
Monotonic Robust Policy Optimization with Model Discrepancy

A. Appendix
A.1. Proof of Lemma 1

Proof. First, we define η(π|pw)−maxp∈P η(π|p) , −C0, where C0 ≥ 0 depends on π and P . Then, given a policy π and
any environment p ∈ P , and for any non-negative constant C ≥ C0 ≥ 0, we thus have:

η(π|pw)− Ep∼P [η(π|p)] ≥ η(π|pw)−max
p∈P

η(π|p) = −C0 ≥ −C. (A.1)

Therefore, the second inequality η(π|pw) ≥ Ep∼P [η(π|p)]−C is proved, while the first inequality Ep∼P [η(π|p)] ≥ η(π|pw)
always holds according to the definition of the worst-case environment pw.

A.2. Proof of Theorem 1

Lemma A.1. For any two joint distribution P1(x, y) = P1(x)P1(y|x) and P2(x, y) = P2(x)P2(y|x) over x and y, we can
bound the total variation distance of them by:

DTV (P1(x, y)‖P2(x, y)) ≤ DTV (P1(x)|P2(x)) + max
x

DTV (P1(y|x)‖P2(y|x)) (A.2)

Proof.

DTV (P1(x, y)‖P2(x, y)) =
1

2

∑
x,y

|P1(x, y)− P2(x, y)| (A.3)

=
1

2

∑
x,y

|P1(x)P1(y|x)− P2(x)P2(y|x)| (A.4)

=
1

2

∑
x,y

|P1(x)P1(y|x)− P1(x)P2(y|x) + P1(x)P2(y|x)− P2(x)P2(y|x)| (A.5)

≤1

2

∑
x,y

P1(x)|P1(y|x)− P2(y|x)|+
1

2

∑
x

|P1(x)− P2(x)| (A.6)

=Ex∼P1
DTV (P1(y|x)‖P2(y|x)) +DTV (P1(x)|P2(x)). (A.7)

Lemma A.2. Suppose the initial state distributions P 0
1 (s) and P 0

2 (s) are the same. Then the distance in the state marginal
at time step t is bounded as:

DTV (P
t
1(s)‖P t2(s)) ≤ tmax

t
Es′∼P t1DTV (P1(s|s′)‖P2(s|s′)). (A.8)

Monotonic Robust Policy Optimization with Model Discrepancy

Proof. We can first prove the following inequality:

|P t1(s)− P t2(s)| =
∣∣∣∣∑
s′

P1(st = s|s′)P t−11 (s′)−
∑
s′

P2(st = s|s′)P t−12 (s′)

∣∣∣∣ (A.9)

≤
∑
s′

|P1(st = s|s′)P t−11 (s′)− P2(st = s|s′)P t−12 (s′)| (A.10)

=
∑
s′

|P1(st = s|s′)P t−11 (s′)− P2(st = s|s′)P t−11 (s′) (A.11)

+ P2(st = s|s′)P t−11 (s′)− P2(st = s|s′)P t−12 (s′)| (A.12)

≤Es′∼P t−1
1
|P1(s|s′)− P2(s|s′)|+

∑
s′

P2(s|s′)|P t−11 (s′)− P t−12 (s′)|. (A.13)

Based on (A.13), we have:

DTV (P
t
1(s)‖P t2(s)) ≤

1

2

∑
s

|P t1(s)− P t2(s)| (A.14)

≤1

2

∑
s

(
Es′∼P t−1

1
|P1(s|s′)− P2(s|s′)|+

∑
s′

P2(s|s′)|P t−11 (s′)− P t−12 (s′)|

)
(A.15)

=Es′∼P t−1
1

DTV (P1(s|s′)‖P2(s|s′)) +DTV (P
t−1
1 (s′)‖P t−12 (s′)) (A.16)

≤
t∑
i=1

Es′∼P i−1
1

DTV (P1(s|s′)‖P2(s|s′)) (A.17)

≤tmax
t

Es′∼P t1DTV (P1(s|s′)‖P2(s|s′)), (A.18)

where (A.17) is obtained by recursively applying (A.14)-(A.16) to the second term DTV (P
t−1
1 (s′)‖P t−12 (s′)) in (A.16).

