
Parallel and Flexible Sampling from Autoregressive Models

A. PnF Sampling Details and Hyper-Parameters
We broadly adopt the geometric annealing schedule and hyper-parameters of annealed Langevin dynamics introduced in
Song & Ermon (2019) and elaborated upon in Song & Ermon (2020). For both the PixelCNN++ and WaveNet models, we
found that we needed additional intermediate noise levels to generate quality samples. We also found that good sample
quality using these models required a smaller learning rate and mixing for more iterations than previous work (Song &
Ermon, 2019; Jayaram & Thickstun, 2020). We speculate that the need for more levels of annealing and slower mixing
could be a attributable to the autoregressive model parameterization, because also required a finer annealing and mixing
schedule for the WaveNet models. Detailed hyper-parameters for the PixelCNN++ and WaveNet experiments are presented
in Appendix B and C respectively.

Previous work makes the empirical observation that gradients of a noisy model pσ(x) are inverse-proportional to the
variance of the noise: E‖∇x log pσ(x(t))‖2 ∝ 1/σ2 (Song & Ermon, 2019). This motivates the choice of learning rate
η ∝ σ2. The empirical scale of the gradients is conjectured in Jayaram & Thickstun (2020) to be a consequence of “severe
non-smoothness of the noiseless model p(x).” That work goes on to show that, if p(x) were a Dirac spike, then exact
inverse-proportionality of the gradients would hold in expectation. For the discretized autoregressive models discussed in
this work, the noiseless distribution p(x) is genuinely a mixture of Dirac spikes, and so the analysis in Jayaram & Thickstun
(2020) applies without caveats to these models and justifies the choice η ∝ σ2 (the precise constant of proportionality
remains application dependent, and discussed in the experimental details sections).

B. PixelCNN++ Experimental Details
Our visual sampling experiments are performed using a PixelCNN++ model p(x) trained on CIFAR-10. Specifically, we
used a public implementation of PixelCNN++ written by Lucas Caccia, available at:

https://github.com/pclucas14/pixel-cnn-pp.

We used the pre-trained weights for this model shared by Lucas Caccia (at the link above) with a reported test-set log loss of
2.95 bits per dimension. For the models pσ(x), we fine-tuned the pre-trained model for 10 epochs at each noise level σ2. We
adopt the geometric annealing schedule proposed in Song & Ermon (2019) for annealing σ2, beginning at σ1 = 1.0 and
ending at σL = 0.01 using L = 19 noise levels. This is double the number of noise levels used in previous work (Song &
Ermon, 2019; Jayaram & Thickstun, 2020). We also found that sample quality improved using a smaller learning rate and
mixing for more iterations than reported in previous work. For conditional sampling tasks, we set δ = 3e− 06 and T = 300
in contrast to δ = 2e− 05 and T = 100 used in previous work. In wall-clock time, we find that conditional PixelCNN++
sampling tasks require approximately 60 minutes to generate a batch of 16 samples using a 1080Ti GPU.

C. WaveNet Experimental Details
Our audio sampling experiments are performed using a WaveNet model p(x) trained on both the VCTK and Supra Piano
datasets. We used the public implementation of Wavenet written by Ryuichi Yamamoto available at:

https://github.com/r9y9/wavenet_vocoder.

For all audio experiments, where data is encoded between {0..255}, we use L = 15 noise levels geometrically spaced
between σ = 175.9 and σ = 0.15. The same noise levels are also used for the sampling speed and quality results presented
in Figures 2 and 3. For all experiments, the number of Langevin steps per noise level is T = 256, except for Figure 2 where
this parameter is varied to highlight changes in likelihood. The learning rate multiper δ = 0.05 is used for all experiments.
The Markov window w is based on the underlying architecture. When training the fine-tuned noise models, all training
hyperparameters are kept the same as the original WaveNet implementation. For the WaveNet implementation used in this
paper, this is 6, 139 samples which is roughly 0.3 seconds at a 22kHz sample rate Please refer to the WaveNet paper or the
public WaveNet implementation for training details.

As discussed in the WaveNet paper (van den Oord et al., 2016a), 8-bit µ-law encoding results in a higher fidelity representation
of audio than 8-bit linear encoding. For most experiments, the observation constraint y = g(x) is still linear even under a
µ-law encoding of x. However, for source separation, the constraint y = x1 + x2 is no longer linear under µ-law encoding.
Consequently, we use an 8-bit linear encoding of x for source separation experiments to avoid a change of variables
calculation. To facilitate a fair comparison, all ground truths and baselines shown in the demos use the corresponding µ-law

https://github.com/pclucas14/pixel-cnn-pp
https://github.com/r9y9/wavenet_vocoder


Parallel and Flexible Sampling from Autoregressive Models

or linear 8-bit encoding.

In the source separation experiments, all mixtures were created with 1/2 gain on each source component. Due to the natural
variation of loudness in the training datasets, we find that our model generalizes to mixtures without exactly 1/2 gain on
each source. The real life source separation result on the project website shows that we can separate a mixture in the wild
when we have no information about the relative loudness of each component.

D. Additional PixelCNN++ Sampling Results

Ground Truth

Mixture Input

Output

+ = +=

Figure 5. Additional uncurated results of PnF source separation (Section 4.4) for mixtures of CIFAR-10 test-set images using a PixelCNN++
prior trained on CIFAR-10.



Parallel and Flexible Sampling from Autoregressive Models

Ground Truth Down-Sampled Input

Output

Figure 6. Additional uncurated results of PnF super-resolution (Section 4.5) applied to down-sampled CIFAR-10 test-set images using a
PixelCNN++ prior trained on CIFAR-10.



Parallel and Flexible Sampling from Autoregressive Models

Ground Truth Masked Input

Output

Figure 7. Additional uncurated results of PnF inpainting (Section 4.6) applied to masked CIFAR-10 test-set images using a PixelCNN++
prior trained on CIFAR-10.


