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A. Notations and Convolutional Neural Tangent Kernel
We give a brief overview on the basics of neural tangent kernel for fully-connected neural networks and convolutional neural
networks. We mostly use the same notations from Arora et al. (2019) so that the reader could refer to the original paper and
their detailed derivations.
Fully-connected network: We denote the l-th pre-activation layer by f (l)(x) = W (l)h(l−1)(x) ∈ Rdl , and l-th activation
layer by h(l)(x) =

√
cσ
dl
σ
(
f (l)(x)

)
∈ Rdl with NTK parameterization (Jacot et al., 2018). cσ is the standard deviation

generally used for weight initializations. and dl is the number of output neurons. A fully-connected network is then defined
recursively starting from h(0)(x) = x. In the large width limit, Arora et al. (2019) has shown that each pre-activation unit
from f (l)(x) is an i.i.d. gaussian process with zero mean and covariance Σ(l−1) derived recursively as following:

Σ(0)(x,x′) = x>x′ (A.1)

Λ(l)(x,x′) =

[
Σ(l−1)(x,x) Σ(l−1)(x,x′)
Σ(l−1)(x′,x) Σ(l−1)(x′,x′)

]
(A.2)

Σ(l)(x,x′) = cσ E
(u,v)∼N(0,Λ(l))

[σ(u)σ(v)] (A.3)

where Σ(l)(x,x′) is the covariance function for the i.i.d gaussian process for f (l)(x). The NTK expression Θ(L)(x,x′) in
Equation A.4 is the sum of the covariance at each layer multiplied by the product of derivative covariances from the layers
above. This has been proven rigorously by Arora et al. (2019) under ReLU activations for all the layers. In our case, we will
make an assumption noted in section B, and use this result.

Θ(L)(x,x′) =

L+1∑
l=1

(
Σ(l−1)(x,x′)

L+1∏
l′=l

Σ̇(l′)(x,x′)

)
(A.4)

where the derivative covariance Σ̇(·, ·) is similar to the covariance at each pre-activation layer except using the derivative of
the activation:

Σ̇(l)(x,x′) = cσ E
(u,v)∼N(0,Λ(l))

[σ̇(u)σ̇(v)] (A.5)

Convolutional neural network (CNN): With a filter size q, we denote the indices of an image patch by:

Dij = {(i+ a, j + b)| − (q − 1)/2 ≤ a, b ≤ (q − 1)/2}

We use [·]Dij to denote the flattened representation of the patch centred around the image indices (i, j). This tensor is
flattened over height h, width w, and channel c dimensions.
A vanilla CNN with L convolution layers and last fully-connected layer is then defined recursively with pre-activation layers

1University of Toronto 2Vector Institute 3LG Electronics. Correspondence to: Sheng Jia <sheng@cs.toronto.edu>.

Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).



Efficient Statistical Tests: A Neural Tangent Kernel Approach

f
(l)
(β)(x) and activation layers h(l)

(β)(x), starting from h(0)(x) = x. q is the filter size, and α and β represent the incoming
channel and the outgoing channel respectively:

f
(l)
(β)(x) =

C(l−1)∑
α=1

W
(l)
(α),(β) ∗ h

(l−1)
(α) (x) (A.6)

h
(l)
(β)(x) =

√
cσ

C(l) × q × q
σ
(
f
(l)
(β)(x)

)
(A.7)

f (L+1)(x) =

C(L)∑
α=1

〈W (L+1)
(α) ,h

(L)
(α)(x)〉 (A.8)

In the large width limit, large number of channels limit, each pre-activation covariance Σ(h) at each layer is also defined
recursively starting fromK(1)(x,x′). Due to weight sharings, pre-activation neurons at different neuron indices for x and
x′ can still be correlated, so we keep track of the tensorK ∈ RH×W×H×W . We need four indices (i, j) from x and (i′j′)
from x′ to locate a specific kernel computation. Now, the covariance function Σ(·, ·) can be recursively derived:[

K(0)(x,x′)
]

= x⊗ x′ (A.9)[
K(l)(x,x′)

]
ij,i′j′

=
cσ
q2

E
(u,v)∼N(0,Λ

(l)

ij,i′j′ (x,x
′))

[σ(u)σ(v)] (A.10)

Λ
(l)
ij,i′j′(x,x

′) =

( [
Σ(l−1)(x,x)

]
ij,ij

[
Σ(l−1)(x,x′)

]
ij,i′j′[

Σ(l−1)(x′,x)
]
i′j′,ij

[
Σ(l−1)(x′,x′)