Theorem A.1. (Theorem 1 in the main text.) In MDPs where the reward function is bounded, and for any distribution P
over P , by updating the current policy π to a new policy π̃, the following bound holds:

η(π̃|pw)− Ep∼P [η(π̃|p)] ≥ −2|r|max
γEp∼P [ε(pw‖p)]

(1− γ)2
− 4|r|maxd(π, π̃)

(1− γ)2
, (A.19)

where pw denotes the environment that corresponds to the worst-case performance under policy π, and we define ε(pw‖p) ,
maxt Es′∼P tπ(·|pw)Ea∼π(·|s′)DTV (T (s|s′, a, pw)‖T (s|s′, a, p)), d(π, π̃) , maxt Es′∼P tπ(·|pw)DTV (π(a|s′)‖π̃(a|s′)).

Proof. We can rewrite the LHS of (A.19) as:

η(π̃|pw)− Ep∼P [η(π̃|p)] = η(π̃|pw)− η(π|pw) + η(π|pw)− Ep∼P [η(π̃|p)] .

For the last two terms, we have:

Ep∼P |η(π|pw)− η(π̃|p)| =Ep∼P

∣∣∣∣∑
t

γt
∑
s,a

(P t(s, a|pw)− P t(s, a|p))R(s, a)
∣∣∣∣

≤Ep∼P
∑
t

γt
∑
s,a

|P t(s, a|pw)− P t(s, a|p)| · |R(s, a)|

≤2|r|max

∑
t

γtEp∼P
[
DTV (P

t(s, a|pw)‖P t(s, a|p))
]
, (A.20)

Monotonic Robust Policy Optimization with Model Discrepancy

where |r|max denotes the upper bound of the absolute value of reward function |R(s, a)|, and P t(s, a|pw) = π(a|s)P tπ(s|pw)
and P t(s, a|p) = π̃(a|s)P tπ̃(s|p). Further referring to Lemma A.1, we have:

Ep∼P
[
DTV (P

t(s, a|pw)|P t(s, a|p))
]

≤Es∼P tπ(·|pw)DTV (π(a|s)‖π̃(a|s)) + Ep∼P
[
DTV (P

t
π(s|pw)‖P tπ̃(s|p))

]
. (A.21)

Note that

P (s|s′, pw) =
∑
a

T (s|s′, a, pw)π(a|s′), (A.22)

P (s|s′, p) =
∑
a

T (s|s′, a, p)π̃(a|s′). (A.23)

Similar to Lemma A.1, we have:

DTV (P (s|s′, pw)‖P (s|s′, p)) (A.24)

=
1

2

∑
s

∑
a

|T (s|s′, a, pw)π(a|s′)− T (s|s′, a, p)π̃(a|s′)| (A.25)

≤1

2

∑
s

∑
a

|T (s|s′, a, pw)− T (s|s′, a, p)|π(a|s′) +
1

2

∑
s

∑
a

T (s|s′, a, p)|π(a|s′)− π̃(a|s′)| (A.26)

=Ea∼π(·|s′)DTV (T (s|s′, a, pw)‖T (s|s′, a, p)) +DTV (π(a|s′)‖π̃(a|s′)). (A.27)

Referring to Lemma A.2, we have:

Ep∼P
[
DTV (P

t
π(s|pw)‖P tπ̃(s|p))

]
≤tEp∼P max

t
Es′∼P tπ(·|pw)DTV (P (s|s′, pw)‖P (s|s′, p))

≤tEp∼P max
t

Es′∼P tπ(·|pw)Ea∼π(·|s′)DTV (T (s|s′, a, pw)‖T (s|s′, a, p))

+ tmax
t

Es′∼P tπ(·|pw)DTV (π(a|s′)‖π̃(a|s′)). (A.28)

