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Apppendix

A. Additional results

A.1. Early phaseTr( F) correlates with �nal generalization

In this section, we present the additional experimental results for Section3. Figure7 shows the experiments with varying
batch size for CIFAR-100 and CIFAR-10. The conclusions are the same as discussed in the main text in Section3. We also
show the training accuracy for all the experiments performed in Figure2 and Figure7. They are shown in Figure8 and
Figure9 respectively. Most runs in all these experiments reach training accuracy� 99% and above.
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(a) CIFAR-10 (with aug.)
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(b) CIFAR-100 (w/o aug.)

Figure 7: Association between early phase values ofTr( F) and generalization holds on the CIFAR-10 and CIFAR-100
datasets. Each point corresponds to multiple runs with randomly chosen seeds and a speci�c value of batch size.TrF i is
recorded during the early phase (2-7 epochs, see main text for details), while the test accuracy is the maximum value along
the entire optimization path (averaged across runs with the same batch size). The horizontal and vertical error bars show the
standard deviation of values across runs. The plots show that early phaseTr( F) is predictive of �nal generalization.
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(a) ImageNet (w/o augmentation)
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(b) CIFAR-10 (with augmentation)
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(c) CIFAR-100 (w/o augmentation)

Figure 8: Training accuracy for the runs corresponding to Figure2. Each point corresponds to multiple seeds and a speci�c
value of learning rate.Tr( F i ) is recorded during the early phase of training (2-7 epochs, see the main text for details), while
the training accuracy is the maximum value along the entire optimization path (averaged across runs with the same learning
rate).
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(a) CIFAR-10 (with aug.)
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(b) CIFAR-100 (w/o aug.)

Figure 9: Training accuracy for the runs corresponding to Figure7. Each point corresponds to multiple runs with randomly
chosen seeds and a speci�c value of batch size.TrF i is recorded during the early phase (2-7 epochs, see main text for
details), while the training accuracy is the maximum value along the entire optimization path (averaged across runs with the
same batch size).

A.2. Fisher Penalty

We �rst show additional metrics for experiments summarized in Table1 in the main text. Table6 summarizes the �nal
training accuracy, showing that the baseline experiments were trained until approximately 100% training accuracy was
reached. Table4 supports the claim that all gradient norm regularizers reduce the maximum value ofTr( F) (we measure
Tr( F) starting from after one epoch of training becauseTr( F) explodes in networks with batch normalization layers at
initialization). Finally, Table5 con�rms that the regularizers incurred a relatively small additional computational cost.

Figure10 complements Figure4 for the other two models on the CIFAR-10 and CIFAR-100 datasets. The �gures are in line
with the results of the main text.

Lastly, in Table7 we report the �nal training accuracy reached by runs reported in Table2 in the main text.
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(a) DenseNet on CIFAR-100 (w/o aug.)
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(b) SimpleCNN on CIFAR-10 (w/o aug.)

Figure 10: Same as Figure4, but for DenseNet on CIFAR-100, and SimpleCNN on CIFAR-10. Curves were smoothed for
visual clarity.

Table 4: The maximum value ofTr( F) along the optimization trajectory for experiments on CIFAR-10 or CIFAR-100
included in Table1.

Setting � � Baseline GPx GP FP GPr

DenseNet/C100 (w/o aug.) 24.68 98.17 83.64 64.33 66.24 73.66
VGG11/C100 (w/o aug.) 50.88 148.19 102.95 58.53 64.93 62.96

WResNet/C100 (w/o aug.) 26.21 91.39 41.43 40.94 56.53 39.31

SCNN/C10 (w/o aug.) 24.21 52.05 47.96 25.03 19.63 25.35
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Table 5: Time per epoch (in seconds) for experiments in Table1.

