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Supplementary Materials

A. Derivation of CFAD log-likelihood
Here, we provide a derivation of the CFAD log-likelihood to
the form presented in Eq. S5 of the main text. The generative
structure of the CFAD model, as described in the main text,
is as follows:

X | Y ∼ N (αµy, αΛyα
> + α0Λ0α

>
0 + Ψ) (S1)

Here, we assume the high-dimensional data X ∈ RN×p
contains N samples and has dimensionality p. The output,
Y ∈ RN×1, has h classes with πy denoting the fraction of
points belonging to a particular class y. Other variables are
described in Sec. 3.1. Let Σy = αΛyα

>+α0Λ0α
>
0 +σ2Ip,

eq. S1 trivially leads to the following log-likelihood:

LCFAD =− Np

2
log(2π)− N

2

∑
y

πy log |Σy|

− 1

2

∑
y

Nπy∑
i=1

(Xi
y − αµy)TΣ−1y (Xi

y − αµy)

(S2)

Now, we note that the last term in the above expression
is a scalar and so it is equal to its trace. Let us assume
that µ̂y is the sample per-class mean and Σ̂X|y is the per-
class covariance. Then, we can re-write the scalar term by
introducing the sample per-class means as follows:

Tr

1

2

∑
y

Nπy∑
i=1

(Xi
y − αµy)TΣ−1y (Xi

y − αµy)


=
N

2

∑
y

πy Tr
(

Σ−1y

(
Σ̂X|y + (µ̂y − αµy)(µ̂y − αµy)>

))
(S3)

Further, it is easy to show that the maximum likelihood
estimate of µy = α>µ̂y . Substituting this in eq. S3 renders
it equivalent to:

N

2

∑
y

πy Tr
(

Σ−1y

(
Σ̂X|y + (I − αα>)µ̂yµ̂

>
y (I − αα>)

))
(S4)

Fixing By = (I − αα>)µ̂yµ̂y
>

(I − αα>), we obtain the
CFAD log-likelihood in Eq. S5:

LCFAD =− Np

2
log(2π)− N

2

h∑
y=1

πy log |Σy|

− N

2

h∑
y=1

πy Tr
(

Σ−1y

(
Σ̂X|y +By

)) (S5)

B. Derivation of Sufficient Dimension
Reduction for CFAD

Here we show that CFAD is formally a sufficient dimension
reduction (SDR) method. The CFAD model assumes X | Y
has the following distribution:

X | (Y = y) ∼ N (ανy, αΛyα
> + α0Λ0α

>
0 + Ψ) (S6)

Using the CFAD-discovered projection α ∈ Op×d, and it’s
null space αc ∈ Op×(p−d), we can rotate eq. (S18) into the
Gaussian joint distribution

[
α>X
α>c X

]∣∣∣∣ ∼ N ([ νy
0

]
,

[
Λy + α>Ψα α>Ψαc
α>c Ψα α>c (α0Λ0α

>
0 + Ψ)αc

])
(S7)

Note that α0 spans only part of the nullspace of α, so in
general we would have α0 ⊂ αc. We’ll use the following
property of Gaussian joint distributions to generate condi-
tional distributions for α>c X:[

x
y

]
∼ N

([
a
b

]
,

[
A C
CT B

])
(S8)

y|x ∼ N
(
b+ C>A−1(x− a), B − C>A−1C

)
(S9)

It follows that

α>X | (Y = y) ∼ N
(
νy,Λy + α>Ψα

)
(S10)

α>c X | (α>X,Y = y) ∼ N
(
α>c Ψα(α>X − νy),K

)
(S11)

where K = α>c (α0Λ0α
>
0 + Ψ)αc − α>c Ψα

(
Λy + α>Ψα

)−1
α>Ψαc

At first glance, it appears that eq. (S11) depends on y. How-
ever, if Ψ is diagonal, as we assume in the CFAD model, the
product α>c Ψα = 0 everywhere, and the y-dependent terms
vanish. The resulting distribution for α>c X | (α>X,Y = y)
is factored such that we can readily lift it to the distribution
of X | (α>X,Y = y), from which we see

α>c X | (α>X,Y = y) ∼ N
(
0, α>c [α0Λ0α

>
0 + Ψ]αc

)
(S12)

=⇒ X | (α>X,Y = y) ∼ N
(
0, α0Λ0α

>
0 + Ψ

)
(S13)

and X | α>X is independent of Y . We conclude under
these conditions that CFAD is an SDR method.

C. fMRI Classification Results
In Sec.5, we demonstrated the application of CFAD (with
smoothing prior) on fMRI data. Our choice of d relied on
fixing d + q, which was chosen such that d + q principal
components explain 90% of variance in the data. We re-
stricted the variance to 90%, in part to motivate the selection
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of small d since a dimensionality reduction method is useful
only when a substantially low-dimensional space can be
obtained. From Table 2, we know that sCFAD performed
best in all subjects except subject 1 and subject 6, in which
case DR outperformed sCFAD by using a much higher d.
In this section, we show some more classification results on
the visual object recognition fMRI dataset to establish that if
we allow a higher range for d and q, sCFAD can outperform
all existing methods. We also benchmark CFAD against
voxel selection using ANOVA, which is classically used in
fMRI anaysis.

Table S1 shows the 8-classification on all subjects at the
best d for sCFAD. This optimal d is chosen by varying d
in increments of 10 such that d+ q is set to the number of
components required to explain 95% variance in the data.
We find that sCFAD performs better than all other methods
at this d.