Since ε(p‖pw) = maxt Es′∼P tπ(·|pw)Ea∼π(·|s′)DTV (T (s|s′, a, pw)‖T (s|s′, a, p)) and d(π, π̃) =
maxt Es′∼P tπ(·|pw)DTV (π(a|s′)‖π̃(a|s′)), combining (A.20), (A.21) and (A.28), and referring to Jensen’s inequal-
ity, we have:

|η(π|pw)− Ep∼P η(π̃|p)|
≤Ep∼P |η(π|pw)− η(π̃|p)|

≤2|r|max

∑
t

γtEp∼P

[
(t+ 1)max

t
Es′∼P tπ(·|pw)DTV (π(a|s′)‖π̃(a|s′))

+tmax
t

Es′∼P tπ(·|pw)Ea∼π(·|s′)DTV (T (s|s′, a, pw)‖T (s|s′, a, p))
]

=2|r|max

∑
t

γt [t(Ep∼P [ε(pw‖p)] + d(π, π̃)) + d(π, π̃)]

=2|r|max

[
γEp∼P [ε(pw‖p)]

(1− γ)2
+

d(π, π̃)

(1− γ)2

]
. (A.29)

With policy π be updated to π̃, η(π|pw) ≤ Ep∼P [η(π̃|p)]. Then, we have:

η(π|pw)− Ep∼P [η(π̃|p)] ≥ −2|r|max

[
γEp∼P [ε(pw‖p)]

(1− γ)2
+

d(π, π̃)

(1− γ)2

]
. (A.30)

Similar to the derivation of (A.29) and referring to Janner et al. (2019), we have:

η(π̃|pw)− η(π|pw) ≥ −
2|r|maxd(π, π̃)

(1− γ)2
. (A.31)

Monotonic Robust Policy Optimization with Model Discrepancy

Combining the above results, we end up with the proof, as follows:

η(π̃|pw)− Ep∼P [η(π̃|p)] ≥ −2|r|max
γEp∼P [ε(pw‖p)]

(1− γ)2
− 4|r|maxd(π, π̃)

(1− γ)2
. (A.32)

A.3. Derivation of Policy Optimization Step

In the policy optimization step, we aim to solve the following optimization problem:

max
π̃

Ep∼P [η(π̃|p)] s.t. d(π, π̃) ≤ δ1. (A.33)

Referring to (1), we have:

Ep∼P [η(π̃|p)] ≥ Ep∼P [Lπ(π̃|p)]−
2λγ

(1− γ)2
β2. (A.34)

We now turn to optimize the RHS of (A.34) to maximize the objective in (6) (or (A.33)) under the constraint d(π, π̃) ≤ δ1:

max
π̃

Ep∼P [Lπ(π̃|p)]−
2λγ

(1− γ)2
β2 s.t. d(π, π̃) ≤ δ1. (A.35)

Note that we have:

d(π, π̃) = max
t

Es′∼P tπ(·|pw)DTV (π(a|s′)‖π̃(a|s′)) ≤ max
s′

DTV (π(a|s′)‖π̃(a|s′)) = β. (A.36)

Following the approximation in Schulman et al. (2015), (A.35) can be equivalently transformed to:

max
π̃

Ep∼P

[
Es∼Pπ(·|p),a∼π(·|s)

[
π̃(a|s)
π(a|s)

Aπ(s, a)

]]
s.t. β ≤ δ, (A.37)

which can be solved by using the PPO (Schulman et al., 2017).

A.4. Proof of Theorem 2

Proof. Denote H(πk‖πk+1) , maxt Es′∼P tπ(·|pw)DTV (π
k(a|s′)‖πk+1(a|s′)). Updating πk to πk+1 at each iteration k and

following Theorem 1, we have

η(πk+1|pkw) ≥ Ep∼Pk+1

[
η(πk+1|p)−

2|r|maxγε(p‖pkw)
(1− γ)2

]
− 4|r|maxH(πk‖πk+1)

(1− γ)2
. (A.38)

Since P k+1 and πk+1 are obtained by maximizing the RHS of (3), we have

Ep∼Pk+1

[
η(πk+1|p)−

2|r|maxγε(p‖pkw)
(1− γ)2

]
− 4|r|maxH(πk‖πk+1)

(1− γ)2
. (A.39)

