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A. Experiment Details and Hyperparameters
A.1. Procgen Benchmark

Procgen Benchmark consists of 16 PCG environments of
varying styles, exhibiting a diversity of gameplay similar to
that of the ALE benchmark. Game levels are determined by
a random seed and can vary in navigational layout, visual
appearance, and starting positions of entities. All Procgen
environments share the same discrete 15-dimensional action
space and produce 64× 64× 3 RGB observations. (Cobbe
et al., 2020a) provides a comprehensive description of each
of the 16 environments. State-of-the-art RL algorithms, like
PPO, lead to significant generalization gaps between test
and train performance in all games, making Procgen a useful
benchmark for assessing generalization performance.

We follow the standard protocol for testing generalization
performance on Procgen: We train an agent for each game
on a finite number of levels, Ntrain, and sample test levels
from the full distribution of levels. Normalized test returns
are computed as (R − Rmin)/(Rmax − Rmin), where R is
the unnormalized return and each game’s minimum return,
Rmin, and maximum return, Rmax, are provided in Cobbe
et al. (2020a), which uses this same normalization.

To make the most efficient use of our computational re-
sources, we perform hyperparameter sweeps on the easy
setting. This also makes our results directly comparable
to most prior works benchmarked on Procgen, which have
likewise focused on the easy setting. In Procgen easy, our
experiments use the recommended settings of Ntrain = 200
and 25M steps of training, as well as the same ResNet pol-
icy architecture and PPO hyperparameters shared across all
games as in Cobbe et al. (2020a) and Raileanu et al. (2021).
We find 25M steps to be sufficient for uncovering differ-
ences in generalization performance among our methods
and standard baselines. Moreover, under this setup, we find
Procgen training runs require much less wall-clock time
than training runs on the two MiniGrid environments of in-
terest over an equivalent number of steps needed to uncover
differences in generalization performance. Therefore we
survey the empirical differences across various settings of
PLR on Procgen easy rather than MiniGrid.

To find the best hyperparameters for PLR, we evaluate
each combination of the scoring function choices in Table 1
with both rank and proportional prioritization, performing a
coarse grid search for each pair over different settings of the
temperature parameter β in {0.1, 0.5, 1.0, 1.4, 2.0} and the
staleness coefficient ρ in {0.1, 0.3, 1.0}. For each setting,
we run 4 trials across all 16 of games of the Procgen Bench-
mark, evaluating based on mean unnormalized test return
across games. In our TD-error-based scoring functions, we
set γ and λ equal to the same respective values used by the
GAE in PPO during training. We found PLR offered the

most pronounced gains at β = 0.1 and ρ = 0.1 on Procgen,
but these benefits also held for higher values (β = 0.5 and
ρ = 0.3), though to a lesser degree.

For UCB-DrAC, we make use of the best-reported hyper-
parameters on the easy setting of Procgen in Raileanu et al.
(2021), listed in Table 3.

We found the default setting of mixreg’s α = 0.2, as used by
Wang et al. (2020a) in the hard setting, performs poorly on
the easy setting. Instead, we conducted a grid search over α
in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.8, 0.2, 0.5, 0.8, 1}.

Since the TSCL Window algorithm was not previously eval-
uated on Procgen Benchmark, we perform a grid search
over different settings for both Boltzmann and ε-greedy
variants of the algorithm to determine the best hyperparam-
eter settings for Procgen easy. We searched over window
size K in {10, 100, 1000, 10000}, bandit learning rate α
in {0.01, 0.1, 0.5, 1.0}, random exploration probability ε in
{0.0, 0.01, 0.1, 0.5} for the ε-greedy variant, and tempera-
ture τ in {0.1, 0.5, 1.0} for the Boltzmann variant. Addi-
tionally, for a fairer comparison to PLR we further evaluated
a variant of TSCL Window that, like PLR, incorporates the
staleness distribution, by additionally searching over values
of the staleness coefficient ρ in {0.0, 0.1, 0.3, 0.5}, though
we ultimately found that TSCL Window performed best
without staleness sampling (ρ = 0).

See Table 3 for a comprehensive overview of the hyper-
parameters used for PPO, UCB-DrAC, mixreg, and TSCL
Window, shared across all Procgen environments to generate
our reported results on Procgen easy.

