property (b)
of Theorem 5.1 regardless of what set Xi we have in the
beginning of iteration i. That is, for every set Y ⊂ X and
u ∈ Y , we have

∑
v∈Ball(u,R)∩Y

(
Pr
{
δPi(u, v) = 1 |Xi = Y

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 |Xi = Y }

)+

. βq ·E

[ ∑
v∈Ball(u,2R)∩Y

d(u, v)

R
·∨Pi(u, v) |Xi = Y

]
.

(A.1)

We observe that inequality (A.1) can be written as follows
(for all u ∈ X).

∑
v∈Ball(u,R)

(
Pr
{
δPi(u, v) = 1 and u, v ∈ Xi |Xi = Y

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 and u, v ∈ Xi |Xi = Y }

)+

. βq ·E
[ ∑
v∈Ball(u,2R)

d(u, v)

R
· ∨Pi(u, v)

· 1 {u, v ∈ Xi} |Xi = Y

]
. (A.2)

If u /∈ Y , then all terms in (A.2) are equal to 0, and the
inequality trivially holds. If u ∈ Y , then corresponding
terms in (A.1) and (A.2) with v ∈ Y are equal to each other;
all terms in (A.2) with v /∈ Y are equal to 0. Denote the
event that u, v ∈ Xi by Evi (that is, Evi happens if both
points u and v are not clustered at the beginning of iteration

i). We take the expectation of (A.2) over Xi = Y and add
up the inequalities over all i ∈ [k]. Using the subaddivity of
function x 7→ x+, we obtain

∑
v∈Ball(u,R)

(∑
i∈[k]

Pr
{
δPi(u, v) = 1 and Evi

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 and Evi}

)+

≤
∑

v∈Ball(u,R)
i∈[k]

(
Pr
{
δPi(u, v) = 1 and Evi

}

−Dβ
d(u, v)

R
Pr{∨Pi(u, v) = 1 and Evi}

)+

. βq ·E

[ ∑
v∈Ball(u,2R)

i∈[k]

d(u, v)

R
·∨Pi(u, v)·1{Evi}

]
.

(A.3)

Now consider any v ∈ X \ {u}. If u and v are separated by
the partitioning P , then they are separated at some iteration
i. That is, for some i ∈ [k]:

• Evi happens (in other words, u and v are not clustered
at the beginning of iteration i)

• δPi(u, v) = 1 (exactly one of them gets clustered in
iteration i)

Further, there is exactly one i such that both events above
happen. On the other hand, if u and v are not separated by
P then δPi(u, v) = 0 for all i ∈ [k]. We conclude that

1{P(u) 6= P(v)
}

=
∑
i∈[k]

1
{
δPi(u, v) = 1 and Evi

}
.

(A.4)
In particular, the expectations of the expressions on both
sides of (A.4) are equal:

Pr{P(u) 6= P(v)} =
∑
i∈[k]

Pr
{
δPi(u, v) = 1 and Evi

}
.

(A.5)
Now consider the first iteration i at which at least one of
the vertices u and v gets clustered. Note that (i) event Evi
happens and (ii) ∨Pi(u, v) = 1 (that is, (i) both points u and
v are not clustered at the beginning of iteration i; (ii) but at
least one of them gets clustered in iteration i). Further, for
j < i, ∨Pi(u, v) = 0 and for j > i, Evj does not happen.
We conclude that event “∨Pi(u, v) = 1 and Evi” happens
exactly for one value of i ∈ [k]. Therefore,∑

i∈k

∨Pi(u, v) · 1{Evi} = 1 (A.6)
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and ∑
i∈[k]

Pr{∨Pi(u, v) = 1 and Evi} (A.7)

=
∑
i∈[k]

E[∨Pi(u, v)1{Evi}] = 1.

Plugging (A.5) and (A.7) into (A.3), we obtain

∑
v∈Ball(u,R)

(
Pr
{
P(u) = P(v)

}
−Dβ

d(u, v)

R

)+

. βq ·E
[ ∑
v∈Ball(u,2R)

d(u, v)

R

]
.

We conclude that property (2) holds. Next, we show that
property (3) holds for every u ∈ X . As in the analysis of
property (2), we consider some iteration i. Then property
(c) of Theorem 5.1 guarantees that if u ∈ Xi then∑
i∈[k]

∑
v∈Ball(u,r)∩Xi

δPi(u, v) . (A.8)

.
∑
i∈[k]

β ·D2
β ·

( ∑
v∈Ball(u,2R)∩Xi

d(u, v)

R
· ∨Pi(u, v)

)

We rewrite (A.8) as follows:∑
i∈[k]

∑
v∈Ball(u,r)

δPi(u, v) · 1{Evi} .