≥Ep∼Pk+1

[
η(πk|p)−

2rmaxγε(p‖pkw)
(1− γ)2

]
− 4|r|maxH(πk‖πk)

(1− γ)2
(A.40)

=Ep∼Pk+1

[
η(πk|p)−

2rmaxγε(p‖pkw)
(1− γ)2

]
(A.41)

From Line 5 in Algorithm 1, the environment selected for training satisfies:

η(πk|p)−
2|r|maxγε(p‖pkw)

(1− γ)2
≥ η(πk|pkw)−

2|r|maxγε(p
k
w‖pkw)

(1− γ)2
= η(πk|pkw). (A.42)

Therefore, combining (A.38)-(A.42), we have:

η(πk+1|pk+1
w) ≈ η(πk+1|pkw) ≥ Ep∼Pk+1 [η(πk|pkw)] = η(πk|pkw). (A.43)

where the approximation is made under the assumption that the expected returns of worst-case environment between two
iterations are similar, which stems from the trust region constraint we impose on the update step between current and new
policies, and can also be validated from experiments in Appendix A.5.

Monotonic Robust Policy Optimization with Model Discrepancy

0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1
friction

750.0

805.6

861.1

916.7

972.2

1027.8

1083.3

1138.9

1194.4

1250.0

de
ns

ity

500

600

700

800

900

(a) iteration k = 300

0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1
friction

750.0

805.6

861.1

916.7

972.2

1027.8

1083.3

1138.9

1194.4

1250.0

de
ns

ity

600

700

800

900

1000

(b) iteration k = 301

0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1
friction

750.0

805.6

861.1

916.7

972.2

1027.8

1083.3

1138.9

1194.4

1250.0

de
ns

ity

400

450

500

550

600

650

700

750

800

(c) iteration k = 350

0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1
friction

750.0

805.6

861.1

916.7

972.2

1027.8

1083.3

1138.9

1194.4

1250.0

de
ns

ity

400

500

600

700

800

(d) iteration k = 351

Figure 1. Heatmaps of return between policy update at iterations k = 300 and k = 350, using MRPO on Hopper.

A.5. Empirical Verification of Assumption in Theorem 2

To verify the assumption made in Theorem 2, in Fig. 1, we study how the parameters of environments with poor performance
scatter in the parameter space with different dimensions. Specifically, we plot the heatmap of return for the range of Hopper
environments used for training, achieved by using MRPO to update the policy between two iterations. It can be validated
that at the iteration k = 300, the poorly performing environments of the two policies before and after the MRPO update
concentrate in the same region, i.e., the area of small frictions. The same result can be observed for the iteration k = 350.

For example, as shown in Figs. 1(a) and 1(b), at iteration k = 300, p300w = (750, 0.5), the MC estimation of η(π300|p300w) is
487.6 and that of η(π301|p300w) is 532.0. At iteration k = 301, p301w = (1027.8, 0.5) and the MC estimation of η(π301|p301w)
is 517.6. As shown in Figs. 1(c) and 1(d), at iteration k = 350, p350w = (861.1, 0.5), the MC estimation of η(π350|p350w) is
385.9 and that of η(π351|p350w) is 422.2. At iteration k = 351, p351w = (750, 0.5) and the MC estimation of η(π351|p351w) is
394.0. In both cases, the empirical results can support the assumption that we made in (A.43), i.e., the expected returns of
worst-case environment between two iterations are similar.

A.6. Bounded Reward Function Condition in Robot Control Tasks

In Theorem 1, we state the condition that reward function is bounded. Referring to the source code of OpenAI gym (Brock-
man et al., 2016), the reward function for the different robot control tasks evaluated in this paper are listed below.

Walker2d and Hopper:

R = xt+1 − xt + b− 0.001|at|2;

Monotonic Robust Policy Optimization with Model Discrepancy

Halfcheetah:

R = xt+1 − xt − 0.001|at|2;

InvertedPendulum:

R = 1, if the pendulum does not fall down or the number of maximum time steps is reached;

InvertedDoublePendulum:

R = b− cdist − cvel.