The evaluation protocol on the hard setting entails train-
ing on 500 levels over 200M steps (Cobbe et al., 2020a),
making it more compute-intensive than the easy setting.
To save on computational resources, we make use of the
same hyperparameters found in the easy setting for each
method on Procgen hard, with one exception: As our PPO
implementation does not use multi-GPU training, we were
unable to quadruple our GPU actors as done in Cobbe et al.
(2020a) and Wang et al. (2020a). Instead, we resorted to
doubling the number of environments in our single actor
to 128, resulting in mini-batch sizes half as large as used
in these two prior works. As such, our baseline results on
hard are not directly comparable to theirs. We found setting
mixreg’s α = 0.2 as done in Wang et al. (2020a) led to poor
performance under this reduced batch size. We conducted
an additional grid search, finding α = 0.01 to perform best,
as on Procgen easy.

A.2. MiniGrid

The MiniGrid suite (Chevalier-Boisvert et al., 2018) features
a series of highly structured environments of increasing dif-
ficulty. Each environment features a task in a grid world
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Table 3. Hyperparameters used for training on Procgen Benchmark
and MiniGrid environments.

Parameter Procgen MiniGrid

PPO
γ 0.999 0.999
λGAE 0.95 0.95
PPO rollout length 256 256
PPO epochs 3 4
PPO minibatches per epoch 8 8
PPO clip range 0.2 0.2
PPO number of workers 64 64
Adam learning rate 5e-4 7e-4
Adam ε 1e-5 1e-5
return normalization yes yes
entropy bonus coefficient 0.01 0.01
value loss coefficient 0.5 0.5

PLR
Prioritization rank rank
Temperature, β, 0.1 0.1 0.1
Staleness coefficient, ρ 0.1 0.3

UCB-DrAC
Window size, K 10 -
Regularization coefficient, αr 0.1 -
UCB exploration coefficient, c 0.1 -

mixreg
Beta shape, α 0.01 -

TSCL Window
Bandit exploration strategy ε-greedy -
Window size, K 10 -
Bandit learning rate, α 1.0 -
Exploration probability, ε 0.5 -

setting, and as in Procgen, environment levels are deter-
mined by a seed. Harder levels require the agent to perform
longer action sequences over a combinatorially-rich set of
game entities, on increasingly larger grids. The clear or-
dering of difficulty over subsets of MiniGrid environments
allows us to track the relative difficulty of levels sampled by
PLR over the course of training.

MiniGrid environments share a discrete 7-dimensional ac-
tion space and produce a 3-channel integer state encoding
of the 7× 7 grid immediately including and in front of the
agent. However, following the training setup in Igl et al.
(2019), we modify the environment to produce anN×M×3
encoding of the full grid, where N and M vary according to
the maximum grid dimensions of each environment. Full ob-
servability makes generalization harder, requiring the agent
to generalize across different level layouts in their entirety.

We evaluate PLR with rank prioritization on two MiniGrid
environments whose levels are uniformly distributed across
several difficulty settings. Training on levels of varying diffi-
culties helps agents make use of the easier levels as stepping
stones to learn useful behaviors that help the agent make
progress on harder levels. However, under the uniform-
sampling baseline, learning may be inefficient, as the train-
ing process does not selectively train the agent on levels of
increasing difficulty, leading to wasted training steps when
a difficult level is sampled early in training. On the con-
trary, if PLR scores levels according to the time-averaged
L1 value loss of recently experienced level trajectories, the
average difficulty of the sampled levels should adapt to the
agent’s current abilities, following the reasoning outlined in
the Value Correction Hypothesis, stated in Section 3.

As in Igl et al. (2019), we parameterize the agent policy
as a 3-layer CNN with 16, 32, and 32 channels, with a
final hidden layer of size 64. All kernels are 2 × 2 and
use a stride of 1. For the ObstructedMazeGamut environ-
ments, we increase the number of channels of the final CNN
layer to 64. We follow the same high-level generalization
evaluation protocol used for Procgen, training the agent
on a fixed set of 4000 levels for MultiRoom-N4-Random,
3000 levels for ObstructedMazeGamut-Easy, and 6000 lev-
els for ObstructedMazeGamut-Medium, and testing on the
full level distribution. We chose these values for |Λtrain| to
ensure roughly 1000 training levels of each difficulty setting
of each environment. We model our PPO parameters on
those used by Igl et al. (2019) in their MiniGrid experiments.
We performed a grid search to find that PLR with rank pri-
oritization, β = 0.1, and ρ = 0.3 learned most quickly
on the MultiRoom environment, and used this setting for
all our MiniGrid experiments. Table 3 summarizes these
hyperparameter choices.

