Supplementary Materials

A. Derivation of CFAD log-likelihood

Here, we provide a derivation of the CFAD log-likelihood to
the form presented in Eq. S5 of the main text. The generative
structure of the CFAD model, as described in the main text,
is as follows:

X|Y ~ N(auy,a/\yaT + aghoag + ) (S1
Here, we assume the high-dimensional data X € RN*P
contains N samples and has dimensionality p. The output,
Y € RV*! has h classes with my denoting the fraction of
points belonging to a particular class y. Other variables are
described in Sec. 3.1. Let 3, = cuAyoz—r —|—0z()AOOzJ +02I,,
eq. S1 trivially leads to the following log-likelihood:
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Now, we note that the last term in the above expression
is a scalar and so it is equal to its trace. Let us assume
that /i, is the sample per-class mean and X x|, is the per-
class covariance. Then, we can re-write the scalar term by
introducing the sample per-class means as follows:
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Further, it is easy to show that the maximum likelihood
estimate of p, = aTﬁy. Substituting this in eq. S3 renders
it equivalent to:
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Fixing B, = (I — aa " )jiyi, (I — aa’), we obtain the
CFAD log-likelihood in Eq. SS5:
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B. Derivation of Sufficient Dimension
Reduction for CFAD

Here we show that CFAD is formally a sufficient dimension
reduction (SDR) method. The CFAD model assumes X | YV
has the following distribution:
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Using the CFAD-discovered projection o € QP*¢, and it’s
null space o, € QP> (P=d) e can rotate eq. (S18) into the
Gaussian joint distribution
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Note that g spans only part of the nullspace of «, so in
general we would have oy C a.. We’ll use the following
property of Gaussian joint distributions to generate condi-
tional distributions for o] X:
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It follows that
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At first glance, it appears that eq. (S11) depends on y. How-

ever, if ¥ is diagonal, as we assume in the CFAD model, the

product o] W = 0 everywhere, and the y-dependent terms

vanish. The resulting distribution for o/ X | (a7 X,Y = y)

is factored such that we can readily lift it to the distribution

of X | (a" X,Y =), from which we see
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and X | o' X is independent of Y. We conclude under

these conditions that CFAD is an SDR method.

C. fMRI Classification Results

In Sec.5, we demonstrated the application of CFAD (with
smoothing prior) on fMRI data. Our choice of d relied on
fixing d + g, which was chosen such that d + ¢ principal
components explain 90% of variance in the data. We re-
stricted the variance to 90%, in part to motivate the selection



of small d since a dimensionality reduction method is useful
only when a substantially low-dimensional space can be
obtained. From Table 2, we know that SCFAD performed
best in all subjects except subject 1 and subject 6, in which
case DR outperformed sCFAD by using a much higher d.
In this section, we show some more classification results on
the visual object recognition fMRI dataset to establish that if
we allow a higher range for d and ¢, sCFAD can outperform
all existing methods. We also benchmark CFAD against
voxel selection using ANOVA, which is classically used in
fMRI anaysis.

Table S1 shows the 8-classification on all subjects at the
best d for sSCFAD. This optimal d is chosen by varying d
in increments of 10 such that d + ¢ is set to the number of
components required to explain 95% variance in the data.
We find that SCFAD performs better than all other methods
at this d.

We also compare sCFAD with all other methods at their
respective best d in Table S2 (Note that the results for all
methods, except sSCFAD, are the same as Table 2). We
see that SCFAD (with d + g set to the number of principal
components needed to achieve 95% variance) outperforms
the other methods for all subjects, hence establishing the
utility of our method for high-dimensional small-sample
size datasets.