]
i′j′,i′j′

)
(A.11)

[
Σ(l)(x,x′)

]
ij,i′j′

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[
K(l)(x,x′)

]
i+α,j+β,i′+α,j′+β

(A.12)

Derivative covariances are similarly derived in the same form except for replacing the activation σ(·) with its derivative σ̇(·)
similar to the results under fully-connected networks. Note that we can write the computation of each output pre-activation
neuron in conv operation by either of following two forms:[

f
(l)
(β)(x)

]
ij

= 〈W (l)
(β),

[
h(l−1)(x)

]
Dij
〉 (A.13)

[
f
(l)
(β)(x)

]
ij

=

C(L)∑
α=1

〈W (l)
(α),(β),

[
h
(l−1)
(α) (x)

]
Dij
〉 (A.14)

where
[
h(l−1)(x)

]
Dij

is the flattend vector of the patch at (l − 1)-th layer centered around (i, j). These forms will be
helpful for showing the shift-invariance of the first layer covariance associated with CNTK under cosine activations.

In the large width limit, the SCNTK expression is derived by Arora et al. (2019) as :

K(x,x′) =

L∑
l=1

Sum
(
L
(
K(l−1)

)
� K̇(l) � L

(
K̇(l+1) · · · � · · · L

(
I� K̇(L)

)))
(A.15)

where the linear operator L applies the kernel operation associated with the convolution in the equation A.12 to each element
of the kernel matrixK(l) ∈ RH×W×H×W ; that is,

[L(K)]ij,i′j′ =
cσ
q2

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

Ki+a,j+b,i′+a,j′+b (A.16)

I ∈ RH×W×H×W is a tensor with entries Ii,j,i′,j′ = 1{i = i′, j = j′}; that is, spatially matching pixels between the
intermediate features of x and x′. This will ensure the patches at the same indices of two images are compared.
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A.1. Side notes about NTK

In practice, we approximate the CNTK of the last fully-connected layer output with the empirical neural tangent kernel
under a finite-width neural network, K(x,x′) = φ(x)>φ(x′)

K(x,x′) =

〈
∂f(x,θ0)

∂θ0
,
∂f(x′,θ0)

∂θ0

〉
(A.17)

Note that there are two types of kernels associated with a randomly initialized neural network. One is the covariance matrix
of a GP for each pre-activation layer l + 1. Each l + 1-th pre-activation layer covariance matrix can be approximated by the
linear kernel of random features of the activation layer l when the width goes infinity (Rahimi & Recht, 2008). This is also
called NNGP kernel (Lee et al., 2017b). Another type is the tangent kernel described above, which can be written as the sum
of (L+ 1) terms with each term representing the inner product between gradients w.r.t weight matrix of one layer.

B. Discussions about the effect of using first-layer cosine activation on NTK expression
Validity of replacing weights with a fresh new sample assumption: Note that Equation A.4 is the asymptotic form of
NTK K(x,x) = 〈∂f(x,θ0)∂θ0

, ∂f(x
′,θ0)

∂θ0
〉 in the large width limit. This has been shown under the ReLU activations. We claim

that this form can be still useful in our case with first-layer cosine activations as long as we do not include the inner products
of partial derivatives w.r.t the first-layer weightsW (1) for our kernel.

We first note that the partial derivative w.r.t a weight matrix at layer l is (Arora et al., 2019)

∂f(θ0,x)

∂W (l)
= b(l)(x)

(
h(l−1)(x)

)>
, l = 1, 2, ..., L+ 1 (B.1)

b(l)(x) =

√
cσ
dl

D(l)(x)
(
W (l+1)

)>
b(l+1)(x) l = 1, ..., L (B.2)

D(l)(x) = diag
(
σ̇
(
f (l)(x)

))
l = 1, ..., L (B.3)

With simple algebras, in the infinite width limite as dl →∞,〈
∂f(θ0,x)

∂W (l)
,
∂f(θ0,x

′)

∂W (l)

〉
= Σ(l−1)(x,x′)

〈√
cσ
dl

D(l)(x)
(
W (l+1)

)>
b(l+1)(x),

√
cσ
dl

D(l)(x′)
(
W (l+1)

)>
b(l+1)(x′)

〉
(B.4)

Under ReLU activations for the l-th layer used in D(l)(x) and ReLU activations for the layers above, W (l+1) can be
replaced with a fresh uncorrelated sample and this expression will converge (Arora et al., 2019):〈

∂f(θ0,x)

∂W (l)
,
∂f(θ0,x

′)

∂W (l)

〉
→ Σ(l−1)(x,x′)

L+1∏
l′=l

Σ̇(l′)(x,x′) ∀l = 2, ..., L (B.5)

We cannot make the same argument for
〈
∂f(θ0,x)
∂W (1) ,

∂f(θ0,x
′)

∂W (1)

〉
due to using cosine activations but we do not use this in our

SNTK or SCNTK kernels. We only use gradients inner products w.r.t weights W (l), l ∈ {2, 3, ..., L} except for the first
layer, so we could still directly use the result by Arora et al. (2019) for our SNTK form. Similar arguments also apply for
SCNTK without using the first layer gradient inner products.