Setting � � Baseline GPx GP FP GPr

WResNet/TinyImageNet (aug.) 214.45 142.69 233.14 143.78 208.62 371.74

DenseNet/C100 (w/o aug.) 78.88 57.40 77.89 78.66 97.25 75.96
VGG11/C100 (w/o aug.) 30.50 35.27 31.54 32.52 43.41 42.40

WResNet/C100 (w/o aug.) 49.64 47.99 71.33 61.36 76.93 53.25

SCNN/C10 (w/o aug.) 18.64 19.51 26.09 19.91 21.21 20.55

Table 6: The �nal epoch training accuracy for experiments shown in Table1. Experiments with small learning rate reach no
lower accuracy than experiments corresponding to a large learning rate� � .

Setting � � Baseline GPx GP FP GPr

WResNet/TinyImageNet (aug.) 99.84% 99.96% 99.97% 93.84% 81.05% 86.46%

DenseNet/C100 (w/o aug.) 99.98% 99.97% 99.96% 99.91% 99.91% 99.39%
VGG11/C100 (w/o aug.) 99.98% 99.98% 99.85% 99.62% 97.73% 86.32%

WResNet/C100 (w/o aug.) 99.98% 99.98% 99.97% 99.96% 99.99% 99.94%

SCNN/C10 (w/o aug.) 100.00% 100.00%97.79% 100.00% 93.80% 94.64%

Table 7: The �nal epoch training accuracy for experiments shown in Table2.

Setting � � FP

DenseNet/C100 (aug) 98.75� 0.27% 97.53� 1.75%
SCNN/C10 (aug) 97.52� 1.98% 98.94� 0.08%

VGG11/C100 (aug) 98.64� 0.06% 93.06� 0.01%
WResNet/C100 (aug) 99.97� 0.01% 99.97� 0.00%

WResNet/Tiny ImageNet (aug) 99.86� 0.02% 93.65� 5.85%

A.3. Fisher Penalty Reduces Memorization

In this section, we include additional experimental results for Section4.1. Figure11 is the same as Figure5, but for
ResNet-50. Finally, we show additional metrics for the experiments involving 25% noisy examples. Figure12shows the
cosine between the mini-batch gradients computed on the noisy and clean data. In Table9 and Table8 we show training
accuracy on the noisy and clean examples in the �nal epoch of training.

0 100 200 300
Epoch

0.2

0.1

0.0

0.1

co
s(

g
c
,g

n
)

(a) GPr

�0 �1�0�0 �2�0�0 �3�0�0
�E�p�o�c�h

"��0�.�2

"��0�.�1

�0�.�0

�0�.�1

�c
�o

�s
�(�g

�c
�,�

g �
n�)

(b) FP

0 100 200 300
Epoch

0.1

0.0

0.1

co
s(

g
c
,g

n
)

(c) GPx

Figure 12: The cosine between the mini-batch gradients computed on the noisy (gn ) and clean (gc) data, both measured on
the training set. We observe that in the early phase of training the angle is negative. Furthermore, stronger regularization
with GPr or FP correlates with a more negative angle.
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(a) Gradient norm on clean examples (left, denoted asgc), noisy examples (middle, denoted asgn ), and their ratio (right);
evaluated on the training set.

(b) Training accuracy on clean and noisy examples (solid/dashed lined, left), validation accuracy (middle), and a scatter plot
of training accuracy on clean vs noisy examples (right).

Figure 11: Same as Figure5, but for ResNet-50 trained on the CIFAR-100 dataset.

Table 8: Training accuracy on the clean examples int the �nal epoch, for experiments reported in Table3 (with 25% examples
with noisy labels).

Label Noise Setting Baseline Mixup GPx FP GPr

25% VGG-11/C100 99.79% 73.14% 97.46%79.52% 81.75%
ResNet-52/C100 95.87% 77.71% 95.88%78.72% 74.21%

A.4. Early Tr( F) in�uences �nal curvature

In this section, we present additional experimental results for Section5. The experiment on CIFAR-10 is shown in Figure13.
The conclusions are the same as discussed in the main text in Section5.

Table 9: Training accuracy on the noisy examples in the �nal epoch, for experiments reported in Table3 (with 25% examples
with noisy labels).