The remainder of this section provides more details about
the various MiniGrid environments used in this work.

MultiRoom-N4-Random This environment requires the
agent to navigate through 1, 2, 3, or 4 rooms respectively
to reach a goal object, resulting in a natural ordering of
levels over four levels of difficulty. The agent always starts
at a random position in the furthest room from the goal
object, facing a random direction. The goal object is also
initialized to a random position within its room. See Figure
5 for screenshots of example levels.

ObstructedMazeGamut-Easy This environment con-
sists of levels uniformly distributed across the first three
difficulty settings of the ObstructedMaze environment, in
which the agent must locate and pick up the key in order to
unlock the door to pick up a goal object in a second room.
The agent and goal object are always initialized in random
positions in different rooms separated by the locked door.
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Figure 5. Example levels of each of the four difficulty levels of
MultiRoom-N4-Random, in order of increasing difficulty from
left to right. The agent (red triangle) must reach the goal (green
square).

The second difficulty setting further requires the agent to
first uncover the key from under a box before picking up the
key. The third difficulty level further requires the agent to
first move a ball blocking the door before entering the door.
See Figure 6 for screenshots of example levels.

Figure 6. Example levels of each of the three difficulty levels of
ObstructedMazeGamut-Easy, in order of increasing difficulty from
left to right. The agent must find the key, which may be hidden
under a box, to unlock a door, which may be blocked by an obstacle,
to reach the goal object (blue circle).

ObstructedMazeGamut-Hard This environment con-
sists of levels uniformly distributed across the first six dif-
ficulty levels of the ObstructedMaze environment. Harder
levels corresponding to the fourth, fifth, and sixth difficulty
settings include two additional rooms with no goal object to
distract the agent. Each instance of these harder levels also
contain two pairs of keys of different colors, each opening a
door of the same color. The agent always starts one room
away from the randomly positioned goal object. Each of the
two keys is visible in the fourth difficulty setting and doors
are unobstructed. The fifth difficulty setting hides the keys
under boxes, and the sixth again places obstacles that must
be removed before entering two of the doors, one of which
is always the door to the goal-containing room. See Figure
7 for example screenshots.

Figure 7. Example levels in increasing difficulty from left
to right of each additional difficulty setting introduced
by ObstructedMazeGamut-Hard in addition to those in
ObstructedMazeGamut-Easy.

B. Additional Experimental Results
B.1. Extended Results on Procgen Benchmark

We present an overview of the improvements in test perfor-
mance of each method across all 16 Procgen Benchmark
games over 10 runs in Figure 14. For each game, Figure
15 further shows how the generalization gap changes over
the course of training under each method tested. We show
in Figures 16 and 17, the mean test episodic returns on the
Procgen Benchmark (easy) for PLR with rank and propor-
tional prioritization, respectively. In both of these plots, we
can see that using only staleness (ρ = 1) or only L1 value
loss scores (ρ = 0) is considerably worse than direct level
sampling. Thus, we only observe gains compared to the
baseline when both level scores and staleness are used for
the sampling distribution. Comparing Figures 16 with 17
we find that PLR with proportional instead of rank prioriti-
zation provides statistically significant gains over uniform
level sampling on an additional game (CoinRun), but rank
prioritization leads to slightly larger mean improvements on
several games.

Figure 18 shows that when PLR improves generalization per-
formance, it also either matches or improves training sample
efficiency, suggesting that when beneficial to test perfor-
mance, the representations learned via the auto-curriculum
induced by PLR prove similarly useful on training levels.
However we see that our method reduces training sample
efficiency on two games on which our method does not
improve generalization performance. Since our method
does not discover useful auto-curricula for these games, it
is likely that uniformly sampling levels at training time al-
lows the agent to better memorize useful behaviors on each
of the training levels compared to the selective sampling
performed by our method.

Finally, we also benchmarked PLR and UCB-DrAC + PLR
against uniform sampling, TSCL Window, mixreg, and
UCB-DrAC on Procgen hard across 5 runs per environ-
ment. Due to the high computational cost of the evaluation
protocol for Procgen hard, which entails 200M training
steps, we directly use the best hyperparameters found in
the easy setting for each method. The results in Figure 10
show the two PLR-based methods significantly outperform
all other methods in terms of normalized mean train and test
episodic return, as well as reduction in mean generalization
gap, attaining even greater margins of improvement than in
the easy setting. As summarized by Table 4, the gains of
PLR and UCB + PLR in mean normalized test return rela-
tive to uniform sampling in the hard setting are comparable
to those in the easy setting. We provide plots of episodic
test return over training for each individual environment in
Figure 12.
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Figure 8. PLR consistently induces emergent curricula from easier
to harder levels during training. Left and right correspond to two
additional training runs independent of that in Figure 4.