Ks(x,x
′) =

L+1∑
l=2

〈
∂f(θ0,x)

∂W (l)
,
∂f(θ0,x

′)

∂W (l)

〉
=

L+1∑
l=2

(
Σ(l−1)(x,x′)

L+1∏
l′=l

Σ̇(l′)(x,x′)

)
(B.6)

C. Propositions: scntk is shift-invariant
We remind the proposition shown in the main paper.

Lemma 1. If the covariance Σ(1)(x,x′) associated with the second pre-activation layer is shift-invariant for a fully-
connected network or a CNN, then the activation covariances Σ(l)(x,x′) and the derivative covariances Σ̇(l)(x,x′)
∀l = 2, ..., L are shift-invariant.
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Proposition 1. In the infinite width limit, CNTK computed by the inner products of gradients w.r.t parameters for i = 2, ..., L
layers under first-layer cos activations is shift-invariant; Ks(x,x

′) = Ks(x− x′),Ksc(x,x
′) = Ksc(x− x′) if the first-

layer activation σ(·) is sin(·) or cos(·) and the bias is uniformly sampled w0 ∼ Unif(0, 2π)

C.1. Proof of Shift-invariant property

To show that SCNTK has a shift-invariant property, we establish results associated with the covaraince and derivative
covariance at each pre-activation layers that behave as Gaussian Process (GP). This simple proof relies on taking the layer
width to infinity sequentially from the first layer. Such a technique is also used in prior works that study the NNGP kernels
associated with a random neural network (Lee et al., 2017a; Novak et al., 2018) One important feature is that we only need
to use cosine activations for the first layer for the shift-invariance but keep the rest of activations as ReLU. This is due to
the observation that most successful neural network architectures are designed and tested under the commonly used ReLU
activation. In addition, using ReLU activations allow us to use the previous result by Arora et al. (2019) and get the explicit
form as discussed in section B.

C.1.1. PROOF PART 1

Firstly, we note from Lemma 2 and Lemma 3 that both fully-connected and CNNs have shift-invariant covariance matrices
Σ(l)(x,x′), Σ̇(l)(x,x′) for each layer as long as the first pre-activation covariance Σ(1)(x,x′) is shift-invariant.

Lemma 2. If the covariance Σ(1)(x,x′) associated with the second pre-activation layer is shift-invariant for a fully-
connected network, then Σ(l)(x,x′) and Σ̇(l)(x,x′) ∀l = 2, ..., L are shift-invariant; that is, Σ(1)(x,x′) = Σ(1)(x− x′)
implies Σ(l)(x,x′) = Σ(l)(x− x′) and Σ̇(l)(x,x′) = Σ̇(l)(x− x′) ∀l = 2, ..., L

Simple proof: Proof by induction.
Base case Σ(1)(x,x′) = Σ(1)(x− x′)→ Σ(2)(x,x′) = Σ(2)(x− x′):
For the base case, we simply observe that Σ(2)(x,x′) in equation A.3 is an expectation in which the previous hidden units
are sampled from GP with a shift-invariant covariance Λ(2)(x,x′).

∵ Σ(1)(x,x′) = Σ(1)(x− x′)

∴ Λ(2)(x,x′) = Λ(2)(x− x′)

∴ Σ(2)(x,x′) = cσ E
(u,v)∼N(0,Λ(2)(x−x′))

[σ(u)σ(v)]

= Σ(2)(x− x′)

Induction step Σ(l)(x,x′) = Σ(l)(x− x′)→ Σ(l+1)(x,x′) = Σ(l+1)(x− x′)
For the induction step, we simply follow the same step to show the shift-invariance of the next pre-activation layer GP
covariance.

