
Supplementary Material for the Paper entitled “Objective Bound Conditional

Gaussian Process for Bayesian Optimization”

A Notations

In this supplementary material, we use the following notations:

Dn = (Xn, (f(Xn))) = (Xn,fn)

µGP (x;Dn) = k(x,Xn)K(Xn,Xn)
−1fn

µ̂(x;Dn, ZM ) = E[f(x)|Dn, xM , ZM ] = µGP (x;Dn, xM , f(xM ))

µ̃(x;Dn) = E[µ̂(x;Dn, ZM )|Dn]

σ2
GP (x;Dn) = σ2

GP (x;Xn) = k(x, x)− k(x,Xn)K(Xn,Xn)
−1k(Xn, x)

σ2
GP,σ2(x;Dn) = σ2

GP,σ2(x;Xn) = k(x, x)− k(x,Xn)(K(Xn,Xn) + σ2In)−1k(Xn, x)

σ̂2(x;Dn, ZM ) = V ar[f(x)|Dn, xM , ZM ] = σ2
GP (x;Xn, xM ) < σ2

GP (x;Xn)

σ̃2(x;Dn) = E(σ̂2(x;Dn, ZM )|Dn) + V ar(µ̂(x;Dn, ZM )|Dn) (Law of total variance)

Σn×n = K(Xn,Xn)− k(Xn, xM )k−1(xM , xM )k(xM ,Xn)

B Inference for Case 2

We describe the inference procedure for Case 2 in Section 3.2 in more detail. As mentioned in

Section 3, we use variational inference to estimate the parameters of OBCGP. The variational

lower bound is expressed as

L(θ, φ;Dn) = Eqφ(ZM )[log pθ(fn|ZM )]−KL(qφ(ZM )||p(ZM )).
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In Case 2, we take beta(α, β) as a variational distribution over ZM . A beta distribution provides

various shapes of a density function, depending on the parameters. Therefore, it can approximate

p(ZM |fn) flexibly. First of all, KL divergence has the following analytical formula:

KL(qφ(ZM )||p(ZM )) = log
B(1, λ)

B(α, β)
+ (α− 1)γ(α) + (β − λ)γ(β) + (1 + λ− α− β)γ(α+ β),

where B(α, β) is a beta function. The first term of L(θ, φ;Dn) can also be computed using a

closed-form expression as follows:

Eqφ(ZM )[log pθ(fn|ZM )]

∝ −1

2
log |Σn×n| −

1

2
(fn − lp

k(Xn, xM )

k(xM , xM )
)TΣ−1

n×n(fn − lp
k(Xn, xM )

k(xM , xM )
)

+ Eq1(up − lp)
k(Xn, xM )

k(xM , xM )

T

Σ−1
n×n(fn − lp

k(Xn, xM )

k(xM , xM )
)− 1

2
Eq2(up − lp)2k(Xn, xM )

k(xM , xM )

T

Σ−1
n×n

k(Xn, xM )

k(xM , xM )
,

(1)

where Eq1 and Eq2 are the first and second moments of qφ(ZM ), respectively. Then, using Eq.(1),

we can obtain the posterior mean and variance of f(x∗), given Dn, as in Section 3.2.

C Derivation of Eq.(7)

In the inference procedure, when the parameters of (ψ, φ) are fixed, xM should maximize Eqφ(ZM )[log pθ(fn|ZM )],

because the KL divergence term does not contain xM . Let f q(xM ) denote the the random variable

following the posterior distribution of f(xM ) in both Case 1 and Case 2 (see Section 6.1 in the

paper). Then, Eqφ(ZM )[log pθ(fn|ZM )] can be written as follows:

Eqφ(ZM )[log pθ(fn|ZM )] = Efq(xM )[log pθ(fn|f q(xM ))]

∝ Efq(xM )[−
1

2
log |Σn×n| −

1

2
(fn − f q(xM )

k(Xn, xM )

k(xM , xM )
)TΣ−1

n×n(fn − f q(xM )
k(Xn, xM )

k(xM , xM )
)].