Cartpole:

R = 1, if the pole does not fall down or the number of maximum time steps is reached;

In Walker2d, Hopper and Halfcheetah, xt+1 and xt denote the positions of the robot at time step t+ 1 and t, respectively.
For Walker2d and Hopper, b ∈ {0, 1}, and b equals 0 when the robot falls down or 1 otherwise. The squared norm of
action represents the energy cost of the system. Since the maximum distance that the robot can move in one time step and
the energy cost by taking an action at each timestep are bounded, these three tasks all have the bounded reward function.
In InvertedPendulum and Cartpole, the reward is always 1. In InvertedDoublePendulum, b equals 0 when the pendulum
falls down or 10 otherwise, cdist is the distance between the robot and the centre, and cvel is the weighted sum of the two
pendulum’s angular velocities. Since all the three parameters b, cdist and cvel are physically bounded, the reward function,
as a linear combination of them, is also bounded.

A.7. Analysis of the Monte Carlo Estimation of η(π|p)

In Theorem 1, the worst-case environment parameter pw needs to be selected according to the expected cumulative discounted
reward η(π|p) of environment p. However, η(π|p) is infeasible to get in the practical implementation. Therefore, as a
commonly used alternative approach as in (Rajeswaran et al., 2017), we use the mean of the cumulative discounted reward
of L sampled trajectories

∑L−1
j=0 G(τi,j |pi)/L to approximate the expectation η(π|pi) = Eτ [G(τ |pi)] of any environment

pi, by using Monte Carlo method. We then determine the worst-case environment pw based on
∑L−1
j=0 G(τi,j |pi)/L of a

given set of environments piM−1i=0 . In the following, we will analyze the impact of L on the MC estimation error.

0 250 500 750 1000 1250 1500 1750
iterations

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

L=1
L=3
L=5

(a) Performance

0 250 500 750 1000 1250 1500 1750
iterations

0

1

2

3

4

5

6

7

tim
e

el
ap

se
d

(1
04)

s

1e5

L=1
L=3
L=5

(b) Time elapsed

Figure 2. (a) Training curves of average return of MRPO on Hopper with different L; (b) Elapsed time versus number of iterations curves
during training.

Monotonic Robust Policy Optimization with Model Discrepancy

Theoretical analysis of the impact of L: Referring to Chebyshev’s inequality, for any environment pi and any ε ≥ 0, with
probability of at least 1− σ2

Lε2 , we have∣∣∣∣∣
∑L−1
j=0 G(τi,j |pi)

L
−
∑L−1
j=0 Eτi,j [G(τi,j |pi)]

L

∣∣∣∣∣ =
∣∣∣∣∣
∑L−1
j=0 G(τi,j |pi)

L
− η(π|pi)

∣∣∣∣∣ ≤ ε, (A.44)

where σ = V ar(G(τ)|pi) is the variance of trajectory τ ’s return. From the above equation, we find out that the variance of
the return does affect the MC estimation of η(π|p) and a larger L can guarantee a higher probability for the convergence of∑L−1
j=0 G(τi,j |pi)/L to η(π|pi).

Empirical evaluation of the impact of L: In practice, we conduct experiment of MRPO on Hopper with different choices
of L. We find out that a larger L would not greatly affect the performance in terms of average return as shown in Fig. 2(a),
but will significantly increase the training time as shown in Fig. 2(b). In other words, for the same number of training
iterations, a larger L would consume significantly longer running time than a smaller L, while the performance is similar.
Therefore, we set L = 1 in our practical implementation of MRPO to strike a trade-off between the approximation accuracy
and time complexity in training.

A.8. Analysis of the Lipschitz Assumption

In robot control tasks, classical optimal control methods commonly utilize the differential equation to formulate the dynamic
model, which then indicates that the transition dynamics model is Lp-Lipschitz and this formulated dynamic function can be
used to estimate the Lipschitz constant Lp.