Label Noise Setting Baseline Mixup GPx FP GPr

25% VGG-11/C100 99.56% 8.29% 89.23%4.10% 4.96%
ResNet-52/C100 73.67% 4.22% 72.67%4.14% 2.86%
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Figure 13: SmallTr( F) during the early phase of training is more likely to reach wider minima as measured byTr( H ).
Left: 2 models are trained with different levels of regularization for 20 epochs on CIFAR-10.Tr( F) at the end of 20 epochs
(denoted asTr( F i )) is shown. Middle: Each model is then used as initialization and trained until convergence using the low
regularization con�guration with different random seeds. A histogram ofTr( H ) at the point corresponding to the best test
accuracy along the trajectory (denoted byTr( H f )) is shown. Right: a histogram of the best test accuracy corresponding to
middle �gure is shown.

(a) CIFAR-10 (w/ augmentation) (b) CIFAR-100 (w/o augmentation)

Figure 14: The value ofTr( H ) over the course of training. Each point corresponds to runs with different seeds and a
speci�c value of learning rate� and batch sizeS. ` and TA respectively denote the minimum training loss and the maximum
test accuracy along the entire trajectory for the corresponding runs (averaged across seeds). The plots show that �atter
optimization trajectories become biased towards �atter minima early during training, at a coarse scale of hyper-parameter
values (red vs blue).

Next, to understand why smallerTr( F) during the early phase is more likely to end up in a wider �nal minimum, we track
Tr( H ) during the entire course of training and show that it stabilizes early on. In this experiment, we create two sets of hyper-
parameters: coarse-grained and �ne-grained. For CIFAR-10, we use batch sizeS 2 A [ B , whereA = f 480; 500; 520g
andB = f 80; 100; 120g. For all batch size con�gurations, a learning rate of 0.02 is used. Overloading the symbolsA and
B for CIFAR-100, we use learning rate� 2 A [ B , whereA = f 0:0008; 0:001; 0:0012g andB = f 0:008; 0:01; 0:012g.
For all learning rate con�gurations, a batch size of 100 is used. In both cases, the elements within each set (A andB )
vary on a �ne-grained scale, while the elements across the two sets vary on a coarse-grained scale. The remaining details
and additional experiments can be found in AppendixI.4. The experiments are shown in Figure14. Notice that after
initialization (index 0 on the horizontal axis), the �rst value is computed at epoch 10 (at which point the experiments show
that entanglement has started to hold in alignment with the late phase).

We make three observations in this experiment. First, the relative ordering ofTr( H ) values for runs between setsA vsB
stays the same after the �rst 10 epochs. Second, the degree of entanglement is higher between any two epochs when looking
at runs across setsA andB , while it is weaker when looking at runs within any one of the sets. Finally, test accuracies for
setB runs are always higher than those of setA runs, but this trend is not strong for runs within any one set. Note that the
minimum loss values are roughly at a similar scale for each dataset and they are all at or below10� 2.
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B. Computation of Tr( H )

We computedTr( H ) in our experiments using the Hutchinson's estimator (Hutchinson, 1990),

T r (H ) = T r (H � I )

= T r (H � E[zzT ])

= E[T r (H � zzT )]

= E[zT H � z]
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whereI is the identity matrix,z is a multi-variate standard Gaussian random variable, andzi 's are i.i.d. instances ofz. The
larger the value ofM , the more accurate the approximation is. We usedM = 30. To make the above computation ef�cient,
note that the gradient@`

@� only needs to be computed once and it can be re-used in the summation over theM samples.

C. Approximations in Fisher Penalty

In this section, we describe in detail the approximations made when computing the Fisher Penalty. Recall thatTr( F) can be
expressed as

Tr( F) = Ex �X ;ŷ � p� (y jx )
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�
: (4)

In the preliminary experiments, we found that we can use the norm of the expected gradient rather than the expected norm
of the gradient, which is a more direct expression ofTr( F):
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whereN andM are the minibatch size and the number of samples fromp� (yjx n ), respectively. This greatly improves the
computational ef�ciency. WithN = B andM = 1 , we end up with the following learning objective function:
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We found empirically that
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2
, which we denote byTr( FB ), andTr( F) correlate well during training.