To express this formula in terms of the GP posterior moments (i.e., µGP (x;Dn) and σ2
GP (x;Dn)),

we use the following two properties: For n× n matrix A and n× 1 vectors b and c,
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Property 1. (A+ bcT )−1 = A−1 − A−1bcTA−1

1+cTA−1b

Property 2. det(I + bcT ) = 1 + bT c

Using the property 1, we obtain Σ−1
n×n = K−1+K−1k(Xn,xM )k(xm,Xn)K−1

σ2
GP (xM ;Dn)

. Also, using the property 2,

we obtain log |Σn×n| = log(σ2
GP (x;Dn))+log |K|. Applying these results to Eqφ(ZM )[log pθ(fn|ZM )],

Eq.(7) is derived.

D Acquisition functions with GP

Given the observed data Dn−1, BOs (with GP) select the next query point by optimizing an acqui-

sition function α(x;Dn−1), which is computed based on the GP posterior. We discuss the detailed

formula of acquisition functions with the GP.

GP-UCB. GP-UCB is an acquisition function motivated from the confidence bound on the GP

posterior. Using the posterior distribution f(x)|Dn ∼ N(µGP (x;Dn−1), σ2
GP (x;Dn−1)), GP-UCB

sets α(x;Dn) = µGP (x;Dn) + λσGP (x;Dn), where λ is a positive hyperparameter. The next query

point is selected so as to maximize α(x).

GP-EI. GP-EI is also based on the GP posterior. It sets α(x;Dn) = Ef(x)|Dn [(f(x)− θ)+], which

can be expressed in a closed-form analytically. In detail, α(x;Dn) = [φ(γ(x))−γ(x)Φ(γ(x))]σGP (x;Dn),

where γ(x) = θ−µGP (x;Dn)
σGP (x;Dn) , and φ(·) and Φ(·) are the standard normal pdf and cdf, respectively. A

popular choice of θ is the maximum observed function value.

GP-MES. Max-value entropy search (MES) acquisition function is an information-theoretic ap-

proach, which quantifies the information gain about the maximum function value. The acquisition

function of GP-MES is α(x;Dn) = I(fopt, fn|Dn, x), where I(·, ·) is the mutual information, and

fopt is the true optimal function value. GP-MES can be approximately computed based on the

samples of fopt, whose distribution is inferred through the Gumbel or GP posterior distribution

(Wang and Jegelka, 2017).
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E Acquisition functions with OBCGP

As discussed in Section 4, we can approximate the posterior distribution of the OBCGP as a

Gaussian using moment matching. Then, we can readily evaluate acquisition functions mentioned

in Section D for OBCGP, just by replacing µGP (x;Dn) and σ2
GP (x;Dn) with µ̃(x;Dn) and σ̃2(x;Dn)

(see Section 3), respectively. For example, OBCGP-EI and OBCGP-UCB can be written as follows:

OBCGP-EI.

xn = argmaxx∈Ω [φ(γ̃(x))− γ̃(x)Φ(γ̃(x))]σ̃(x;Dn−1), γ̃(x) =
fbest − µ̃(x;Dn−1)

σ̃(x;Dn−1)
.

OBCGP-UCB.

xn = argmaxx∈Ω µ̃(x;Dn−1) + β1/2
n σ̂(x;Dn−1, ZM ).

Alternatively, we can evaluate the acquisition functions using Monte Carlo samples from the

OBCGP posterior, without the normal approximation, as discussed in Section 4. For example, the

EI can be rewritten as EI(x) = α(x;Dn) = E[E[(f(x) − fbest)+|Dn, f(xM )]|Dn]. Then, the inner

expectation term can be derived in a closed-form similar to the GP-EI, using the fact that given