B.2. Extended Results on Minigrid

To demonstrate that PLR consistently induces an emergent
curriculum, we present plots showing the change in probabil-
ity mass over different difficulty bins for additional training
runs in Figure 8. Like in Figure 4, we see the probabil-
ity mass assigned by Preplay gradually shifts from easier to
harder levels over the course of training.

B.3. Training on the Full Level Distribution

While assessing generalization performance calls for using
a fixed set of training levels, ideally our method can also
make use of the full level distribution if given access to
it. We take advantage of an unbounded number of training
levels by modifying the list structures for storing scores
and timestamps (see Algorithm 1 and 2) to track the top M
levels by learning potential in our finite level buffer. When
the lists are full, we set the next level for replacement to be

lmin = arg min
l

Preplay(l).

When the outcome of the Bernoulli PD entails sampling
a new level l, the score and timestamps of l replace those
of lmin only if the score of lmin is lower than that of l. In
this way, PLR keeps a running buffer throughout training
of the top M levels appraised to have the highest learning
potential for replaying anew.

Figure 9 shows that with access to the full level distribu-
tion at training, PLR improves sample efficiency and gen-
eralization performance in both environments compared to
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Figure 9. Mean test episodic returns on MultiRoom-N4-Random
(top) and ObstructedMazeGamut-Easy (bottom) with access to the
full level distribution at training. Plots are averaged over 3 runs.
We set PD to a Bernoulli parameterized as p = 0.5 for MultiRoom-
N4-Random and p = 0.95 for ObstructedMazeGamut-Easy (found
via grid search). As with all MiniGrid experiments using PLR, we
use rank prioritization, β = 0.1, and ρ = 0.3.

uniform sampling on the full distribution. In MultiRoom-
N4-Random, the value M makes little difference to test
performance, and training with PLR on the full level
distribution leads to a policy outperforming one trained
with PLR on a fixed set of training levels. However, on
ObstructedMazeGamut-Easy, a smaller M leads to worse
test performance. Nevertheless, for all butM = 500, includ-
ing the case of a fixed set of 3000 training levels, PLR leads
to better mean test performance than uniform sampling on
the full level distribution.

C. Algorithms
In this section, we provide detailed pseudocode for how PLR
can be used for experience collection when using T -step
rollouts. Algorithm 3 presents the extension of the generic
policy-gradient training loop presented in Algorithm 1 to
the case of T -step rollouts, and Algorithm 4 presents an
implementation of experience collection in this setting (ex-
tending Algorithm 2). Note that when using T -step rollouts
in the training loop, rollouts may start and end between
episode boundaries. To compute level scores on full tra-
jectories segmented across rollouts, we compute scores of
partial episodes according to Equation 2, and record these
partial scores alongside the partial episode step count in
a separate buffer S̃. The function score then technically,
optionally takes the additional input S̃ (through an abuse of
notation) as an additional argument to stitch together this
partial information into scores of full episodic trajectories.
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Table 4. Comparison of test scores of PPO with PLR against PPO with uniform-sampling on the hard setting of Procgen Benchmark.
Following (Raileanu et al., 2021), reported figures represent the mean and standard deviation of average test scores over 100 episodes
aggregated across 5 runs, each initialized with a unique training seed. For each run, a normalized average return is computed by dividing
the average test return for each game by the corresponding average test return of the uniform-sampling baseline over all 500 test episodes
of that game, followed by averaging these normalized returns over all 16 games. The final row reports the mean and standard deviation of
the normalized returns aggregated across runs. Bolded methods are not significantly different from the method with highest mean, unless
all are, in which case none are bolded.