To demonstrate this, we train SimpleCNN on the CIFAR-10 dataset with 5 different learning rates (from10� 3 to 10� 1). The
outcome is shown in Figure15. We see that for most of the training, with the exception of the �nal phase,Tr( FB ) and
Tr( F) correlate extremely well. Equally importantly, we �nd that using a large learning affects bothTr( FB ) andTr( F),
which further suggests the two are closely connected.
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Figure 15: Correlation betweenTr( F) andTr( FB ) for SimpleCNN trained on the CIFAR-10 dataset. Blue to red color
denotes learning rates from10� 3 to 10� 1. The value ofTr( F) andTr( FB ) correlate strongly for the most of the training
trajectory. Using large learning rate reduces bothTr( F) andTr( FB ).

(a) Fisher Penalty withf = 10 (b) Fisher Penalty withf = 1

Figure 16: A comparison between the effect of recomputing Fisher Penalty gradient every 10 iterations (left) or every
iteration (right), with respect to validation accuracy andTr( F). We denote byf the frequency with which we update the
gradient. Both experiments result in approximately 80% test accuracy with the best con�guration.

Figure 17: Using Fisher Penalty without the approximation results in a similar generalization performance. We penalize
the norm of the gradient rather than norm of the mini-batch gradient (as in Equation3). We observe that this variant of
Fisher Penalty improves generalization to a similar degree as the version of Fisher Penalty used in the paper (c.f. Figure16.),
achieving 79.7% test accuracy.
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We also update the gradient ofTr( FB ) only every 10 optimization steps. We found empirically it does not affect
generalization performance nor the ability to regularizeTr( F) in our setting. However, we acknowledge that it is plausible
that this choice would have to be reconsidered in training with very large learning rates or with larger models.

Figure16compares learning curves of training with FP recomputed every optimization step with every 10th optimization
step. For each, we tune the hyperparameter� , checking 10 values equally spaced between10� 2 and100 on a logarithmic
scale. We observe that for the optimal value of� , both validation accuracy andTr( F) are similar between the two runs.
Both experiments achieve approximately 80% test accuracy.

Finally, to ensure that using the approximation in Equation3 does not negatively affect how Fisher Penalty improves
generalization or reduces the value ofTr( F), we experiment with a variant of Fisher Penalty without the approximation.
Please recall that we always measureTr( F) (i.e. we do not use approximations in computingTr( F) that is reported in the
plots), regardless of what variant of penalty is used in regularizing the training.

Speci�cally, we augment the loss function with the norm of the gradient computed on the �rst example in the mini-batch as
follows

`0(x 1:B ; y1:B ; � ) =
1
B

BX

i =1

`(x i ; yi ; � ) + � kg(x 1; ŷ1)k2 : (6)

We apply this penalty in each optimization step. We tune the hyperparameter� , checking 10 values equally spaced between
10� 4 and10� 2 on a logarithmic scale.

Figure17 summarizes the results. We observe that the best value of� yields 79.7% test accuracy, compared to 80.02% test
accuracy yielded by the Fisher Penalty. The effect onTr( F) is also very similar. We observe that the best run corresponds to
a maximum value ofTr( F) of 24.16, compared to that of 21.38 achieved by Fisher Penalty. These results suggest that the
approximation used in this paper's version of the Fisher Penalty only improves the generalization and �attening effects of
Fisher Penalty.

D. A closer look at the surprising effect of learning rate on the loss geometry in the early phase
of training

It is intuitive to hypothesize that the catastrophic Fisher explosion (the initial growth of the value ofTr( F)) occurs during
training with a large learning rate but is overlooked due to not suf�ciently �ne-grained computation ofTr( F). In this
section, we show evidence against this hypothesis based on the literature mentioned in the main text. We also run additional
experiments in which we compute the value ofTr( F) at each iteration.