Dn and f(xM ), f(x) follows a normal distribution by definition of the OBCGP (Note that when

we use the moment matching approximation, it is assumed that given Dn, f(x) follows a normal

distribution.) The outer expectation term can be approximated using Monte Carlo samples from

p(f(xM )|Dn). We denote this sampling-based calculation of the EI by EIs, to differentiate the

calculation of the EI based on the moment-matching approximation. We provide the experiments

results of OBCGP-EIs in Section H.1. The inner expectation of the EI for the OBCGP have

different closed-form expressions for Case 1 and Case 2 as follows:

OBCGP-EIs (Case 1)

xn = argmaxx∈Ω E[E[(f(x)− fbest)+|Dn−1, f(xM )]|Dn−1]

≈ argmaxx∈Ω

1

N

N∑
i=1

[φ(γ1(x, ZiM ))− γ1(x, ZiM )Φ(γ1(x, ZiM ))]σ̂(x;Dn−1, ZM ),

where φ(·) is the standard normal pdf, ZiM are the samples from p(ZM |Dn−1) ≈ qφ(ZM ) for Case 1
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(i.e., ZiM ∼ gamma(α, β)), γ1(x, ZiM ) = [fbest − µGP (x;Dn−1)− Λ(x,xM )−k(x,xM )
σ2
GP (xM ;Dn−1)

(µGP (xM ;Dn−1)−

lp − ZiM )]/σ̂(x;Dn−1, ZM ), and Λ(x, xM ) = k(x,Xn)K(Xn,Xn)
−1k(Xn, xM ).

OBCGP-EIs (Case 2)

xn = argmaxx∈Ω E[E[(f(x)− fbest)+|Dn−1, f(xM )]|Dn−1]

≈ argmaxx∈Ω

1

N

N∑
i=1

[φ(γ2(x, ZiM ))− γ2(x, ZiM )Φ(γ2(x, ZiM ))]σ̂(x;Dn−1, ZM ),

where ZiM are the samples from p(ZM |Dn−1) ≈ qφ(ZM ) for Case 2 (i.e., ZiM ∼ beta(α, β)) and

γ2(x, ZiM ) = [fbest−µGP (x;Dn−1)−Λ(x,xM )−k(x,xM )
σ2
GP (xM ;Dn−1)

(µGP (xM ;Dn−1)−lp−(up−lp)ZiM )]/σ̂(x;Dn−1, ZM ).

For both cases, σ̂(x;Dn−1, ZM ) =

√
σ2
GP (x;Dn−1)− (Λ(x,xM )−k(x,xM ))2

σ2
GP (xM ;Dn−1)

.

F Proof of Theorem 1

Suppose that we have observed up to the ith data point. Then, using the conditional GP model,

f(x)|Di, xM , ZM ∼ N(µ̂(x;Di, ZM ), σ̂2(x;Di, ZM )). In Theorem 1, we derive the bounded cumu-

lative regret of OBCGP-UCB, which is the sum of instantaneous regrets. The first step to prove

Theorem 1 is to find an appropriate βi in OBCGP-UCB that makes instantaneous regret to be

bounded. We can find such βi from the results of Lemmas 1, 2 and 3.

Lemma 1 (Doob’s Conditional independence property (Doob, 1953)). If X, Y are conditional

independent given Z, then

P (X ∈ A|Y,Z) = P (X ∈ A|Z).

Lemma 2. Pick δ ∈ (0, 1) and set βi = 2 log( |Ω|πiδ(1−γi)), where
∑

i≥1 π
−1
i = 1, πi > 0 and γi =

max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). Then

|f(x)− µ̃(x;Di−1)| ≤ β1/2
i σ̂(x;Di−1, ZM ) ∀x ∈ Ω ∀i ≥ 1

holds with probability ≥ 1− δ.
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Proof. Note that if r ∼ N(0, 1), then for c > 0,

P (r > c) = e−c
2/2(2π)−1/2

∫
e−(r−c)2/2−c(r−c) ≤ e−c2/2P (r > 0) = (1/2)e−c

2/2,

because e−c(r−c) ≤ 1 for r ≥ c. Therefore, P (
[
|f(x)− µ̂(x;Di−1, ZM )| > β

1/2
i σ̂(x;Di−1, ZM )