∵ Σ(l)(x,x′) = Σ(l)(x− x′)

∴ Λ(l+1)(x,x′) = Λ(l+1)(x− x′)

∴ Σ(l+1)(x,x′) = cσ E
(u,v)∼N(0,Λ(l+1)(x−x′))

[σ(u)σ(v)]

= Σ(l+1)(x− x′)

The same arguments can be made for the derivative covariance Σ̇(x,x′) in the equation A.5.

Lemma 3. If the covariance
[
Σ(1)(x,x′)

]
ij,i′j′

associated with the second pre-activation layer is shift-invariant for a

vanilla convolutional network, then the covariance functions
[
Σ(l)(x,x′)

]
ij,i′j′

and
[
Σ̇(l)(x,x′)

]
ij,i′j′

∀l = 2, ..., L at

indices (i, j) and (i′, j′) are shift-invariant. Their components
[
K(l)(x,x′)

]
ij,i′j′

and
[
K̇(l)(x,x′)

]
ij,i′j′

∀l = 2, ..., L are

also shift-invariant.

Proof sketch: Proof by induction: Following the same step, the covariance of
[
f (l+1)(x)

]
ij

and
[
f (l+1)(x′)

]
ij

in Equation
A.12 is a sum of

[
Kl(x,x′)

]
ij,i′j′

at different indices in a patch. Each correlation in Equation A.10 is again an expectation
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in which the covariance function Σ(l−1)(x,x′) is assumed to be shift-invariant in the base case and induction step. Base
case:

[
Σ(1)(x,x′)

]
ij,i′j′

=
[
Σ(1)(x− x′)

]
ij,i′j′

→
[
Σ(2)(x,x′)

]
ij,i′j′

=
[
Σ(2)(x− x′)

]
ij,i′j′

Induction step:

[
Σ(l)(x,x′)

]
ij,i′j′

=
[
Σ(l)(x− x′)

]
ij,i′j′

→
[
Σ(l+1)(x,x′)

]
ij,i′j′

=
[
Σ(l+1)(x− x′)

]
ij,i′j′

As a result, the shift-invariance of
[
K(l)(x,x′)

]
ij,i′j′

and
[
K̇(l)(x,x′)

]
ij,i′j′

are also apparent.

C.1.2. PROOF PART 2

To show that the use of first-layer cosine activation in Equation (4.6) of the main paper makes the first-layer GP covariance
shift-invariant, we apply the result by Rahimi & Recht (2008) to a convolutional network architecture. For a fully-connected
network, we rephrase the result by Rahimi & Recht (2008) in Lemma 4.

Lemma 4. For a fully-connected network, Σ(1)(x,x′) = Σ(1)(x− x′) if the first-layer activation σ(·) is sin(·) or cos(·)
and the bias is uniformly sampled w0 ∼ Unif(0, 2π).

In the following Lemma 5, we will see that it leads to a sum of patch-wise gaussian kernels (Equation ??) for the covariance
of the second layer pre-activation GP, which is shift-invariant.

Lemma 5. For a convolutional neural network, the covariance of the second-layer pre-activation
[
Σ(1)(x,x′)

]
ij,i′j′

=[
Σ(1)(x− x′)

]
ij,i′j′

if the first-layer activation σ(·) is sin(·) or cos(·), the bias is uniformly sampled w0 ∼ Unif(0, 2π),
and indices match {i = i′, j = j′}.

Proof sketch: Note that the second pre-activation is defined as following:

x→ pre-activation f (1) → h(1) = σ(·)→ pre-activationf (2)

[
Σ(1)(x,x′)

]
ij,i′j′

is the covariance of the neuron at (i, j) index of pre-activation layer 2 with image x as the input and
the neuron at (i′, j′) index of pre-activation layer 2 with image x′ as the input. To simplify the notations, we denote α-th
channel, (i+ a, j + b) index unit u∗α and (i′ + a, j′ + b) index unit v∗α for the first layer pre-activation f (1) as following:

u∗α,i,j =
[
W (1)

α

]>
[x]Di+a,j+b + w0 v∗α,i′,j′ =

[
W (1)

α

]>
[x′]Di′+a,j′+b + w0 (C.1)

SinceW (1)
α is a sample fromW (1) ∼ N(0, 1), we have the following random variables u∗, v∗:

u∗i,j =
[
W (1)

]>
[x]Di+a,j+b + w0 v∗i′,j′ =

[
W (1)

]>
[x′]Di′+a,j′+b + w0 (C.2)
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Now, we can simplify the covariance function Σ(1)(x,x′) of the pre-activation f (2)(·) GP:[
Σ(1)(x,x′)

]
ij,i′j′

= E
[[
f
(2)
(β)(x)