The surprising effect of the learning rate on the geometry of the loss surface (e.g. the value ofTr( F)) was demonstrated in
prior works (Jastrzebski et al., 2019; Golatkar et al., 2019; Lewkowycz et al., 2020; Leclerc & Madry, 2020). In particular,
Jastrzebski et al.(2020); Lewkowycz et al.(2020) show that training with a large learning rate rapidly escapes regions of
high curvature, where curvature is understood as the spectral norm of the Hessian evaluated at the current point of the loss
surface. Perhaps the most direct experimental data against this hypothesis can be found in (Cohen et al., 2021) in Figure 1,
where training with Gradient Descent �nds regions of the loss surface with large curvature for small learning rate rapidly in
the early phase of training.

We also run the following experiment to provide further evidence against the hypothesis. We train SimpleCNN on the
CIFAR-10 dataset using two different learning rates, while computing the value ofTr( F) for every mini-batch. We use 128
random samples in each iteration to estimateTr( F).

We �nd that training with a large learning rate never (even for a single optimization step) enters a region where the value of
Tr( F) is as large as what is reached during training with a small learning rate. Figure18shows the experimental data.

We also found similar to hold when varying the batch size, see SectionE, which further shows that the observed effects
cannot be explained by the difference in learning speed incurred by using a small learning rate.

To summarize, both the published evidence ofJastrzebski et al.(2020); Lewkowycz et al.(2020); Cohen et al.(2021), as
well as our additional experiments, are inconsistent with the hypothesis that the results in this paper can be explained by
differences in training speed between experiments using large and small learning rates.
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Figure 18: Training with a large learning rate never (even for a single optimization step) enters a region with as large value
of Tr( F) as the maximum value ofTr( F) reached during training with a small learning rate. We run the experiment using
SimpleCNN on the CIFAR-10 dataset with two different learning rates. The left plot shows the value ofTr( F) computed at
each iteration, and the right plot shows training accuracy computed on the current mini-batch (curve has been smoothed for
clarity).

E. Catastrophic Fisher Explosion holds in training with large batch size

In this section, we show preliminary evidence that the conclusions transfer to large batch size training. Namely, we show that
(1) catastrophic Fisher explosion also occurs in large batch size training, and (2) Fisher Penalty can improve generalization
and close the generalization gap due to using a large batch size (Keskar et al., 2017).

Figure 19: Catastrophic Fisher explosion occurs also in large batch size training. Experiment run on the CIFAR-10 and
dataset the SimpleCNN model. The left plot shows the value ofTr( F) computed at each iteration, and the right plot shows
training accuracy computed on the current mini-batch (curve has been smoothed for clarity).

We �rst train SimpleCNN on the CIFAR-10 dataset using three different batch sizes, while computing the value ofTr( F) for
every mini-batch. We use 128 random samples in each iteration to estimateTr( F). Figure19summarizes the experiment.
We observe that training with a large batch size enters a region of the loss surface with a substantially larger value ofTr( F)
than with the small batch size.

Next, we run a variant of one of the experiments in Table1. Instead of using a suboptimal (smaller) learning rate, we use a
suboptimal (larger) batch size. Speci�cally, we train SimpleCNN on the CIFAR-10 dataset (without augmentation) with a
10x larger batch size while keeping the learning rate the same. Using a larger batch size results in3:24%lower test accuracy
(76:94% compared to73:7%test accuracy, c.f. with Table1).
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We next experiment with Fisher Penalty. We apply the penalty in each optimization step and use the �rst128examples when
computing the penalty. We also use a 2x lower learning rate, which stabilizes training but does not improve generalization
on its own (training with this learning rate reaches73:59%test accuracy). Figure20 showsTr( F) and validation accuracy
during training for different values of the penalty. We observe that Fisher Penalty improves test accuracy from73:59%to
78:7%. Applying Fisher Penalty also effectively reduces the peak value ofTr( F).

Taken together, the results suggest that Catastrophic Fisher explosion holds in large batch size training; using a small batch
size improves generalization by a similar mechanism as using a large learning rate, which can be introduced explicitly in the
form of Fisher Penalty.

Figure 20: Fisher Penalty improves generalization in large batch size training. Experiment run on the CIFAR-10 dataset
(without augmentation) and the SimpleCNN model. Warmer color corresponds to larger coef�cient used when applying
Fisher Penalty.