]
|Di−1, xM , ZM ) ≤

e−βi/2. Note that f(x)− µ̂(x;Di−1, ZM )|Di−1, xM , ZM ∼ N(0, σ̂2(x;Di−1, ZM )). Therefore, f(x)−

µ̂(x;Di−1, ZM ) and ZM are conditionally independent given Di−1. Applying Lemma 1, we have

P (
[
|f(x)− µ̂(x;Di−1, ZM )| > β

1/2
i σ̂(x;Di−1, ZM )

]
|Di−1, xM ) ≤ e−βi/2. (2)

Now, we consider the bound of P (
[
|f(x)− µ̃(x;Di−1)| ≥ β1/2

i σ̂(x;Di−1, ZM )
]
|Di−1, xM ). With the

result in Eq.(2), we obtain the following bound:

P (
[
|f(x)− µ̃(x;Di−1)| ≥ β1/2

i σ̂(x;Di−1, ZM )
]
|Di−1, xM )

= P (
[
f(x)− µ̃(x;Di−1) ≥ β1/2

i σ̂(x;Di−1, ZM ), µ̂(x;Di−1, ZM ) > µ̃(x;Di−1)
]
|Di−1, xM )

+ P (
[
f(x)− µ̃(x;Di−1) ≥ β1/2

i σ̂(x;Di−1, ZM ), µ̂(x;Di−1, ZM ) ≤ µ̃(x;Di−1)
]
|Di−1, xM )

+ P (
[
f(x)− µ̃(x;Di−1) ≤ −β1/2

i σ̂(x;Di−1, ZM ), µ̂(x;Di−1, ZM ) ≥ µ̃(x;Di−1)
]
|Di−1, xM )

+ P (
[
f(x)− µ̃(x;Di−1) ≤ −β1/2

i σ̂(x;Di−1, ZM ), µ̂(x;Di−1, ZM ) < µ̃(x;Di−1)
]
|Di−1, xM )

≤ P (
[
|f(x)− µ̂(x;Di−1, ZM )| > β

1/2
i σ̂(x;Di−1, ZM )

]
|Di−1, xM )

+ γiP (
[
|f(x)− µ̃(x;Di−1)| ≥ β1/2

i σ̂(x;Di−1, ZM )
]
|Di−1, xM ).

Therefore,

P (
[
|f(x)− µ̃(x;Di−1)| ≥ β1/2

i σ̂(x;Di−1, ZM )
]
|Di−1, xM )

≤ P (
[
|f(x)− µ̂(x;Di−1, ZM )| > β

1/2
i σ̂(x;Di−1, ZM )

]
|Di−1, xM )

1

1− γi

≤ e−βi/2 1

1− γi
,

where γi = max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). Finally, applying the
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union bound,

f(x)− µ̃(x;Di−1)| ≤ β1/2
i σ̂(x;Di−1, ZM ) ∀x ∈ Ω

holds with probability ≥ 1 − |Ω|e
−βi/2

1−γi . Choosing βi = 2 log( |Ω|πiδ(1−γi)), the statement holds. πi =

π2n2/6 could be an example for this lemma.

Lemma 3. Define the instantaneous regret ri = f(xopt)−f(xi). If |f(x)−µ̃(x;Di−1)| ≤ β1/2
i σ̂(x;Di−1, ZM ),

then ri ≤ 2β
1/2
i σ̂(xi;Di−1).

Proof. By the selection rule of the conditional GP-UCB, µ̃(xi;Di−1)+β
1/2
i σ̂(xi;Di−1) ≥ µ̃(xopt;Di−1)+

β
1/2
i σ̂(xopt;Di−1, ZM ) ≥ f(xopt). Thus,

ri = f(xopt − f(xi)) ≤ β1/2
i σ̂(xi;Di−1, ZM ) + µ̃(xi;Di−1)− f(xopt) ≤ 2β

1/2
i σ̂(xi;Di−1, ZM ).