Environment Uniform TSCL mixreg UCB-DrAC PLR UCB-DrAC + PLR

BigFish 9.7± 1.8 11.9± 2.5 12.0± 2.5 10.9± 1.6 15.3± 3.6 15.5± 2.8
BossFight 9.6± 0.2 8.4± 0.7 9.3± 0.9 9.0± 0.2 9.7± 0.4 9.5± 1.1
CaveFlyer 3.5± 0.8 6.3± 0.6 4.0± 1.0 2.6± 0.8 6.4± 0.6 8.0± 0.9
Chaser 5.9± 0.5 6.2± 1.0 6.5± 0.8 7.0± 0.6 6.8± 2.2 7.6± 0.2
Climber 5.3± 1.1 5.2± 0.7 5.7± 0.7 6.1± 1.0 7.4± 0.6 7.6± 1.8
CoinRun 4.5± 0.4 5.8± 0.8 6.2± 1.0 5.2± 1.0 6.8± 0.6 7.1± 0.5
Dodgeball 3.9± 0.6 1.9± 0.9 4.7± 1.0 9.9± 1.2 7.4± 1.3 12.4± 0.7
FruitBot 11.9± 4.2 13.1± 2.3 14.7± 2.2 15.6± 3.7 16.7± 1.0 12.9± 5.1
Heist 1.5± 0.4 0.9± 0.3 1.2± 0.4 1.1± 0.3 1.3± 0.4 2.6± 2.2
Jumper 3.2± 0.3 3.2± 0.3 3.3± 0.4 2.9± 0.9 3.5± 0.5 3.3± 0.8
Leaper 7.1± 0.3 7.5± 0.5 7.5± 0.5 3.8± 1.6 7.4± 0.2 8.2± 0.7
Maze 3.6± 0.7 3.8± 0.6 3.9± 0.5 4.4± 0.2 4.0± 0.4 6.2± 0.4
Miner 12.8± 1.4 11.7± 0.9 13.3± 1.6 16.1± 0.6 11.3± 0.7 15.3± 0.8
Ninja 5.2± 0.1 5.9± 0.8 5.0± 1.0 5.2± 1.0 6.1± 0.6 6.9± 0.3
Plunder 3.2± 0.1 5.4± 1.1 3.7± 0.4 7.8± 1.1 8.6± 2.7 17.5± 1.3
StarPilot 5.5± 0.6 2.1± 0.4 6.9± 0.6 11.2± 1.7 5.4± 0.8 12.3± 1.5

Normalized test returns (%) 100.0± 2.0 103.9± 3.5 110.6± 3.9 126.6± 3.0 135.0± 6.1 182.9± 8.2
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Figure 10. Left: Mean normalized train and test episode returns on Procgen Benchmark (hard). Right: Corresponding generalization gaps
during training. All curves are averaged across all environments over 5 runs. The shaded area indicates one standard deviation around the
mean. PLR-based methods statistically significantly outperform all others in both train and test returns. Only the PLR-based methods
statistically significantly reduce the generalization gap (p < 0.05).
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Figure 11. Mean train episode returns (5 runs) on Procgen Benchmark (hard), using the best hyperparameters found on the easy setting.
The shaded area indicates one standard deviation around the mean. A F indicates statistically significant improvement over the uniform-
sampling baseline by the PLR-based method of the matching color (p < 0.05). Note that while PLR reduces training performance on
StarPilot, it performs comparably to the uniform-sampling baseline at test time, indicating less overfitting to training levels.
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Figure 12. Mean test episode returns (5 runs) on Procgen Benchmark (hard), using best hyperparameters found on the easy setting.
The shaded area indicates one standard deviation around the mean. A F indicates statistically significant improvement over the
uniform-sampling baseline by the PLR-based method of the matching color (p < 0.05).
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Figure 13. Mean train episode returns (5 runs) on Procgen Benchmark (easy). The shaded area indicates one standard deviation around the
mean. A F indicates statistically significant improvement over the uniform-sampling baseline by the PLR-based method of the matching
color (p < 0.05). PLR tends to improve or match training sample efficiency. Note that while PLR reduces training performance on
StarPilot, it performs comparably to the uniform-sampling baseline at test time, indicating less overfitting to training levels.
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Figure 14. Mean test episode return (10 runs) on each Procgen Benchmark game (easy). The shaded area indicates one standard deviation
around the mean. PLR-based methods consistently match or outperform uniform sampling with statistically significance (p < 0.05),
indicated by a F of the corresponding color. We see that TSCL results in inconsistent outcomes across games, notably drastically lower
test returns on StarPilot.
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Figure 15. Mean generalization gaps throughout training (10 runs) on each Procgen Benchmark game (easy). The shaded area indicates
one standard deviation around the mean. A F indicates the method of matching color results in a statistically significant (p < 0.05)
reduction in generalization gap compared to the uniform-sampling baseline. By itself, PLR significantly reduces the generalization gap
on 7 games, and UCB-DrAC, on 5 games. This number jumps to 10 of 16 games when these two methods are combined. TSCL only
significantly reduces generalization gap on 2 of 16 games relative to uniform sampling, while increasing it on others, most notably on
Dodgeball.
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Test performance of PLR + rank prioritization for various ρ on Procgen Benchmark (easy)