F. Tr( H ) and Tr( F) correlate strongly

We demonstrate a strong correlation betweenTr( H ) andTr( F) for DenseNet, ResNet-56 and SimpleCNN in Figure21.
We calculateTr( F) using a mini-batch. We see thatTr( F) has a smaller magnitude (we use a mini-batch gradient) but
correlates strongly withTr( H ).

(a) DenseNet on CIFAR-100 (b) SimpleCNN on CIFAR-10 (c) ResNet-56 on CIFAR-100

Figure 21: Correlation betweenTr( F) andTr( H ).
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G. Relationship between Fisher Penalty and gradient norm penalty

We give here a short argument that GP might act as a proxy for regularizingTr( F). Let f (x) represents the logits of the
network, andL represent the loss. Thenkgk2 = k @L (x ;y )

@f(x )
@f(x )

@� k2, andTr( F) = k @L (x ;ŷ )
@f(x )

@f(x )
@� k2. Hence, in particular,

reducing the scale of the Jacobian of the logits with respect to weights will reduce bothkgk2 and Tr(F). Empirically,
penalizing gradient norm seems to be a less effective regularizer, which suggests that it acts as a proxy for regularizing
Tr( F). A similar argument can be also made for GPx.

H. Fisher Penalty Reduces Memorization

We present here a short argument that Fisher Penalty can be seen as reducing the training speed of examples that are both
labeled randomly and for which the model makes a random prediction.

Let DR = f x i ; yi gi denote a set of examples where the labelyi is sampled from the discrete uniform distributionU. Let
g(x ; y; � ) = @

@�`(x ; y; � ) denote gradient of the loss function evaluated on an example (x ; y).

Assume that the predictive distributionp� (yjx ) is uniform for all x 2 D R . Then the expected mean squared norm
of gradient of examples inDR over different sampling of labels isE[kg(x ; y)k2

2] = 1
jD R j

P
i Ey �U [[kg(x i ; y)[k2] =

1
jD R j

P
i Eŷ � p� ( ŷ j x ) [kg(x i ; ŷ)2k2].

Fisher Penalty aims to penalize the trace of the Fisher Information Matrix. For examples inDR , Tr( F) evaluates to
Tr( FR ) = 1

jD R j Eŷ � p� (y jx )
�
kg(x i ; ŷ)k2

2

�
, which under our assumptions is equal toE[kg(x ; y)k2].

We are interested in understanding how Fisher Penalty affects the learning speed of noisy examples. The reduction in the
training loss for a given example can be related to its gradient norm using Taylor expansion. Consider the difference in
training loss� ` = ` (x ; y; � � �g (x ; y)) � ` (x ; y; � ) after performing a single step of gradient descent on this example.
Using �rst-order Taylor expansion we arrive at� ` � � � kg(x ; y)k2

2.

Taken together, penalizingkg(x ; y)k2, which is achieved by penalizingTr( F)R , can be seen as slowing down learning on
noisy examples.

However, in practice, we apply Fisher Penalty to all examples in the training set because we do not know which ones are
corrupted. ConsiderD = DR [ D C , whereD is the whole training set andDC denotes the subset with clean (not altered)
labels. Then,Tr( F) = Tr( FR ) + Tr( FC ), whereTr( F) denotes trace of the FIM evaluated on the whole dataset, and
Tr( FC ) (Tr( FR )) denotes the trace of the FIM on the clean (noisy) subset of the dataset.

Hence, ifTr( FR ) � Tr( FC ), we can expect Fisher Penalty to disproportionately slow down training of noisy examples.
This assumption is likely to hold because the clean examples tend to be learned much earlier in training than noisy ones (Arpit
et al., 2017). In experiments, we indeed observe that the gradient norm of examples with noisy labels is disproportionately
affected by Fisher Penalty, and also that learning on noisy examples is slower.

I. Additional Experimental Details

I.1. Early phaseTr( F) correlates with �nal generalization

Here, we describe additional details for experiments in Section3.