Lemmas 4 and 5 show the relationship between the mutual information and the sum of posterior

variances. From the result of Lemma 3, cumulative regret is bonded by the sum of β
1/2
i σ̂(x;Di−1, ZM ).

By using the result of Lemma 5, we will express the bound of cumulative regret in terms of mutual

information.

Lemma 4 (Srinivas et al. (2009)). Suppose yi = f(xi) + εi, where ε ∼ N(0, σ2) and f ∼ GP (0,K).

The mutual information between f and observation yn = fn + εn can be expressed in terms of

σ2
GP,σ2:

I(yn;fn, σ
2) =

1

2

n∑
i=1

log(1 + σ−2σ2
GP,σ2(xi;Di−1)).

Lemma 5. I(yn;fn, σ
2) ≥ 1

2

∑n
i=1 log(1 + σ−2σ2

GP (xi;Di−1)).

Proof. Using the Woodbury identity or Kailath variant,

(K(Xi−1,Xi−1) + σ2I)−1 = K(Xi−1,Xi−1)−1 − σ2K(Xi−1,Xi−1)−1(K(Xi−1,Xi−1) + σ2I)−1.
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Because σ2
GP,σ2(xi;Di−1) = k(xi, xi)− k(xi,Xi−1)(K(Xi−1,Xi−1) + σ2I)−1k(Xi−1, xi), we have

σ2
GP,σ2(xi;Di−1) = σ2

GP (xi;Di−1) + σ2k(xi,Xi−1)K̃k(Xi−1, xi),

where K̃ = K(Xi−1,Xi−1)−1(K(Xi−1,Xi−1) + σ2I)−1. Because K̃ is positive-definite, we have

σ2
GP,σ2(xi;Di−1) ≥ σ2

GP (xi;Di−1).

Combining the results of Lemmas 3 and 5, we can prove Theorem 1. First of all, we have∑n
i=1 r

2
i ≤

∑n
i=1 4βiσ̂

2(xi;Di−1, ZM ) from Lemma 3. By the definition of β̃i = βi + 2 log(1− γi), β̃i

is non-decreasing, thus βi ≤ β̃i − 2 log(1− γ) for all i ≤ n. Then we have the following inequality:

n∑
i=1

r2
i ≤

n∑
i=1

4(β̃i − 2 log(1− γ))σ̂2(xi;Di−1, ZM ) ≤
n∑
i=1

4(β̃i − 2 log(1− γ))σ2
GP (xi;Di−1)

≤
n∑
i=1

4(β̃i − 2 log(1− γ))k3
0(k−2

0

σ2
GP (xi;Di−1)

k0
)

≤
n∑
i=1

4(β̃i − 2 log(1− γ))k3
0C2 log(1 + k−2

0

σ2
GP (xi;Di−1)

k0
).

With C2 = k−2
0 / log(1 + k−2

0 ) ≥ 1, s ≤ C2 log(1 + s) holds for s ∈ [0, k−2
0 ]. Since k−2

0
σ2
GP (xi;Di−1)

k0
≤

k−2
0 , the inequality k−2

0
σ2
GP (xi;Di−1)

k0
≤ C2 log(1+k−2

0
σ2
GP (xi;Di−1)

k0
+) holds. From the result of Lemma

5, we can show
∑n

i=1 r
2
i ≤

∑n
i=1 8(β̃i − 2 log(1 − γ))C2k

3
0I(yi;fi, k

3
0). By setting C1 = 8C2k

3
0, the

statement of Theorem 1 holds.

G Regret bound: general decision set case

Theorem 1 assumes the finite decision set, |Ω| <∞. We generalize the results in Theorem 1 to any

compact and convex Ω ⊂ Rd. The following assumption is needed.