]
ij

[
f
(2)
(β)(x

′)
]
i′j′

]
(C.3)

= E
[[
h(1)(x)

]>
Dij

[
W

(2)
(β)

][
W

(2)
(β)

]>[
h(1)(x′)

]
Di′j′

]
(C.4)

=

C1∑
α=1

E
[[
h
(1)
(α)(x)

]>
Dij

[
h
(1)
(α)(x

′)
]
Di′j′

]
(C.5)

=
cσ
C1q2

C1∑
α=1

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

E
[
σ
(
u∗(α,i,j)

)
σ
(
u∗(α,i,j)

)]
(C.6)

=
cσ
q2

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

E
[
σ
(
u∗i,j
)
σ
(
v∗i,j
)]

(C.7)

1©
=
cσ
q2

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

exp

−
∥∥∥[x]Di+a,j+b − [x′]Di′+a,j′+b

∥∥∥2
2

2

 (C.8)

=
[
Σ(1)(x− x′)

]
ij,i′j′

if i = i′, j = j′ (C.9)

For the equality 1©, we use the result from (Rahimi & Recht, 2008) to show each expectation is a patch-wise gaussian kernel
between the image patch [x]Di+a,j+b and the image patch [x′]Di′+a,j′+b . Such a image patch-wise kernel is shift-invariant
w.r.t the original images x,x′ if i = i′, j = j′. Finally, we show the shift-invariance of SCNTK Ksc in the next subsection.

C.1.3. PROOF PART 3

Proposition 1. In the infinite width limit, CNTK computed by the inner products of gradients w.r.t parameters for i = 2, ..., L
layers, under the first-layer cos activation, and the uniform bias is shift-invariant; Ksc(x,x

′) = Ksc(x− x′)

Proof sketch: In the infinite width limit with the number of channels going infinity, such inner products of gradients
converge to the following deterministic form using the result by Arora et al. (2019) and similar arguments in section B:

Ksc(x,x
′) =

L∑
l=2

C(β)∑
β=1

〈
∂f(x,θ0)

∂W
(l)
(β)

∂f(x′,θ0)

∂W
(l)
(β)

〉
→

Cβ→∞

L∑
l=2

Sum
(
L
(
K(l−1)

)
� K̇(l) � L

(
K̇(l+1) · · · � · · · L

(
I� K̇(L)

)))

With Lemma 5, K(1) ∈ RH×W×H×W is shift-invariant for tensor indices {i, j, i′ = i, j′ = j}, matching indices of two
images x,x′. As a reminder, L is the linear operator that transformsK into Σ due to a convolution operation. Hence, by
Lemma 3, we see allK(l), K̇(l) ∀i = 2, ..., L are shift-invariant at matching indices {i, j, i′ = i, j′ = j}.[

K(l)(x,x′)
]
ij,ij

=
[
K(l)(x− x′)

]
ij,ij[

K̇(l)(x,x′)
]
ij,ij

=
[
K̇(l)(x− x′)

]
ij,ij

∀l = 1, ..., L

Since I is the diagonal matrix with non-zero entries at matching indices i = j, i′ = j′, non-matching entries that are not
shift-invariant are masked out. Since all the operators involved are linear, we have shown that this product, SCNTK, is
shift-invariant; Ksc(x,x

′) = Ksc(x− x′) Note that different strides of conv operations will not affect this shift-invariance.
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D. Discussions on the characteristic property of SCNTK
We study the characterstic property of SCNTK under a simple convolution → cosine activation → fully-connected
architecture. Consider a stride s and kernel size also s, q = s. So Di,j represents a s× s patch centered around (i, j). If the
data dimension is H ×W × C, we will have HW/s2 non-overlapping patches the convolution layer will look at due to the
stride equal to the filter size. We index these patches by k = 1, ...,HW/s2 and denote the data patch by [x]k. Now, our
SCNTK expression under this one-layer convolution is simply

Ksc(x,x
′) = Sum

(
L
(
K(1)

)
� L

(
I� K̇(2)

))
(D.1)

=

C(1)∑
i=1

(i−1)%s=0

C(1)∑
j=1

(j−1)%s=0

exp

−
∥∥∥[x]Di,j − [x′]Di,j

∥∥∥2
2

2

 (D.2)

=

HW/s2∑
k=1

exp

(
−
‖[x]k − [x′]k‖

2
2

2

)
(D.3)

=

HW/s2∑
k=1

Kg([x]k, [x
′]k) (D.4)

With this kernel expression, we can simplify and decompose MMD2(P,Q) into HW/s2 terms, each of which represents
the MMD2 for the data distribution of that k-th patch.