We also compare sCFAD with all other methods at their
respective best d in Table S2 (Note that the results for all
methods, except sCFAD, are the same as Table 2). We
see that sCFAD (with d+ q set to the number of principal
components needed to achieve 95% variance) outperforms
the other methods for all subjects, hence establishing the
utility of our method for high-dimensional small-sample
size datasets.

D. Relationship of CFAD to other generative
methods

Under the CFAD model,

X | (Y = y) ∼ N (ανy, αΛyα
> + α0Λ0α

>
0 + Ψ) (S14)

If the the class means or (νy) are 0 and q = 0, i.e., there
is no distinct latent subspace containing Y−independent
correlations in X , CFAD reduces to:

X | (Y = y) ∼ N (0, αΛyα
> + Ψ) (S15)

Let Ly , αΛ
1/2
y ,

X | (Y = y) ∼ N (0, LyL
>
y + Ψ) (S16)

Hence, CFAD reduces to Factor Analysis for each class
with L as the loading matrix which is constrained to be
spanned by α for each class.

Along with the above conditions, if Ψ = σ2Ip CFAD re-
duces to Probabilistic PCA:

X | (Y = y) ∼ N (0, LyL
>
y + σ2Ip) (S17)

Further, if all classes are constrained to have the same co-
variance Λ , Λy , then CFAD reduces to Factor Analysis or

Probabilistic PCA (depending on Ψ) on the whole dataset
X . Let L , αΛ1/2, hence:

X | (Y = y) ∼ N (0, LL> + Ψ) (S18)

X ∼ N (0, LL> + Ψ) (S19)

E. Comparison to GLLiM
Deleforge et al. (2015) developed a probabilistic regres-
sion method for mapping high-dimensional data to low-
dimensional targets. However, unlike SDR methods, their
approach does not provide an estimate of the “central
subspace” (capturing the statistical dependencies of X
on Y ). The inverse-regression structure of the GLLiM
model connecting low-dimensional target Y ∈ RL to high-
dimensional input X ∈ RD is as follows:

X =
K∑
k=1

I(Z = k) (AkY + bk + Ek) (S20)

Here, matrix Ak ∈ RD×L and bk ∈ RD define the trans-
formation to the input variable and Ek is an error term set
to a zero mean Gaussian. The discrete variable Z defines
which of the K mappings to choose from for a particular
input-output pair, hence the name Gaussian “locally-linear”
mapping. They also develop a hybrid extension to their
model which includes an additional unobserved output vari-
able.

We downloaded the GLLiM package and applied it to the
example DR problems used by Cook (2007) (which we also
show in Fig. 2 of our paper). Fig. S1 shows that both CFAD
and LAD outperform GLLiM on all but the first example
(which happens to be the only linear case):
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Table S1. 8-class classification accuracy on fMRI data after dimensionality reduction. (d is optimal for sCFAD such that d+ q contain
95% variance; 12.5% is chance performance)

SUB. d SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

1 20 89.3 59.3 59.4 6.8 54.1 50.4 40.1 42.9 23.0 66.6
2 30 74.7 58.9 59.2 11.3 62.3 38.9 42.3 38.2 18.7 57.7
3 50 66.6 60.3 60.5 8.9 61.7 49.2 51.9 47.9 16.0 54.6
4 30 65.4 21.4 21.1 11.1 32.3 27.8 25.3 29.0 19.6 49.8
5 30 78.5 60.2 61.2 11.8 65.1 47.8 48.5 41.2 18.1 55.4
6 50 78.4 71.3 71.0 9.5 74.0 58.6 61.4 53.0 21.2 63.1

Table S2. 8-class classification accuracy on fMRI data after dimensionality reduction (at optimal d for the respective method)

SUB. SCFAD LDA SIR SAVE DR LAD PCA LOL RRR ANOVA

d % d % d % d % d % d % d % d % % d %
1 20 89.3 10 59.3 10 59.5 180 12.6 350 75.8 50 56.1 90 57.3 70 46.5 23.0 550 73.1
2 30 74.7 10 58.9 10 59.9 460 20.1 10 62.3 40 40.2 460 46.1 360 41.2 18.7 450 67.4
3 50 66.6 10 60.3 20 62.9 300 17.0 10 61.7 50 49.2 250 55.1 260 51.5 16.0 300 62.2
4 30 65.4 10 22.0 50 21.2 80 12.5 50 58.1 10 29.3 310 32.6 530 30.3 19.6 450 61.2
5 30 78.5 10 60.2 10 61.8 420 35.9 180 69.4 10 50.8 360 54.3 80 51.4 18.1 400 67.1
6 50 78.4 10 71.5 30 71.2 240 14.4 50 74.0 10 65.0 230 67.5 240 63.5 21.2 300 72.2

Figure S1. Principal subspace angles between the true and estimated DR subspaces for LAD, CFAD and GLLiM under varying input-
output relationships. For GLLiM, we varied the number of mixtures K ∈ {1, . . . , 20} and reported the best results. We also tested the
hybrid GLLiM by varying the latent dimensionality Lw ∈ {0, . . . , 8} and found the best results with Lw=0. (Note that GLLiM does not
natively produce a subspace estimate; to obtain it, we took the top d-singular vectors of the inferred {Ak}, the same approach used in the
SIR estimator).