Assumption: for some constants a, b > 0

P ( sup
x∈Ω⊂Rd

|∂f/∂xj | > L) ≤ ae−(L/b)2 , j = 1, . . . , d.
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The above implies that P (∀j,∀x ∈ Ω|∂f/∂xj | < L) ≥ 1 − dae−L2/b2 . Therefore, with probability

greater than 1− dae−L2/b2 , we have

∀x ∈ Ω, |f(x)− f(x′)| ≤ L ‖ x− x′ ‖1 . (3)

Now, let us choose a discretization of Ωi of size (κi)
d such that for all x ∈ Ωi,

‖ x− [x]i ‖1≤ rd/κi,

where [x]i is the closest point to x in Ωi. Then, we establish the following theorem for the cumulative

regret bound of OBCGP-UCB on general decision set Ω.

Theorem 2. Pick δ ∈ (0, 1) and set β̃i = 2 log(4πi
δ ) + 4d log (dnbr

√
log 4da/δ), where

∑
i≥1 π

−1
i =

1, πi > 0 and γi = max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). With the

assumption that γi < γ ∈ [0, 1) for all i ≥ 1, the following holds with probability ≥ 1− δ:

n∑
i=1

ri ≤
√

(β̃i − 2 log(1− γ))C1nηn +
π2

6
,

where k0 = k(x, x) is constant for all x ∈ Ω, and ηn = MaxA⊂Ω,|A|=nI(yn;fn, k
3
0).

Similar to the proof of Theorem 1, we begin with finding an appropriate βi that makes instanta-

neous regret to be bounded. µ̃([xopt]i;Di−1) and σ̂([xopt]i;Di−1, ZM ) considered in Lemma 6 allow

us to use Lemma 3 because [xopt]i ∈ Ωi, |Ωi| ≤ ∞.

Lemma 6. Pick δ ∈ (0, 1) and set βi = 2 log( 2πi
δ(1−γi))+4d log (dtbr

√
log 2da/δ), where

∑
i≥1 π

−1
i =

1, πi > 0 and γi = max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). Let κi =

dt2dr
√

log (2da/δ), and [xopt]i denote the closest point to xopt in Ωi. Then

|f(xopt)− µ̃([xopt]i;Di−1)| ≤ β1/2
i σ̂([xopt]i;Di−1, ZM ) +

1

i2
∀i ≥ 1

holds with probability ≥ 1− δ.
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Proof. Using Eq.(3), we have that with probability ≥ 1− δ/2,

∀x ∈ Ω, |f(x)− f(x′)| ≤ b
√

log (2da/δ) ‖ x− x′ ‖1 .

Thus

∀x ∈ Ωi, |f(x)− f([x]i)| ≤ rdb
√

log (2da/δ)/κi.

By choosing κi = dt2br
√

log (2da/δ), we obtain

∀x ∈ Ωi, |f(x)− f([x]i)| ≤
1

i2
.

By definition of Ωi, we have |Ωi| = (dt2br
√

log (2da/δ))d. Applying Lemma 2 with the replacement

of δ and |Ω| with δ/2 and |Ωi|, respectively, we show that the statement holds.

Lemma 7. Pick δ ∈ (0, 1) and set βi = 2 log( πi
δ(1−γi)), where

∑
i≥1 π

−1
i = 1, πi > 0 and γi =

max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). Then

|f(xi)− µ̃(xi;Di−1)| ≤ β1/2
i σ̂(xi;Di−1, ZM ) ∀i ≥ 1

holds with probability ≥ 1− δ.

Combining Lemmas 6 and 7, we obtain the bound of instantaneous regret as in Lemma 8, which

is similar to Lemma 3.

Lemma 8. Pick δ ∈ (0, 1) and set βi = 2 log( 4πi
δ(1−γi))+4d log (dtbr

√
log 4da/δ), where

∑
i≥1 π

−1
i =

1, πi > 0 and γi = max(P (ZM < E[ZM |Di−1]|Di−1), P (ZM > E[ZM |Di−1]|Di−1)). Then for all

i ≥ 1

ri ≤ 2β
1/2
i σ̂(xi;Di−1, ZM ) +

1

i2

holds with probability ≥ 1− δ.