In the experiments with batch size, for CIFAR-10, we use batch sizes 100, 500 and 700, and� = 1 :2. For CIFAR-100,
we use batch sizes 100, 300 and 700, and� = 3 :5. These thresholds are crossed between 2 and 7 epochs across different
hyperparameter settings. The remaining details for CIFAR-100 and CIFAR-10 are the same as described in the main text.
The optimization details for these datasets are as follows.

ImageNet: No data augmentation was used in order to allow training loss to converge to small values. We use a batch size
of 256. Training is done using SGD with momentum set to 0.9, weight decay set to1e � 4, and with base learning rates in
f 0:001; 0:01; 0:1g. Learning rate is dropped by a factor of 0.1 after 29 epochs and training is ended at around 50 epochs
at which most runs converge to small loss values. No batch normalization is used and weight are initialized using Fixup
(Zhang et al., 2019). For each hyperparameter setting, we run two experiments with different random seeds (due to the
computational overhead). We computeTr( F) using 2500 samples (similarly to (Jastrzebski et al., 2020)).
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CIFAR-10: We used random �ipping as data augmentation. In the experiments with variation in learning rates (used
f 0:007; 0:01; 0:05g), we use a batch size of 256. In the experiments with variation in batch size (used 100, 500 and 700), we
use a learning rate of 0.02. Training is done using SGD with momentum set to 0.9, weight decay set to1e � 5. Learning
rate is dropped by a factor of 0.5 at epochs 60, 120, and 170, and training is ended at 200 epochs at which most runs
converge to small loss values. No batch normalization is used and weight are initialized using (Arpit et al., 2019). For each
hyperparameter setting, we run 32 experiments with different random seeds. We computeTr( F) using 5000 samples.

CIFAR-100: No data augmentation was used for CIFAR-100 to allow training loss to converge to small values. We
used random �ipping as data augmentation for CIFAR-10. In the experiments with variation in learning rates (used
f 0:005; 0:001; 0:01g), we use a batch size of 100. In the experiments with variation in batch size (used 100, 300 and 700),
we use a learning rates of 0.02. Training is done using SGD with momentum set to 0.9, weight decay set to1e� 5. Learning
rate is dropped by a factor of 0.5 at epochs 60, 120, and 170, and training is ended at 200 epochs at which most runs
converge to small loss values. No batch normalization is used and the weights are initialized using (Arpit et al., 2019). For
each hyperparameter setting, we run 32 experiments with different random seeds. We computeTr( F) using 5000 samples.

I.2. Fisher Penalty

Here, we describe the remaining details for the experiments in Section4. We �rst describe how we tune hyperparameters in
these experiments. In the remainder of this section, we describe each setting used in detail.

Tuning hyperparameters In all experiments, we refer to the optimal learning rate� � as the learning rate found using
grid search. In most experiments, we check 5 different learning rate values uniformly spaced on a logarithmic scale, usually
between10� 2 and100. In some experiments, we adapt the range to ensure that it includes the optimal learning rate. We
tune the learning rate only once for each con�guration (i.e. we do not repeat it for different random seeds).

In the �rst setting, for most experiments involving gradient norm regularizers, we use 10� smaller learning rate than� � . For
TinyImageNet, we use 30� smaller learning rate than� � . To pick the regularization coef�cient� , we evaluate 10 different
values uniformly spaced on a logarithmic scale between10� 1 � v to 101 � v with v 2 R+ . We choose the best performing
� according to validation accuracy. We pick the value ofv manually with the aim that the optimal� is included in this
range. We generally found thatv = 0 :01works well for GP, GPr, and FP. For GPx we found in some experiments that it is
necessary to pick larger values ofv.

Measuring Tr( F) We measureTr( F) using the number of examples equal to the batch size used in training. For
experiments with Batch Normalization layers, we use Batch Normalization in evaluation mode due to the practical reason
that computingTr( F) uses a batch size of 1, and henceTr( F) is not de�ned for a network with Batch Normalization layers
in training mode.

DenseNet on the CIFAR-100 dataset We use the DenseNet (L=40, k=12) con�guration from (Huang et al., 2017). We
largely follow the experimental setting in (Huang et al., 2017). We use the standard data augmentation (where noted) and
data normalization for CIFAR-100. We hold out random 5000 examples as the validation set. We train the model using SGD
with a momentum of 0.9, a batch size of 128, and a weight decay of 0.0001. Following (Huang et al., 2017), we train for
300 epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. To reduce variance, in testing we update
Batch Normalization statistics using 100 batches from the training set.