.
∑
i∈[k]

β·D2
β ·

( ∑
v∈Ball(u,2R)

d(u, v)

R
·∨Pi(u, v)·1{Evi}

)
.

Note that this inequality holds for all u ∈ X: if u ∈ Xi, it
is equivalent to (A.8); if u /∈ Xi, then both sides are equal
to 0, and the inequality trivially holds. Using formulas (A.4)
and (A.6), we get∑
v∈Ball(u,r)

1
{
P(u) 6= P(v)

}
. β·D2

β ·
∑

v∈Ball(u,2R)

d(u, v)

R
.

Therefore, property (3) holds.

B. Proof of Theorem 5.1
In Section 5.1, we describe an iterative approach to find-
ing a probabilistic metric decomposition for Theorem 3.1.
In this section, we show how to find one cluster P of the
partitioning. Given a metric space (X, d) and positive num-
bers r and R, our algorithm selects a subset P ⊆ X that
satisfies the three properties listed in Theorem 5.1. Re-
call that β = r/R, Dβ = 2(q + 1) ln 1/β, R0 = R/Dβ,
R1 = R − R0 and ρq(β) = (1/β)q+1 (see Figure 3). In

z

R0 = R/Dβ

R

R1 t

γ−light shell
of width r

Figure 3. Light Ball
R > r > 0, q ≥ 1, β = r/R, Dβ = 2(q + 1) ln 1/β,

R0 = R/Dβ , R1 = R−R0.

this proof, we assume that β = r/R is sufficiently small
(i.e, β ≤ β∗q for some small β∗q = Θ

(
1

(q ln(q+1)

)
and, conse-

quently, R0 = R/Dβ is also small. Specifically, we assume
that r < R0 < R1 < R and R0 + r < R1/100.

Our algorithm for selecting the cluster P starts by picking
a pivot point z that has the most points within a ball of
small radius R0. That is, z is the optimizer to the following
expression:

z = arg max
u∈X
|Ball(u,R0)|. (B.1)

The algorithm then checks if the ball of a larger radius, R1,
around z has significantly more points in it in comparison
to the ball of radius R0 around z. If the ratio of the number
of points in these two balls exceeds ρq(β), the algorithm se-
lects the set of points Ball(z,R1) as our cluster P . We refer
to this case as the “Heavy Ball” case. In Section B.2, we
show that this set P satisfies the properties of Theorem 5.1.

If, however, |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|, then the
algorithm outputs cluster P = Ball(z, t) where t ∈ (0, R]
is chosen as follows. First, the algorithm finds the set S
of all radii s ∈ (3R0, R1] for which the set P = Ball(z, s)
satisfies Definition 5.2. Then, it chooses a random radius
t in S (non-uniformly) so that random set P = Ball(z, t)
satisfies property (b) of Theorem 5.1. In Appendix C.1, we
discuss how to find the set S and show that µ(S) ≥ R/2
(where µ(S) is the Lebesgue measure of set S). Finally,
in Appendix C.2, we describe a procedure for choosing a
random radius t in S.

B.1. Useful Observations

In this section, we prove several lemmas which we will
use for analyzing both the “Heavy Ball” and “Light Ball”



Local Correlation Clustering with Asymmetric Classification Errors

cases. First, we show an inequality that will help us lower
bound the right hand sides in inequalities (b) and (c) of
Theorem 5.1.

Lemma B.1. Assume that z is chosen according to (B.1).
Consider t in (3R0, R1] and u inX with d(z, u) ∈ [2R0, R].
Let P = Ball(z, t). Denote:

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
.

Then, |P | ≤ 2DβYP .

Remark: Note that in Theorem 5.1, the right side of in-
equality (b) equals βqE[YP ], and the right side of inequality
(c) equals β ·D2

β · Yp.

Proof. Observe that P ⊂ Ball(u, 2R). Hence,

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
≥
∑
v∈P

d(u, v)

R
.

For every v ∈ P \ Ball(u,R0), we have d(u,v)
R ≥ R0

R =

D−1β . Thus,

YP ≥ D−1β |P \ Ball(u,R0)|.

We need to lower bound the size of P \Ball(u,R0). On the
one hand, we have

|P \ Ball(u,R0)| ≥ |P | − |Ball(u,R0)|
≥ |P | − |Ball(z,R0)|.

Here, we used that Ball(z,R0) is the largest ball of
radius R0 in X . On the other hand, Ball(z,R0) ⊂
P \ Ball(u,R0), since d(z, u) ≥ 2R0. Thus, |P \
Ball(u,R0)| ≥ |Ball(z,R0)|. Combining two bounds
on |P \ Ball(u,R0)|, we get the desired inequality |P \
Ball(u,R0)| ≥ |P |/2.

We now provide a lemma that will help us verify property
(b) of Theorem 5.1 for that point u.