D. Relationship of CFAD to other generative
methods

Under the CFAD model,

X | (Y =y) ~N(ay,,ah,a’ +aghoag + T) (S14)
If the the class means or (v,) are 0 and ¢ = 0, i.e., there
is no distinct latent subspace containing Y —independent
correlations in X, CFAD reduces to:

X| (Y =y)~N(0,ah,a’ +7) (S15)
Let L, £ aA)/?,
X | (Y =y)~N(0,L,L, +7) (S16)

Hence, CFAD reduces to Factor Analysis for each class
with L as the loading matrix which is constrained to be
spanned by « for each class.

Along with the above conditions, if ¥ = 021p CFAD re-
duces to Probabilistic PCA:

X | (Y =y) ~N(0,L,L, +0°I,) (S17)

Further, if all classes are constrained to have the same co-
variance A £ A, then CFAD reduces to Factor Analysis or

Probabilistic PCA (depending on V) on the whole dataset
X.Let L £ aA/2, hence:
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E. Comparison to GLLiM

Deleforge et al. (2015) developed a probabilistic regres-
sion method for mapping high-dimensional data to low-
dimensional targets. However, unlike SDR methods, their
approach does not provide an estimate of the ‘“central
subspace” (capturing the statistical dependencies of X
on Y). The inverse-regression structure of the GLLiM
model connecting low-dimensional target Y € R to high-
dimensional input X € R? is as follows:
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Here, matrix A, € RP*L and b, € R define the trans-
formation to the input variable and E}, is an error term set
to a zero mean Gaussian. The discrete variable Z defines
which of the K mappings to choose from for a particular
input-output pair, hence the name Gaussian “locally-linear”
mapping. They also develop a hybrid extension to their
model which includes an additional unobserved output vari-
able.

We downloaded the GLLiM package and applied it to the
example DR problems used by Cook (2007) (which we also
show in Fig. 2 of our paper). Fig. S1 shows that both CFAD
and LAD outperform GLLiM on all but the first example
(which happens to be the only linear case):
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Table S1. 8-class classification accuracy on fMRI data after dimensionality reduction. (d is optimal for sCFAD such that d 4+ ¢ contain
95% variance; 12.5% is chance performance)

SuB. d SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

1 20 893 593 594 6.8 54.1 504 40.1 429 230 66.6
2 30 747 589 592 113 62.3 389 423 382 18.7 57.7
3 50 66.6 60.3 60.5 8.9 61.7 49.2 519 479 160 54.6
4 30 654 214  21.1 11.1 323 27.8 253 290 19.6 498
5 30 1785 60.2 61.2 11.8 65.1 47.8 485 412 18.1 554
6 50 784 71.3  71.0 9.5 74.0 58.6 614 53.0 21.2 63.1

Table S2. 8-class classification accuracy on fMRI data after dimensionality reduction (at optimal d for the respective method)

SUB. SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

d % d % d % d % d % d % d % d % % d %

20 893 10 593 10 595 180 12,6 350 758 50 56.1 90 57.3 170 46.5 23.0 550 73.1
30 747 10 589 10 599 460 20.1 10 62.3 40 40.2 460 46.1 360 41.2 18.7 450 67.4
50 66.6 10 60.3 20 629 300 17.0 10 61.7 50 49.2 250 55.1 260 51.5 16.0 300 62.2
654 10 220 50 21.2 80 12.5 50 58.1 10 293 310 32.6 530 303 19.6 450 61.2
30 785 10 60.2 10 61.8 420 359 180 694 10 50.8 360 543 80 51.4 18.1 400 67.1
50 784 10 715 30 71.2 240 144 50 74.0 10 650 230 67.5 240 635 21.2 300 722
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Figure S1. Principal subspace angles between the true and estimated DR subspaces for LAD, CFAD and GLLiM under varying input-
output relationships. For GLLiM, we varied the number of mixtures K € {1,...,20} and reported the best results. We also tested the
hybrid GLLiM by varying the latent dimensionality L., € {0, ..., 8} and found the best results with L,,=0. (Note that GLLiM does not
natively produce a subspace estimate; to obtain it, we took the top d-singular vectors of the inferred { Ay}, the same approach used in the
SIR estimator).