Here we illustrate the inverted pendulum system, which is one of our robot control tasks for validation. The single inverted
pendulum has two state variables θ and θ̇, and one control input u, where θ and θ̇ represent the angular position from the
inverted position and the angular velocity, respectively, and u is the torque. The system dynamics can therefore be described
as

θ̈ =
mgl sin θ + u− 0.1θ̇

ml2
, (A.45)

where m is the mass, g is the Gravitational acceleration, and l is the length of pendulum. In our setting, we may choose m
as the variable environment parameter p. Since the above system dynamics are differentiable w.r.t. m, it can be verified that
the maximum value of the first derivative of the system dynamic model can be chosen as the Lipschitz constant Lp.

A.9. Generalization to Unseen Environments of Cartpole and InvertedDoublePendulum

In Fig. 3, we show the comparison results of MPRO, PR-DR and DR on unseen environments for the other two benchmarks,
InvertedDoublePendulum and Cartpole, to provide empirical support for the generalization capability of MRPO.

1.0
0
1.0

1
1.0

2
1.0

3
1.0

4
1.0

6
1.0

7
1.0

8
1.0

9
1.1

0

length1s

1.00
1.01
1.02
1.03
1.04
1.06
1.07
1.08
1.09
1.10

le
ng

th
2s

MRPO

1.0
0
1.0

1
1.0

2
1.0

3
1.0

4
1.0

6
1.0

7
1.0

8
1.0

9
1.1

0

1.00
1.01
1.02
1.03
1.04
1.06
1.07
1.08
1.09
1.10

PWDR

1.0
0
1.0

1
1.0

2
1.0

3
1.0

4
1.0

6
1.0

7
1.0

8
1.0

9
1.1

0

1.00
1.01
1.02
1.03
1.04
1.06
1.07
1.08
1.09
1.10

DR

0

2000

4000

6000

8000

10000

(a) InvertedDoublePendulum

1.0
0
1.5

6
2.1

1
2.6

7
3.2

2
3.7

8
4.3

3
4.8

9
5.4

4
6.0

0

pole length

1.00
1.56
2.11
2.67
3.22
3.78
4.33
4.89
5.44
6.00

po
le

 m
as

s

MRPO

1.0
0
1.5

6
2.1

1
2.6

7
3.2

2
3.7

8
4.3

3
4.8

9
5.4

4
6.0

0

1.00
1.56
2.11
2.67
3.22
3.78
4.33
4.89
5.44
6.00

PWDR

1.0
0
1.5

6
2.1

1
2.6

7
3.2

2
3.7

8
4.3

3
4.8

9
5.4

4
6.0

0

1.00
1.56
2.11
2.67
3.22
3.78
4.33
4.89
5.44
6.00

DR

0

200

400

600

800

1000

(b) Cartpole

Figure 3. Heatmap of return in unseen environments on InvertedDoublePendulum and Cartpole, with policies trained by MRPO, PW-DR
and DR in the training environments.

Monotonic Robust Policy Optimization with Model Discrepancy

A.10. Tuning of κ in MRPO on Walker2d and InvertedPendulum

As stated in section 4.3, κ was selected in a gradually increasing manner to strike tradeoff between average and worst-case
return. 1) Theoretically, from Eqs. (3) and (9), a large κ increases the penalty to ||p− pw||, forcing environment distribution
P in Eq. (4) more concentrated around pw. Thus, we start from small κ to ensure policy trained with good average
performance, and then increase κ gradually to focus on improving worst-case performance. 2) Empirically, we further test
MRPO on Walker2d and InvertedPendulum with different choices of κ. Additional result of Walker2d and InvertedPendulum
in Figs. 4(a)-4(d) validates a similar trend to that of Hopper in Fig. 3 in the main text.

0 1000 2000
iterations

0

1000

2000

av
er

ag
e

re
tu

rn

= ours
= 5
= 20
= 40
= 60

(a) W2D A

0 1000 2000
iterations

0

1000

2000
W

 re
tu

rn = ours
= 5
= 20
= 40
= 60

(b) W2D W

0 400 800
iterations

0

500

1000

av
er

ag
e

re
tu

rn

= ours
= 5
= 20
= 40
= 60

(c) IP A

0 400 800
iterations

0

250

500

W
 re

tu
rn = ours

= 5
= 20
= 40
= 60

(d) IP W

Figure 4. Training curves of average return (A) and 10% worst-case return (W) of MRPO on W2D and IP with different κ.