Figure 16. Mean test episode returns (10 runs) on the Procgen Benchmark (easy) for PLR with rank prioritization and β = 0.1 across
a range of staleness coefficient values, ρ. The replay distribution must consider both the L1 value-loss and staleness values to realize
improvements to generalization and sample efficiency. The shaded area indicates one standard deviation around the mean. A F next to
the game name indicates that ρ = 0.1 exhibits statistically significantly better final test returns or sample efficiency along the test curve
(p < 0.05), which we observe in 10 of 16 games.
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Figure 17. Mean test episode returns (10 runs) on the Procgen Benchmark (easy) for PLR with proportional prioritization and β = 0.1
across a range of values of ρ. As in the case of rank prioritization, the replay distribution must consider both the L1 value loss score and
staleness values in order to realize performance improvements. The shaded area indicates one standard deviation around the mean. A F
next to the game name indicates the condition ρ = 0.1 exhibits statistically significantly better final test returns or sample efficiency along
the test curve (p < 0.05), which we observe in 11 of 16 games.
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Figure 18. Mean training episode returns (10 runs) on the Procgen Benchmark for (easy) PLR with β = 0.1, ρ = 0.1, and each of rank
and proportional prioritization. On some games, PLR improves both training sample efficiency and generalization performance (e.g.
BigFish and Chaser), while on others, only generalization performance (e.g. CaveFlyer with rank prioritization). The shaded area indicates
one standard deviation around the mean.
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Algorithm 3 Generic T -step policy-gradient training loop with prioritized level replay

Input: Training levels Λtrain of an environment, policy πθ, rollout length T , number of updates Nu, batch size Nb,
policy update function U(B, θ)→ θ′.
Initialize level scores S, partial level scores S̃, and level timestamps C
Initialize global episode count c← 0
Initialize set of visited levels Λseen = ∅
Initialize experience buffer B = ∅
Initialize Nb parallel environment instances E, each set to a random level in ∈ Λtrain
for u = 1 to Nu do
B ← ∅
for k = 1 to Nb do
B ← B ∪ collect experiences(k,E,Λtrain,Λseen, πθ, T, S, S̃, C, c) Using Algorithm 4

end for
θ ← U(B, θ)

end for



Prioritized Level Replay

Algorithm 4 Collect T -step rollouts with prioritized level replay

Input: Actor index k, batch environments E, training levels Λtrain, visited levels Λseen, current level l, policy πθ, rollout
length T , scoring function score, level scores S, partial scores S̃, staleness values C, and global episode count c.

Output: Experience buffer B
Initialize B = ∅, and set current level li = Ek
Observe current state s0, termination flag d0
if d0 then

Define new index i← |S|+ 1
Choose current level li ← sampleNextLevel(Λtrain, S, C, c) and Ek ← li
Update level timestamp Ci ← c
Observe initial state s0

end if
Choose a0 ∼ πθ(·|s0)
t = 1
Initialize episodic trajectory buffer τ = ∅
while t < T do

Observe (st, rt, dt)
B ← B ∪ (st−1, at−1, st, rt, dt, log πθ(a))
τ ← τ ∪ (st−1, at−1, st, rt, dt, log πθ(a))
if dt then

Update level score Si ← score(τ, πθ, S̃i) and partial score S̃i ← 0
τ ← ∅
Define new index i← |S|+ 1
Update current level li ← sampleNextLevel(Λtrain, S, C, c) and Ek ← li
Update level timestamp Ci ← c

end if
Choose at+1 ∼ πθ(·|st)
t← t+ 1

end while
if not dt then
S̃i ← (score(τ, πθ), |τ |) Track partial time-averaged score and |τ |

end if

function sampleNextLevel(Λtrain, S, C, c)
c← c+ 1
Sample replay decision d ∼ PD(d)
if d = 0 and |Λtrain \ Λseen| > 0 then

Define new index i← |S|+ 1
Sample li ∼ Pnew(l|Λtrain,Λseen) Sample an unseen level, if any
Add li to Λseen, add initial value Si = 0 to S and Ci = 0 to C

else
Sample li ∼ (1− ρ) · PS(l|Λseen, S) + ρ · PC(l|Λseen, C, c) Sample a level for replay

end if
return li

end function