∴ MMD2(P,Q) = E[Ksc(x,x
′) +Ksc(y,y

′)− 2Ksc(x,y)] (D.5)

=

HW/s2∑
k=1

E[Kg([x]k, [x
′]k) +Kg([y]k, [y

′]k)− 2Kg([x]k, [y]k)] (D.6)

=

HW/s2∑
k=1

MMD2(Pk,Qk) (D.7)

Now, we need to argue MMD2(P,Q) = 0 iff P = Q given that each MMD2(Pk,Qk) = 0 iff Pk = Qk due to each gaussian
kernel Kg being characteristic. We will assume these patches to be independent.

p(x) = p([x]1) · · · p([x]k) · · · p([x]HW/s2)

q(x) = q([x]1) · · · q([x]k) · · · q([x]HW/s2)

Proof on the forward direction: Since MMD2(P,Q) =
∑HW/s2

k=1 MMD2(Pk,Qk) = 0, and MMD2(Pk,Qk) ≥ 0, it
must be the case that MMD2(Pk,Qk) = 0 ∀k = 1, ...,HW/s2. Since Kg is characteristic, we have Pk = Qk ∀k =
1, ...,HW/s2. Now this will indeed imply that

p(x) = p([x]1) · · · p([x]k) · · · p([x]HW/s2) = q([x]1) · · · q([x]k) · · · q([x]HW/s2) = q(x)

Hence, P = Q.

Proof on the reverse direction: Since P = Q, we assume that the data distributions for each patch Pk and Qk are the
same Pk = Qk for real world data we are interested in. Then MMD2(Pk,Qk) = 0 ∀k = 1, ...,HW/s2 due to Kg being
characteristic. Hence, its summation MMD2(P,Q) = 0.

Hence, we have shown that SCNTK under a one-layer convolution layer is characteristic with the assumptions that image
patches are independent and same data distributions could imply same data patch distributions. Under such assumptions, we
could also see that SCNTK with more than one-layer convolution layer is characteristic by observing that MMD2 could be
similarly written as a sum of MMD2 for patches and the kernel corresponding to each MMD patch is characteristic by the
composition theorem used in the main paper. The use of composition theorem has been seen in showing the characteristic of
SNTK in the main paper.
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E. Implementation Details
We implement our MMD-SCNTK computations on JAX and its Flax framefork with a NVIDIA P100 GPU. Note that we
need to compute the per-example gradient in order to compute the unbiased MMD estimate (U-statistics). Since computing
the per-example gradients using JAX requires more GPU memory than the usual sum of gradients computation provided
by frameworks such as PyTorch and Tensorflow, we compute the per-example gradients for a batch size of 100 for each
backpropagation. For example, this means we will separately compute the per-example gradients 8 times for SP with 800
data.

Our comparison experiments with the dimensionality reduced methods are based on the codebase by Rabanser et al.
(2019). We were able to reproduce their results so the baseline results in Figure 2 of the main manuscript and Figure
1, 2, 3, 4 are taken from their paper. Their MNIST and CIFAR10 datasets with various shifts are included in https:
//github.com/steverab/failing-loudly.

Our comparison experiments with the optimized kernel methods are based on the codebase by Liu et al. (2020). We were
able to reproduce their results so the baseline results in Table 2 of the main manuscript and Table 2 are taken from their paper.
Not MNIST and CIFAR10.1 datasets are included in their repo https://github.com/fengliu90/DK-for-TST.

We implement our own experiment setup for the outlier detection experiments in the ablation studies, Table 5 of the main
paper. The result is the average AUROC score over 5 different random seeds in Table 1. A three-layer convolutional network
with max-pooling and filter size of 3 is used for this ablation study.

F. Notes on experiments
F.1. Two-sample test comparisons with methods using the dimensionality reduction and a fixed kernel

We present the full comparisons between our MMD-SCNTK method and previous MMD-UAE method (Rabanser et al.,
2019) on two-sample test experiments under 10 different types of dataset shifts. Each result is averaged over 5 random
seeds. We use the same three-layer convolutional network architecture used in Rabanser et al. (2019) but with the first-layer
cosine activations. The results are summarized in the 10 plots from Figure 1, Figure 2, Figure 3, and Figure 4. Section 5.1 in
the main manuscript provides brief explanations on the experiment setup. In particular, we have MNIST and CIFAR10
experiments but the performance in the form of detection accuracy in the plots is the averaged result over MNIST and
CIFAR10 experiments.