Proof. To prove Lemma 8, we use δ/2 in Lemmas 6 and 7, so that both lemmas hold with probability

greater than 1 − δ. Because βi specified in Lemma 6 is greater than βi specified in Lemma 7
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for all δ ∈ (0, 1) with βi in Lemma 6 chosen as δ/2 (this βi is the same as that in Lemma 8),

the statements of Lemmas 6 and 7 hold with probability greater than 1 − δ. First note that

µ̃(xi;Di−1) + β1/2σ̂(xi;Di−1, ZM ) ≥ µ̃([xopt]i;Di−1) + β1/2σ̂([xopt]i;Di−1, ZM ). Combining this

with Lemma 6, we have

ri = f(xopt)− f(xi)

≤ β1/2
i σ̂(xi;Di−1, ZM ) + 1/i2 + µ̃(xi;Di−1)− f(xi)

≤ 2β
1/2
i σ̂(xi;Di−1, ZM ) + 1/i2.

Combining Lemmas 8 and 5, we can finally prove Theorem 2. Note that βi in Lemma 8 is the

same as β̃i − 2 log(1 − γi). Combining the fact that β̃i is non-decreasing, as shown in Theorem

1, and the result of Lemma 8, we can show that the following inequality holds with probability

≥ 1− δ:
n∑
i=1

4βiσ̂
2(xi;Di−1, ZM ) ≤ (β̃i − 2 log(1− γ))C1ηn.

Applying the Cauchy-Schwartz inequality, we have

n∑
i=1

2β
1/2
i σ̂(xi;Di−1, ZM ) ≤

√
(β̃i − 2 log(1− γ))C1nηn.

Thus,
n∑
i=1

ri ≤
√

(β̃i − 2 log(1− γ))C1nηn +
π2

6
.

H Further experiments

H.1 Comparison between OBCGP-EI and OBCGP-EIs

We compare the BO results for the simulated functions using OBCGP-EI and OBCGP-EIs. Under

the same experimental settings in Section 6.2, we run the BO experiments for each function using

OBCGP-EI and OBCGP-EIs. Figure A presents the results, and we can see that OBCGP-EI and
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OBCGP-EIs show a slight difference in the speed to reach the optimum, but equally found the true

optimum after sufficient iterations.
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(e) Rosenbrock (fr)

0 10 20 30 40 50 60 70 80 90 100

No.of Function Evaluations

0

0.5

1

1.5

2

2.5

3

 S
R

OBCGP-EI

OBCGP-EIs

(f) Branin-20D (fr)

Figure A: Comparison between OBCGP-EI and OBCGP-EIs.

H.2 Experiments with prior bound information for the simulated functions

Recall that OBCGP can inherently incorporate a new type of prior knowledge, i.e., the bounds

on the optimal objective values, if it is available. To show this advantage, we conducted further

experiments by assuming certain upper and lower bounds for each test function. We assumed

that upper and lower bounds for each function were available from expert knowledge. To assume

reasonable upper bounds, for each function, we evaluated ten randomly selected data points using

Latin hypercube sampling 200 times, and recorded the minimum objective value of the ten evaluated

points each time. The average of the 200 minimum values was assumed as the upper bound for

each function. Lower bound values cannot be assumed in the same way; thus, lower bounds were

chosen arbitrarily for each function. In addition, we set some upper bound to be chosen arbitrarily

tight (denote as UB*), so that we can compare the performance of OBCGP in comparison with

GP according to whether the upper bound is tight or loose.
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The assumed values of the upper and lower bounds are presented in Table A, along with the

simple regret of the proposed BO at the 55th iteration, with and without incorporating the bound

information. By incorporating prior knowledge, OBCGP achieved even better performances. The

results show the benefits of incorporating prior knowledge if it is available and that OBCGP is an

effective tool to incorporate prior knowledge of the bound on the optimal objective value into BO

for effective black-box optimization. Note that such prior knowledge cannot be readily incorporated

using traditional BOs.