Lemma B.2. Consider an arbitrary probability distribution
of t in (3R0, R1]. Let P = Ball(z, t), where z is chosen
according to (B.1). If for each point u ∈ Ball(z,R) at least
one of the following two conditions holds, then P satisfies
property (b) of Theorem 5.1 for all points u in X .
Condition I:

Pr{t ≥ d(z, u)−R0} . βq+1 · E|Ball(z, t)|
|Ball(z,R0)|

. (B.2)

Condition II: For every v ∈ Ball(u,R0), we have

Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
Pr{∨P (u, v) = 1} .

. βq+1. (B.3)

Remark: This lemma makes the argument about the dis-
tribution of t from the proof overview section (Section 5)
more precise. As we discuss in subsection Light Ball 5.2.2,
we have chosen the distribution of t (Cumulative distribu-
tion function F , Definition 5.4) to satisfy two properties:
(Property I) the probability that u and v are separated by P
is upper bounded by the probability that u or v is in P times
O(Dβ); and (Property II) The probability that t is close to
πinvS (R/2) is small. Thus, Condition I of Lemma B.2 holds
for u with d(z, u) that are sufficiently close to πinvS (R/2),
and Condition II holds for u with for smaller values of
d(z, u).

Proof. Consider one term from the left hand side of prop-
erty (b) of Theorem 5.1 for some u in X:

(
Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
·Pr{∨P (u, v) = 1}

)+
.

Note that {δP (u, v) = 1} denotes the event that exactly one
of the points u and v lies in P ; whereas {∨P (u, v) = 1}
denotes the event that at least one of u and v lies in P .
Thus, Pr{∨P (u, v) = 1} ≥ Pr{δP (u, v) = 1}. Hence,
this expression is positive only ifDβ ·d(u, v)/R < 1, which
is equivalent to

d(u, v) < R/Dβ = R0.

Thus, in the left hand side of property (b), we can consider
only v in Ball(u,R0) (rather than Ball(u,R)). Moreover,
if d(z, u) > R, then for all v ∈ Ball(u,R0), we have
d(z, v) > R − R0 = R1 and, consequently, δP (u, v) = 0.
Therefore, for such u, the left hand side of property (b)
equals 0, and the inequality (b) holds trivially. We will
thus assume that d(z, u) ≤ R (which is equivalent to u ∈
Ball(z,R)). Similarly, since t > 3R0, we will assume
that d(z, u) ≥ 2R0 (otherwise, u ∈ P and every v ∈
Ball(u,R0) is in P , and thus δP (u, v) = 0).

We now show that if Condition I or II of Lemma B.2 holds
for u ∈ Ball(z,R) then property (b) is satisfied for that u.

I. Suppose, the first condition holds for u ∈ Ball(z,R). If
δP (u, v) = 1 then either u ∈ P, v 6∈ P or v ∈ P, u 6∈ P .
In the former case, t ≥ d(z, u); in the latter case, t ≥
d(z, v) ≥ d(z, u) − R0. In either case, t ≥ d(z, u) − R0.
Using that |Ball(u,R0)| ≤ |Ball(z,R0)| by our choice of
z (see (B.1)), we bound the left hand side of (b) as follows∑

v∈Ball(u,R0)

Pr{δP (u, v) = 1}

≤ |Ball(u,R0)|Pr{t ≥ d(z, u)−R0}
≤ |Ball(z,R0)|Pr{t ≥ d(z, u)−R0}
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We now use the inequality from Condition I to get the bound∑
v∈Ball(u,R0)

Pr{δP (u, v) = 1} . βq+1E|Ball(z, t)|

= βq+1E|P |.

Finally, by Lemma B.1, we have the following bound on
βq+1E|P |:

βq+1E|P | ≤ βq+1 · 2DβE[YP ] ≤ βqE[YP ]. (B.4)

Here, we used that 2βDβ = 2r/R0 < 1 by our choice of
β∗q . The right hand side of the inequality in property (b)
equals βqE[YP ]. Thus, property (b) holds.

II. Suppose now that the second condition holds for u ∈
Ball(z,R). Then, each term in the left hand side of (b) is
upper bounded by O(βq+1). Hence, the entire sum is upper
bounded by O(βq+1|Ball(u,R0)|), which in turn is upper
bounded by O(βq+1|Ball(z,R0)|). Then,

βq+1|Ball(z,R0)| ≤ βq+1|Ball(z, t)| = βq+1E|P |
≤ βqE[YP ].

The last inequality follows from (B.4). We conclude that
property (b) of Theorem 5.1 holds.

B.2. Heavy Ball Case

In this subsection, we analyze the case when
|Ball(z,R1)| ≥ ρq(β) · |Ball(z,R0)|. If this condi-
tion is met, then the algorithm outputs P = Ball(z,R1).
We will show that Theorem 5.1 holds for such a cluster P .