A.11. Hyperparameter tuning for PW-DR

PW-DR needs to tune the hyperparameter α, standing for the α-percentage of worst performing trajectories. We perform the
search of α on Walker2d and Hopper in Figs. 5(a)-5(d), which validates that α = 10% achieves highest performance for
PW-DR.

0 1000 1750
iterations

0

1000

2000

av
er

ag
e

re
tu

rn

= 5%
= 10%
= 15%

(a) W2D A

0 1000 1750
iterations

0

1000

2000

W
 re

tu
rn

= 5%
= 10%
= 15%

(b) W2D W

0 1000 1700
iterations

0

1000

2000

av
er

ag
e

re
tu

rn

= 5%
= 10%
= 15%
= 20%

(c) HP A

0 1000 1700
iterations

0

1000

2000

W
 re

tu
rn

= 5%
= 10%
= 15%
= 20%

(d) HP W

Figure 5. Training curves of average return (A) and 10% worst-case return (W) of PW-DR on W2D and HP with different α.

A.12. Generalization to higher dimensional randomization of environment parameters

Table 1. Range of environment parameter for InvertedPedulum with higher dimensional randomization
Task Env. Param. Training Range

IP-3D Parameter Pole length [0.50, 2.00]
Cart size [0.05, 0.25]
Pole size [0.03, 0.068]

IP-4D Parameter Pole length [0.50, 2.00]
Cart size [0.05, 0.25]
Pole size [0.03, 0.068]
Rail size [0.01, 0.03]

In the main text, we evaluate the performance of MRPO on environments under 2D parameters randomization. We now dis-
cuss the scalability of MRPO to higher dimensional randomization of environment parameters and test on InvertedPendulum
with 3D and 4D parameters randomization as shown in Table 1. We propose here a possible extension of MRPO to address
this issue: i) To compute ||p− pw|| in MRPO, we normaliz each dimension of p w.r.t. its training range to remove impact

Monotonic Robust Policy Optimization with Model Discrepancy

of different units. ii) We then assign different weights to these dimensions w.r.t. their impact on performance as shown in
Figs. 6(a)-6(b), i.e., the dimension that hurts policy’s performance more (while others fixed as default in Roboschool) is
given a higher weight. iii) We apply the same training strategy of MRPO on IP-3D Parameter and IP-4D Parameter, and the
results in Figs. 6(c)-6(f) show that MRPO generalizes well to 3 and 4 dimensions on InvertedPendulum, and thus a potential
to even higher dimensional cases.

0.0 0.5 1.0
polelen.cartsize

0 200 400 600 800 1000

polesize
(All normalized)

(a) IP-3D Parameter

0.0 0.5 1.0

0 200 400 600 800 1000

 p
c

o
a

l
r
e
t
l
s
e
i
n
ze

.
por leail ss ii zz ee
(All normalized)

(b) IP-4D Parameter

0 400 800
iterations

0

500

1000

av
er

ag
e

re
tu

rn

DR
PW-DR
MRPO

(c) IP-3D Parameter A

0 400 800
iterations

0

250

500

W
 re

tu
rn

DR
PW-DR
MRPO

(d) IP-3D Parameter W

0 400 800
iterations

0

500

1000

av
er

ag
e

re
tu

rn
DR
PW-DR
MRPO

(e) IP-4D Parameter A

0 400 800
iterations

0

250

500

W
 re

tu
rn

DR
PW-DR
MRPO

(f) IP-4D Parameter W

Figure 6. Training curves of average return (A) and 10% worst-case return (W) of MRPO extending on IP-3D Parameter and IP-4D
Parameter

References
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. OpenAI gym. arXiv

preprint arXiv:1606.01540, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy optimization. In Advances in
Neural Information Processing Systems, pp. 12519–12530, 2019.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. Epopt: Learning robust neural network policies using model
ensembles. 2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. In International conference
on machine learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