MNIST experiments: SP ∼ MNIST dataset, SQ ∼ shifted MNIST dataset

CIFAR10 experiments: SP ∼ CIFAR10 dataset, SQ ∼ shifted CIFAR10 dataset

Dataset shift: gaussian noise. Figure 1 compares the detection performance under small (σ = 1), medium (σ = 2), and
large (σ = 3) scale gaussian noise injected to the samples. We could observe that two methods perform similarly when having
more than 100 data samples but SCNTK slightly outperforms UAE in a small data regime with a small scale of noise injected.
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Figure 1. A fraction δ of data is corrupted by the gaussian noise with various scales σ ∈ {1, 10, 100}, which correspond to small, medium,
large noise respectively. As the number of samples increases to 200, the gap between two methods shrinks but SCNTK still shows
promising results when the number of samples and the scale of the gaussian noise is small.

https://github.com/steverab/failing-loudly
https://github.com/steverab/failing-loudly
https://github.com/fengliu90/DK-for-TST
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Dataset shift: rigid transformation. Figure 2 shows a similar comparison but with a fraction δ percentage of the samples
rotated by {10, 40, 90}, translated (by {0.05, 0.2, 0.4}), and zoomed (by[0.1, 0.2, 0.4]). Again, SCNTK slightly outperforms
UAE under various degrees of rotations and translations applied.

50 100 150 200
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
sf

ul
 re

je
ct

io
n 

ra
te

shift type: small rotations and translations
MMD-UAE
MMD-SCNTK

50 100 150 200
Number of samples

0.2

0.3

0.4

0.5

0.6

Su
cc

es
sf

ul
 re

je
ct

io
n 

ra
te

shift type: medium rotations and translations

MMD-UAE
MMD-SCNTK

50 100 150 200
Number of samples

0.3

0.4

0.5

0.6

0.7

Su
cc

es
sf

ul
 re

je
ct

io
n 

ra
te

shift type: large rotations and translations
MMD-UAE
MMD-SCNTK

Figure 2. A fraction δ of data is corrupted by combinations of random rotations and translations, which correspond to small, medium,
large rotations and shifts.

Dataset shift: adversarial samples or class imbalanced data. Figure 3 includes the result when adversrial samples are
added (first plot) and some samples are removed for making a class imbalanced dataset (second plot).
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Figure 3. In the first plot, Adversarial samples are generated using the data from Rabanser et al. (2019) The second plot shows the result
when some data are removed from the samples of P, Q distributions.

Dataset shift: combination of gaussian noise and class imbalanced data. Figure 4 shows the comparisons of two
methods under the combined effects of the dataset shifts. For the plot on the left, medium scale rotations and translations are
applied along with knocking out some data from class 0 for making the class imbalanced samples. For the one on the right,
only the images from class 0 are included along with a medium scaled shift to the fraction δ of the data samples.
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Figure 4. mg+ko represents medium scale rotations and translations previously used in Figure 2 as well as removing δ fraction of the class
0 data used in Figure 3. mg+ko only includes images from class 0 besides applying the same medium scale rotations and translations to δ
fraction of the samples.
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Overall, we could clearly see an improvement in terms of the detection performance, except for the shift case when the class
is imbalanced, by using our gradient inner products for the kernel, which approximates the SCNTK based kernel.

F.2. Two-sample test comparisons with methods using the optimized kernel

MNIST experiments: SP ∼ MNIST dataset, SQ ∼ DCGAN MNIST dataset

CIFAR10 experiments: SP ∼ CIFAR10 dataset, SQ ∼ CIFAR10.1 dataset

Hyperparameter Choice. Our network architecture is a strided convolution network with cosine activations for the first
layer and ReLU activations for the rest of layers. The strided convolution without max-pooling follows the discriminator of
the DCGAN architecture (Radford et al., 2015). As Liu et al. (2020) mentions about the hyperparameter search for their
training procedures using one validation set (with the same size of training set), we also perform a rough hyperparameter
search for the strided convolution network architecture we are using. Our search space is rather simple and restricted in the
following three items and we believe more studies in the architecture choice could further improve the results in the future.