We first prove properties (a) and (b). Since the radius of P is
R1 ≤ R, its diameter is at most 2R. So property (a) of The-
orem 5.1 holds. To show property (b), we apply Lemma B.2
(item I) with t = R1. Trivially, Pr{t ≥ d(z, u)−R0} ≤ 1
and E|Ball(z, t)| = |Ball(z,R1)| ≥ ρq(β)|Ball(z,R0)|.
Thus, (B.2) is satisfied and property (b) also holds.

We now show property (c) of Theorem 5.1. Observe that
if d(z, u) /∈ [R1 − r,R1 + r], then δP (u, v) = 0 for all
v ∈ Ball(u, r) (because P = Ball(z,R1)). Hence, for
such u, property (c) holds. Thus, we assume that u ∈
[R1 − r,R1 + r] ⊆ [2R0, R].

We bound the left hand side of (c) as follows:∑
v∈Ball(u,r)

δ(u, v) ≤ |Ball(u, r)| ≤ |Ball(u,R0)|

≤ |Ball(z,R0)|,

here we first use that r ≤ R0 and then that z satisfies
(B.1). Since we are in the Heavy Ball Case, we have |P | ≥
ρq(β)|Ball(z,R0)|. Therefore,∑

v∈Ball(u,r)

δ(u, v) ≤ |P |/ρq(β).

By Lemma B.1, the right hand side is upper bounded by

2DβYP /ρq(β) = 2Dβ β
q+1 YP . βD2

β YP .

The right hand side of (c) equals βD2
β YP . Hence, property

(c) is satisfied.

Thus we have shown that Theorem 5.1 holds for the case
of Heavy Balls. To complete the proof, we show that Theo-
rem 5.1 also holds for the case of Light Balls – we give this
proof in Appendix C.

C. Light Ball Case
We now consider the case when |Ball(z,R1)| ≤ ρq(β) ·
|Ball(z,R0)|. Recall that S is the set of all radii s ∈
(3R0, R1] for which property (c) of Theorem 5.1 holds (Def-
inition 5.2). The set S can be found in polynomial time since
the number of distinct balls Ball(z, s) is upper bounded by
the number of points in the metric space. We now recall
map πS used in Algorithm 3.

Map πS . In Section 5.2, we define a measure preserv-
ing transformation πS that maps a given measurable set
S ⊂ [0, R] to the interval [0, µ(S)] (Definition 5.3). We
need this transformation in Algorithm 3. If S is the union
of several disjoint intervals (as in our algorithm) then πS
simply pushes all intervals to the left so that every two con-
secutive intervals touch each other. We show the following
lemma.

Lemma C.1. For any measurable set S, πS is a continuous
non-decreasing 1-Lipschitz function, and πinvS is a strictly
increasing function defined for all y in [0, µ(S)]. Moreover,
there exists a set Z0 of measure zero such that for all y ∈
[0, µ(S)] \ Z0, we have πinvS (y) ∈ S.

Proof. Note that πinvS (y) is a right inverse for πS(x):
πS(πinvS (y)) = y (but not necessarily a left inverse). Let

IS(x) =

{
1, if x ∈ S
0, otherwise

be the indicator function of set S. Then πS(x) =∫ x
0
IS(t)dt (we use Lebesgue integration here). Since

0 ≤ IS(t) ≤ 1, function πS is non-decreasing, 1-Lipschitz,
and absolutely continuous. By the Lebesgue differentiation
theorem, πS(x) is almost everywhere differentiable and
dπS(x)
dx = IS(x) almost everywhere. Let X0 = [0, R] \ S

and Z0 = πS(X0). Since πS is absolutely continuous and
IS(x) = 0 for x ∈ X0, we have

µ(Z0) ≤
∫
X0

dπS(x)

dx
dx =

∫
X0

IS(x)dx = 0.

Now if y /∈ Z0, then πS(πinvS (y)) = y /∈ Z0, thus
πinvS (y) /∈ X0 or, equivalently, πinvS (y) ∈ S, as required.
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Finally, we verify that πinvS is strictly increasing. Consider
a, b ∈ [0, µ(S)] with a < b. Note that a = πS(πinvS (a))
and b = πS(πinvS (b)). Thus, πS(πinvS (a)) < πS(πinvS (b)).
Since πS is non-decreasing, πinvS (a) < πinvS (b).

Note that if S is a union of finitely many disjoint open
intervals, then Z0 is the image of the endpoints of those
intervals under πS .