Table A: SR at final iterations

f
min

value
type

GP
-EI

GP
-UCB

GP
-MES

OBCGP
-UCB

no
prior

OBCGP
-EI
no

prior

OBCGP
-UCB

OBCGP
-EI

fb 0.3978
UB:5.56 0.0380

(0.2156)
0.0018

(0.0045)
0.0335

(0.2160)
0.0010

(0.0021)
0.0015

(0.0022)

0.0007
(0.0011)

0.0012
(0.0008)

LB:-1.0
0.0007

(0.0010)
0.0009

(0.0001)

fc -1.0316
UB:5.09 0.0241

(0.0425)
0.0082

(0.0099)
0.0179

(0.0348)
0.0020

(0.0018)
0.0014

(0.0016)

0.0018
(0.0021)

0.0011
(0.0021)

LB:-5.0
0.0017

(0.0019)
0.0013

(0.0009)

fh -3.3223
UB:-1.098 0.1139

(0.0607)
0.5214

(0.1574)
0.3092

(0.0970)
0.0633

(0.0579)
0.0636

(0.0580)

0.0527
(0.0339)

0.0611
(0.0571)

LB:-5.0
0.0589

(0.0211)
0.0629

(0.0512)

fg 3.0
UB:226.1

9.1987
(17.2445)

9.6020
(17.0215)

11.9401
(15.2202)

6.2325
(19.9017)

7.9661
(20.3988)

6.1128
(17.3328)

7.6512
(21.0019)

UB*:10.0
0.3116

(0.5531)
0.1830

(0.4113)

LB:0.0
4.2931

(19.2389)
6.9938

(18.1127)

fr 0.0
UB:33.5

0.9513
(1.2916)

1.1745
(1.4594)

1.3216
(1.5368)

0.2864
(0.7355)

0.4121
(1.1022)

0.2177
(0.5512)

0.2247
(0.6624)

UB*:3.0
0.0791

(0.0925)
0.0705

(0.1018)

LB:-1.0
0.2799

(0.7712)
0.3988

(1.1144)

Furthermore, the comparison of the results of OBCGP with UB and UB* for fg and fr shows

that the tighter upper bound (UB*) induced a significant improvement of performance. Note that

these functions (fg and fr) are highly volatile and thus it is difficult to find the optimum because

of several local minima. However, if some helpful bound knowledge is available, OBCGP can use

it to find the global optimum more effectively.
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H.3 Sensitivity Analysis of λ with more functions

In Section 6.3, we discussed the results of sensitivity analysis of λ using Branin and Hartmann 6

functions. Here we present additional results on Camel, Goldstein, Rosen brock, and Branin-20D

functions in Figure B, which were not reported in Section 6.3 because of page limit.
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(a) OBCGP-UCB (Camel)
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(b) OBCGP-EI (Camel)

0 5 10 15 20 25 30 35 40 45 50

No. of Function Evaluations

0

0.5

1

1.5

2

2.5

3

 l
o

g
 1

+
S

R

OBCGP-UCB-0.1

OBCGP-UCB-0.01

GP-UCB

(c) OBCGP-UCB (Goldstein)
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(d) OBCGP-EI (Goldstein)
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(e) OBCGP-UCB (Rosenbrock)
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(f) OBCGP-EI (Rosenbrock)
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(g) OBCGP-UCB (Branin-20D)
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Figure B: Sensitivity analysis of λ for OBCGP (Case 1) on BO performance. Two values of λ (0.1
and 0.01) were considered.

H.4 Experiments with GP-MES and OBCGP-EIs for the simulated functions

Figure C presents additional BO results for the simulated functions using GP-MES and OBCGP-

EIs, compared to Figure 3 in the paper. Although GP-MES showed better performance than
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GP-UCB and GP-EI on some simulated functions, BO with OBCGP still outperformed any BO

methods with GP on all the simulated functions.
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(e) Rosenbrock
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Figure C: Comparison of the performances of BO with the OBCGP and BO with the GP
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