Wide ResNet on the CIFAR-100 dataset We train Wide ResNet (depth 44 and width 3, without Batch Normalization
layers). We largely follow experimental setting in (He et al., 2016).We use the standard data augmentation and data
normalization for CIFAR-100. We hold out random 5000 examples as the validation set. We train the model using SGD
with a momentum of 0.9, a batch size of 128, and a weight decay of 0.0010. Following (He et al., 2016), we train for 300
epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. We remove Batch Normalization layers. To
ensure stable training we use the SkipInit initialization (De & Smith, 2020).

VGG-11 on the CIFAR-100 dataset We adapt the VGG-11 model (Simonyan & Zisserman, 2015) to CIFAR-100. We
do not use dropout nor Batch Normalization layers. We hold out random 5000 examples as the validation set. We use the
standard data augmentation (where noted) and data normalization for CIFAR-100. We train the model using SGD with a
momentum of 0.9, a batch size of 128, and a weight decay of 0.0001. We train the model for 300 epochs and decay the
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learning rate by a factor of 0.1 after every 40 epochs starting from epoch 80.

SimpleCNN on the CIFAR-10 dataset We also run experiments on the CNN example architecture from the Keras
example repository (Chollet & others, 2015)2, which we change slightly. Speci�cally, we remove dropout and reduce the
size of the �nal fully-connected layer to 128. We train it for 300 epochs and decay the learning rate by a factor of 0.1 after
the epochs 150 and 225. We train the model using SGD with a momentum of 0.9, and a batch size of 128.

Wide ResNet on the TinyImageNet dataset We train Wide ResNet (depth 44 and width 3, with Batch Normalization
layers) on TinyImageNetLe & Yang (2015). TinyImageNet consists of a subset of 100,000 examples from ImageNet that
we downsized to 32� 32 pixels. We train the model using SGD with a momentum of 0.9, a batch size of 128, and a weight
decay of 0.0001. We train for 300 epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. We do not
use validation in TinyImageNet due to its larger size. To reduce variance, in testing we update Batch Normalization statistics
using 100 batches from the training set.

I.3. Fisher Penalty Reduces Memorization

Here, we describe additional experimental details for Section4.1. We use two con�gurations described in SectionI.2: VGG-
11 trained on CIFAR-100 dataset, and Wide ResNet trained on the CIFAR-100 dataset. We tune the regularization coef�cient
� in the rangef 0:01; 0:1; 0:31; 10g, with the exception of GPx for which we use the rangef 10; 30; 100; 300; 1000g. We
tuned the mixup coef�cient in the rangef 0:4; 0:8; 1:6; 3:2; 6:4g. We removed weight decay in these experiments. We use
validation set for early stopping, as commonly done in the literature.

I.4. Early Tr( F) in�uences �nal curvature

CIFAR-10: We used random �ipping as data augmentation for CIFAR-10. We use a learning rate of 0.02 for all experiments.
Training is done using SGD with momentum 0.9, weight decay1e � 5, and batch size as shown in �gures. The learning rate
is dropped by a factor of 0.5 at 80, 150, and 200 epochs, and training is ended at 250 epochs. No batch normalization is used
and the weights are initialized using (Arpit et al., 2019). For each batch size, we run 32 experiments with different random
seeds. We computeTr( F) using 5000 samples.

CIFAR-100: No data augmentation is used. We use a batch size of 100 for all experiments. Training is done using SGD
with momentum 0.9, weight decay1e � 5, and with base learning rate as shown in �gures. The learning rate is dropped by
a factor of 0.5 at 80, 150, and 200 epochs, and training is ended at 250 epochs. No batch normalization is used and the
weights are initialized using (Arpit et al., 2019). For each learning rate, we run 32 experiments with different random seeds.
We computeTr( F) using 5000 samples.

2Accessible athttps://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py.
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