C.1. Clusters Satisfying Property (c) of Theorem 5.1

We first show that if |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|,
then µ(S) ≥ R/2. To this end, we define a ball with a
γ-light shell of width r.
Definition C.2. We say that the ball of radius t ≥ r around
z has a γ-light shell of width r if

|Ball(z, t+r)|−|Ball(z, t−r)| ≤ γ
∫ t−r

0

|Ball(z, x)| dx.

We let Sγ be the set of all radii t in the range (3R0, R1] such
that Ball(z, t) has a γ-light shell of width r. We now show
that (a) Sγ ⊂ S and (b) µ(Sγ) ≥ R/2 for γ = 25r/R2

0.
and, therefore, µ(S) ≥ R/2.

Lemma C.3. We have Sγ ⊂ S.

Proof. Consider a number t from Sγ and the ball of radius
t around z: P = Ball(z, t). Let us pick an arbitrary point
u. We are going to prove that inequality (5.2) holds and
therefore t ∈ S. Consider v ∈ Ball(u, r). Observe that
δP (u, v) = 1 only if both u and v belong to the r neighbor-
hoods of P andX \P . Thus, if δP (u, v) = 1, we must have
d(z, u), d(z, v) ∈ [t − r, t + r]. If d(z, u) /∈ [t − r, t + r],
then the left side of (5.2) equals 0, and we are done. Hence,
we can assume that d(z, u) ∈ [t− r, t+ r].

Using the observation above, we bound the left hand side of
(5.2) as∑
v∈Ball(u,r)

δP (u, v) ≤ |Ball(z, t+ r)| − |Ball(z, t− r)|.

We now need to lower bound the right hand side of (5.2).
Note that Ball(u, 2R) contains Ball(z, t), since

d(z, u) ≤ t+ r ≤ R1 + r = R−R0 + r < R,

and t < R. Thus,∑
v∈Ball(u,2R)

d(u, v)

R
∨p(u, v) ≥ 1

R

∑
v∈Ball(z,t)

d(u, v)∨p(u, v).

For all v ∈ Ball(z, t) ≡ P , we have ∨P (u, v) = 1. Hence,∑
v∈Ball(z,t)

d(u, v) ∨p (u, v) =
∑

v∈Ball(z,t)

d(u, v) (C.1)

By the triangle inequality, we have

d(u, v) ≥ (d(z, u)− d(z, v))+ ≥ ((t− r)− d(z, v))+.

Observe that

((t− r)− d(z, v))+ =

∫ t−r

0

1
{
d(z, v) ≤ x

}
dx.

Hence, (C.1) is lower bounded by

∑
v∈Ball(z,t)

∫ t−r

0

1
{
d(z, v) ≤ x

}
dx =

=

∫ t−r

0

∑
v∈Ball(z,t)

1
{
d(z, v) ≤ x

}
dx =

=

∫ t−r

0

|Ball(z, x)| dx.

Since the ball of radius t has a γ-light shell of width r, the
expression above is, in turn, lower bounded by

|Ball(z, t+ r)| − |Ball(z, t− r)|
γ

.

Thus, the right hand side of inequality (5.2) is lower bounded
by

25βD2
β

R
· |Ball(z, t+ r)| − |Ball(z, t− r)|

γ
.

This completes the proof of Lemma C.3, since

25βD2
β

R
· 1

γ
=

25βD2
βR

2
0

25R · r
=

(r/R)D2
β (R/Dβ)

2

Rr
= 1.

Lemma C.4. We have µ
(
Sγ
)
≥ R/2.

To prove this lemma, we use the following result from Ap-
pendix D.

Lemma C.5. Consider a non-decreasing function Φ :
[0, R] → R with Φ(0) = 1 and R > 0. Let r ∈ (0, R]
and γ ≤ (0, 1/r]. Then, for the subset S of numbers
t ∈ [0, R− r] for which inequality

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0

Φ(x)dx (C.2)

holds, we have Φ(R) ≥ eηµ(S)−1, where η =
√
γ/(e−1)r,

and µ(S) is the measure of set S.

Proof of Lemma C.4. We apply Lemma C.5 to the function

Φ(t) =
|Ball(z, t+ 3R0)|
|Ball(z, 3R0)|
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with parameters r′ = 2r, R′ = R1 − 3R0 − r, and γ =
25r/R2

0. Note that to be able to apply Lemma C.5 we
need γ < 1/r′ which is equivalent to βDβ < 1/5

√
2. The

latter holds due to β being sufficiently small, i.e., β ≤
Θ
(

1
(q ln(q+1)

)
. Observe that Φ(0) = 1 and

Φ(R′) ≤ |Ball(z,R1)|
|Ball(z, 3R0)|

≤ ρq(β)|Ball(z,R0)|
|Ball(z,R0)|

= ρq(β).