• filter size in {2, 3, 4}
• stride size in {1, 2, 3, 4}
• number of layers in {3, 4}
• width in {100, 200, 300} as in studying the effects of changing widths in Table 1 of the main manuscript

Only valid configurations from the combination of these choices are considered. For example, certain configurations such as
having 4 convolution layers with the stride 4 is impossible if the spatial dimensions of the input data is 32 by 32. After 2
layers, the spatial dimension will be 2 by 2 in this case. Filter sizes and strides will be truncated after the 2nd layer in this
case. A fully-connected layer will always be added at the last layer since the output is a scalar. Our results in Table 2 of the
main manuscript use the same hyperparameters over different number of samples. For each sample size, we conduct the
experiment under 10 different random seeds, and each experiment considers 100 different instances of sampled SP and SQ.
Furthermore, each permutation test is carried out by 100 different permutations of the specific sampled SP and SQ.

A three-layer strided convolutional network is used for MNIST experiments. The same architecture and hyperparameters
are used when exploring the effect of widths on the performance. A four-layer strided convoluitional network is used
for CIFAR10 experiments. Widths, the number of channels, are 300 for all the convolution layers. We present other
hyperparameters below.

Table 1. Hyperparameters used in MNIST and CIFAR10 experiments. A three-layer convolutional network is used for MNIST experiments
and a four-layer network is used for CIFAR10 experiments.

Stride Filter size activations Weight init under NTK parameterization
MNIST experiments (2, 2, 2) 3 (cos,ReLU,ReLU) (cσ = 1, cσ = 1, cσ = 1)

CIFAR10 experiments (3, 3, 3, 1) 4 (cos,ReLU,ReLU,ReLU) (cσ = 1, cσ = 1, cσ = 1, cσ = 1)

Table 2. Comparing the type I error, incorrectly rejecting the null hypothesis when the null hypothesis P = Q is true.
MNIST ME SCF C2ST-S C2ST-L M-O M-D SRF SCNTK

200 0.076±0.011 0.075±0.010 0.035±0.006 0.045±0.005 0.068±0.004 0.056±0.003 0.062±0.009 0.055±0.011

400 0.062±0.010 0.056±0.007 0.044±0.006 0.040±0.004 0.053±0.005 0.056±0.005 0.059±0.007 0.058±0.010

600 0.051±0.003 0.049±0.009 0.039±0.005 0.054±0.007 0.066±0.008 0.056±0.008 0.048±0.010 0.058±0.006

800 0.054±0.006 0.046±0.006 0.043±0.005 0.042±0.007 0.051±0.005 0.054±0.007 0.051±0.010 0.054±0.007

1000 0.047±0.006 0.045±0.010 0.038±0.006 0.046±0.006 0.041±0.007 0.062±0.006 0.061±0.008 0.065±0.007

Avg 0.058 0.054 0.040 0.045 0.056 0.057 0.056 0.058

Type I error on MNIST In Table 2 of the main manuscript, we report the accuracy of successfully rejecting the null
hypothesis h0 : when P 6= Q. We now show the type I error for MNIST experiments as done in Liu et al. (2020), incorrectly
rejecting the null hypothesis when both SP and SQ come from MNIST dataset. To perform this experiment, both SP and SQ
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are sampled from the same dataset MNIST. Same hyperparameters from MNIST experiments are used. In Table 2, we can
see SCNTK also does not have high type I errors.

Blob and Higgs experiments
We performed two toy experiments using the Blob and Higgs dataset from Liu et al. (2020). The datapoints from these
datasets do not have spatial structure like images so we do not use convolutional kernels. Blob dataset includes data points
sampled from two 2D mixtures of Gaussians. For this experiment, testings with a 5-layer SNTK achieves 0.17 accuracy
with 10 samples, 0.45 accuracy with 20 samples, and 1.00 accuracy with 40 or more samples. Higgs dataset includes
4-dimensional data points sampled from distributions with or without Higgs bosons (Baldi et al., 2014), We attached the
results for Higgs experiments in Table 3.

Table 3. Performance of testing with a 5-layer SNTK in Higgs dataset.
# of samples 1000 2000 3000 5000 8000 10000
Higgs Acc % 0.156±0.021 0.298±0.031 0.413±0.025 0.712±0.018 0.941±0.011 1.000±0.000

The effect of increasing widths for baseline methods:
As a sanity check, we also increased the widths of convolution layers in baselines to 300 since some of our experiment
results used widths 300. We include the results for classifier-based methods below.

# of samples MNIST 200 MNIST 400 MNIST 600 MNIST 800 MNIST 1000 CIFAR10 2000
C2ST-S 0.183±0.038 0.583±0.052 0.999±0.001 1.000±0.000 1.000±0.000 0.360
C2ST-L 0.238±0.042 0.612±0.038 1.00±0.000 1.000±0.000 1.000±0.000 0.392
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