Here, we used that the Ball(z,R1) is light. From
Lemma C.5, we get that Φ(R′) ≥ eη

′µ(S′)−1, where
η′ =

√
γ/(e−1)r′, and S′ is the set of t for which Inequal-

ity (C.2) holds. Thus,

µ(S′) ≤ 1 + ln Φ(R′)

η′
≤ 1 + ln ρq(β)

η′
=

1 +Dβ/2

η′

=

√
(e− 1)r′

γ
· (1 +Dβ/2)

=

√
2(e− 1)r

25r
·R0 · (1 +Dβ/2)

=

√
2(e− 1)

25
· (R0 +R/2) < 0.4(R+R0).

where we used R0 · Dβ = R and that
√

2(e− 1) < 2.
Therefore for the measure of the set S′′ = [0, R′] \ S′ is at
least µ(S′′) ≥ ((R−R0)−3R0−r)−0.4(R+R0) ≥ R/2.
Here, we relied on our assumption that R0 + r < R1/100.

We claim that S′′ + 3R0 + r ⊂ Sγ . Consider an arbitrary
t ∈ S′′. First, observe that t+ 3R0 + r ∈ (3R0, R1]. Then,

|Ball(z, t+ 3R0 + r′)|
|Ball(z, 3R0)|

− |Ball(z, t+ 3R0)|
|Ball(z, 3R0)|

= Φ(t+ r′)− Φ(t) < γ

∫ t

0

Φ(x)dx

= γ

∫ t

0

|Ball(z, x+ 3R0)|
|Ball(z, 3R0)|

dx.

For t′ = t+ 3R0 + r, we get

|Ball(z, t′ + r)| − |Ball(z, t′ − r)| <

< γ

t′−3R0−r∫
0

|Ball(z, x+ 3R0)|dx

= γ

t′−r∫
3R0

|Ball(z, x)|dx < γ

t′−r∫
0

|Ball(z, x)|dx.

Thus, t′ ∈ Sγ . This finishes the proof.

Lemma C.4 together with Lemma C.3 imply the following
corollary.
Corollary C.6. Let S be the set defined in Definition 5.2.
Then, µ(S) ≥ R/2.

C.2. Clusters Satisfying Property (b) of Theorem 5.1

We now show how to choose a random t ∈ S, so that the
random cluster P = Ball(z, t) satisfies property (b) of The-
orem 5.1. We first choose a random x ∈ [0, R/2] with
the cumulative distribution function F (x) defined in Defi-
nition 5.4, and then let t = πinvS (x), where S ⊂ (3R0, R1]
is the set obtained in the previous section. Note that by
Lemma C.1, t = πinvS (x) ∈ S with probability 1, since
Pr{x ∈ Z0} = 0 (see Lemma C.1).

To show that property (b) is satisfied, we verify that for every
u in Ball(z,R), Condition I or Condition II of Lemma B.2
holds.

Pick a point u in Ball(z,R). We consider two cases:
πS(d(z, u)) > R/2 − R0 and πS(d(z, u)) ≤ R/2 − R0.
We prove that u satisfies Condition I of Lemma B.2 in the
former case and Condition II in the latter case.

First case: πS(d(z, u)) > R/2−R0. Write,

Pr{t ≥ d(z, u)−R0} = Pr{x ≥ πS(d(z, u)−R0)}.

Since πS is a 1-Lipschitz function, we have

πS(d(z, u)−R0) ≥ πS(d(z, u))−R0 ≥ R/2− 2R0.

Therefore,

Pr{t ≥ d(z, u)−R0} ≤ 1− F (R/2− 2R0).

We prove the following claim.

Claim C.7. We have

1− F (R/2− 2R0) . βq+1.

Proof. Write:

F (R/2− 2R0) =
1− e

−R
2R0 · e

2R0
R0

1− e
−R
2R0

=
1− e2e−Dβ/2

1− e−Dβ/2
.

Note that e−Dβ/2 = βq+1. Then,

1− F (R/2− 2R0) =
(e2 − 1)

1− βq+1
· βq+1.

Since the denominator of the right hand side is greater than
1/2 (recall that we assume that β is sufficiently small), we
have 1− F (R/2− 2R0) . βq+1.

Claim C.7 finishes the analysis of the first case, since
|Ball(z, t)|/|Ball(z,R0)| ≥ 1 for every value of t ≥ R0.

Second case: πS(d(z, u)) ≤ R/2 − R0. In this case, for
every v ∈ Ball(u,R0), we have

πS(d(z, v)) ≤ πS(d(z, u) +R0) ≤ R/2.
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Here, we used that πS is a 1-Lipschitz function. We claim
that inequality (B.3) holds for every two points v1, v2 ∈ X
with πS(d(z, v1)), πS(d(z, v2)) ≤ R/2 and d(v1, v2) ≤
R0. In particular, it holds for v1 = u and v2 = v. Without
loss of generality assume, that d(z, v1) ≤ d(z, v2). Then,

Pr{δP (v1, v2) = 1} = Pr{d(z, v1) ≤ t < d(z, v2)}
= Pr{πS(d(z, v1)) ≤ x < πS(d(z, v2))}
= F (πS(d(z, v2)))− F (πS(d(z, v1))).

Here, we used that random variable x has distribution func-
tion F . We show the following claim.

Claim C.8. For all x1 ≤ x2 in the range [0, R/2], we have

F (x2)−F (x1) ≤ Dβ ·
(x2 − x1)

R
·
(
1−F (x1) + 2βq+1

)
.

Proof. We have

F (x2)− F (x1) =

∫ x2

x1

F ′(x)dx

≤ (x2 − x1) max
x∈[x1,x2]

F ′(x)

= (x2 − x1) · e
−x1/R0/R0

1− e−R/2R0

= Dβ ·
(x2 − x1)

R
· e−x1/R0

1− e−R/2R0
.

Here, we used that R0 = R/Dβ . We now need to upper
bound the third term on the right hand side:

e−x1/R0

1− e−R/2R0
= 1− (1− e−R/2R0)− e−x1/R0

1− e−R/2R0

= 1− F (x1) +
e−R/2R0

1− e−R/2R0
.

As in Claim C.7, let us use that e−R/2R0 = βq+1 and 1 −
βq+1 ≥ 1/2 to get

e−x1/R0

1− e−R/2R0
≤ 1− F (x1) + 2βq+1.

Combining the bounds above, we get the following inequal-
ity:

F (x2)− F (x1) ≤ Dβ ·
x2 − x1
R

·
(

1− F (x1) + 2βq+1
)
.

Using Claim C.8 and the inequality

πS(d(z, v2)))− πS(d(z, v1) ≤ d(z, v2)− d(z, v1)

≤ d(v1, v2),

we derive the following upper bound

Pr{δP (v1, v2) = 1} ≤

≤ Dβ
d(v1, v2)

R
·
(
1− F (πS(d(z, v1)))) + 2βq+1

)
.

Then,

Pr{∨P (v1, v2) = 1} = Pr{d(z, v1) ≤ t}
= 1− F (πS(d(z, v1))).

Therefore,

Pr{δP (v1, v2) = 1}−Dβ
d(v1, v2)

R
·Pr{∨P (v1, v2) = 1} ≤

≤ 2Dβ
d(v1, v2)

R
βq+1.

Thus, the left hand side of (B.3) is upper bounded by

2Dβ · βq+1 · d(v1, v2)

R
≤ 2βq+1.

Here, we use that d(v1, v2) ≤ R0 and R0 = R/Dβ .

D. Proof of Lemma C.5
We first prove Lemma C.5 for the case when S is a measure
zero set. Specifically, we show the following lemma.

Lemma D.1. Suppose, a non-decreasing function Φ :
[0, R]→ R with Φ(0) = 1 satisfies the following inequality
for all t ∈ [0, R− r] \ Y0, where set Y0 has measure zero:

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0

Φ(x)dx, (D.1)

for some R > 0, r ∈ (0, R/2] and γ ∈ (0, 1/r], then
Φ(t) ≥ max{eηt−1, 1} for all t ∈ [0, R], where η =√
γ/(e−1)r. Consequently, we have Φ(R) ≥ eηR−1.

Proof. Since Φ(0) = 1 and Φ(t) is non-decreasing, we have
Φ(t) ≥ 1 for all t ≥ 0. We now prove that Φ(t) ≥ eηt−1.
We establish this inequality by induction. The inductive
hypothesis is that this inequality holds for t ∈ [0, 1/η +
ir] ∩ [0, R] for integer i ≥ 0. For t ≤ 1/η, we have Φ(t) ≥
1 > eηt−1. Thus, the inductive hypothesis holds for i = 0.
Suppose, it holds for i, we prove it for i+ 1.

First, consider an arbitrary t∗ ∈ [1/η, 1/η + (i + 1)r] ∩
[0, R] \ (Y0 + r), where Y0 + r is the set Y0 shifted right
by r. Let t = t∗ − r. Note that t > 0, since r < 1/η.
Also, t /∈ Y0. Then, by the inductive hypothesis, we have
Φ(x) ≥ eηx−1 for all x ∈ [1/η, t]. Using Inequality (D.1),
we obtain the following bound

Φ(t∗) = Φ(t+ r)
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≥ Φ(t) + γ

∫ 1/η

0

Φ(x)dx+ γ

∫ t

1/η

Φ(x)dx

≥ eηt−1 + γ

∫ 1/η

0

1 dx+ γ

∫ t

1/η

eηx−1 dx

= eηt−1 + γ/η + γ/η · (eηt−1 − 1)

= eηt−1(1 + γ/η).

Since η =
√
γ/(e−1)r, we have γ/η = (e−1)ηr. Now, using

the inequality ex ≤ 1 + (e− 1)x for x ∈ [0, 1], we get

Φ(t∗) ≥ eηt−1(1 + γ/η) = eηt−1(1 + (e− 1)ηδ)

≥ eηt−1 · eηr = eη(t+r)−1 = eηt
∗−1.

To finish the proof, we need to show that Φ(t∗∗) ≥ eηt∗∗−1
for t∗∗ ∈ [1/η, 1/η + (i+ 1)r] ∩ [0, R] ∩ (Y0 + r). Since
Y0 +r has measure zero, there exists an increasing sequence
t∗k of numbers in [0, 1/η+(i+1)r]∩([0, R]\(Y0 +r)) that
tends to t∗∗ as k → ∞. Using that Φ is a non-decreasing
function and eηt−1 is a continuous function, we have

Φ(t∗∗) ≥ lim
k→∞

Φ(t∗k) ≥ lim
k→∞

eηt
∗
k−1 = eηt

∗∗−1.

We now show that Lemma D.1 implies Lemma C.5. Loosely
speaking, in the proof, we shift all intervals from the set
S to the left to obtain a single interval [0, µ(S)]. We then
apply Lemma D.1 to the transformed function.

Proof of Lemma C.5. Let πS and πinvS be the maps defined
in Appendix C. Define Φ∗(t) as Φ∗(t) = Φ(πinvS (t)) and
let Y0 be a measure zero set as in Lemma C.5. We claim
that Φ∗(t) satisfies (D.1) for all t ∈ [0, π(S)] \ Y0. Fix
t ∈ [0, π(S)] \ Y0. Write

Φ∗(t+ r) = Φ(πinvS (t+ r)) ≥ Φ(πinvS (t) + r).

Here, we used that (a) πinvS (t+ r) ≥ πinvS (t) + r and (b) Φ
is a monotone function. By Lemma C.5, πinvS (t) ∈ S, thus

Φ∗(t+ r) ≥ Φ(πinvS (t) + r)

≥ Φ(πinvS (t)) + γ

∫ πinvS (t)

0

Φ(x)dx.

We now observe that Φ∗(t) = Φ(πinvS (t)) and∫ πinvS (t)

0

Φ(x)dx ≥
∫ πinvS (t)

0

Φ(x) · 1(x ∈ S)dx

=

∫ πinvS (t)

0

Φ(x)dπS(x)

=

∫ t

0

Φ∗(x)dx.

Here, we used that dπS(x) = 1(x ∈ S)dx and
πS(πinvS (t)) = t. Thus, we showed that for all t ∈
[0, π(S)] \ Y0, we have

Φ∗(t+ r) ≥ Φ∗(t) +

∫ t

0

Φ∗(x)dx.

We now use Lemma D.1 with function Φ∗ and R′ = µ(S).
We obtain the following inequality:

Φ∗(µ(S)) ≥ eηµ(S)−1,

which concludes the proof of Lemma C.5.

E. Integrality Gap
In this section, we present an integrality gap example for
the convex program (P ) in Figure 1.

Construction. Let n = 1 + d
√

1/αe. Consider a com-
plete graph on n vertices. Let P be a path of length n− 1.
Denote its endpoints by s and t and the set of its edges by
EP . All edges in P are positive edges of weight 1. Edge
(s, t) is a negative edge of weight 1. All other edges are
positive edges of weight α.

The cost of the integral solution Clearly, every integral
solution P should violate some edge (u, v) ∈ P ∪ {(s, t)}
(since all these edges cannot be satisfied simultaneously).
Thus, disu(P, E+, E−) ≥ 1 and ‖ dis(P, E+, E−)‖p ≥ 1.

The cost of the CP solution. We define the CP solution
as follows. Denote the distance between u and v along P
by distP (u, v). Let xuv = distP (u, v)/(n− 1). Note that
xst = 1. The values of variables yu are determined by
constraints (P1) of the convex program.

Now we upper bound the contribution of every edge (u, v)
(incident on u) to yu in formula (P1). The contribution of
(u, v) ∈ EP is wuvxuv = 1 · 1/(n− 1); the contribution of
edge (s, t) is wst(1−xst) = 0 (whether or not it is incident
on u), and the contribution of every other edge (u, v) is
wuvxuv ≤ α. Since every vertex u is incident on at most
2 edges from EP , we have yu ≤ 2/(n − 1) + αn .

√
α.

Now,

‖y‖p ≤ n1/p ·max
u
|yu| . n1/pα1/2 . α1/2−1/(2p).

Integrality gap We conclude that the integrality gap is at
least Ω((1/α)1/2−1/(2p)).


