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Apppendix

A. Tensors and Higher Order Singular Value Decomposition
As a higher order analogue of Singular Value Decomposition (SVD) for matrices, Higher Order Singular Value Decomposi-
tion (HOSVD) for tensors is the main tool to develop our theorems. In this section, we give a quick review of tensors, and
introduce the essential part of HOSVD which helps better understand the theorems. The contents here are based on (De
Lathauwer et al., 2000) and (Kolda & Bader, 2009).

Basic Notations Below is a table for different notations.

Type Notation Examples
Tensor Boldface Euler script letter A
Matrix Boldface capital letter A
Vectors Boldface lowercase letters a
Scalars Lowercase letters a

The order of a tensor is the number of its dimensions, which is also called modes. We use subscripts on corresponding
notations to denote a specific slice of a tensor. For example, A ∈ R4×2×4×5 is an order 4 tensor, and aijkl denotes the
(i, j, k, l)-element of A. The vector coordinated along the first dimension is denoted as a:jkl, and the matrix coordinated
along the first and the second dimension is denoted asA::kl.

The norm of a tensor A ∈ RI1×I2×···×IK is defined by√√√∑I1 ∑IK
‖A‖ √= · · · a2i1···i ,

K
(30)

i1=1 iK=1

Let A ∈ RI1×···IK and B ∈ RJ1×···×J ′K be two tensors, then the outer product of A, B is a tensor in
RI1×···×IK×J1×···×J ′K , which is defined as

(A⊗B)i1...iKj1...j ′K
= ai1...iK bj1...j ′K

. (31)

Tensor reshaping The tensor reshaping refers that one can reshape a tensor into a matrix, or a matrix into a tensor based
on some specific rules. The process of reshaping a tensor into a matrix is called tensor flattening, while reshaping a matrix
into a tensor is called tensorisation. Tensor reshaping is the core idea of HOSVD.

Definition A.1. Let A ∈ RI1×I2×···×IK be an order K tensor. The mode-k flattening of A is denoted as A(k) ∈
RIk×(I1···Ik−1Ik+1···IK), where the (i1, i2, · · · , iK)-element of A is mapped to the (ik, j)-element of the matrixA(k) with( )∑K s∏−1

j = 1 + (is − 1) Is′ . (32)
s=1 s′=1
s=k s′=k

That is, the columns ofA(k) are actually the vectors ai1···ik−1: ik+1···iK .

Definition A.2. LetA ∈ RIK×(I1I2···IK−1) be a matrix. Then A ∈ RI1×I2×···×IK is the tensorisation ofA if its mode-K
flattening equals toA.

We illustrate the above two definitions by an example.

Example A.1. Consider an order 3 tensor A ∈ R4×3×2 such that   
1 2 3 13 14 15 4 5 6 16 17 18

A::1 =   , A =  
::2 . (33) 7 8 9 19 20 21

10 11 12 22 23 24

6 6
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Then  
1 2 3 13 14 15 

A =  4 5 6 16 17 18
(1)  ,

7 8 9 19 20 21
10 11 12 22 23 24 

1 4 7 10 13 16 19 22 (34)
A(2) = 2 5 8 11 14 17 20 23 ,

3 6 9 12 15 18 21 24( )
1 4 7 10 · · · 3 6 9 12

A(3) = .
13 16 19 22 · · · 15 18 21 24

Conversely, A is the tensorisation ofA(K) in R4×3×2.

Recall the tensorisation TlK (a) we defined in the paper, where a ∈ RlK is a vector. In this case, we first rearrange the
vector a ∈ RlK into a matrixA ∈ Rl×lK−1

according to row major ordering, then TlK (a) is the tensor in Rl×l···×l defined
as the tensorisation ofA.

Singular values and the rank of tensors
Definition A.3. The singular values of a tensor A ∈ RI1×···×IK are defined as{ }

(k)
σi , k = 1, . . . ,K,

k
(35){ }

where (k)
σik are the singular values of A(k) arising from the SVD for matrices. That is, the singular values of A is a

collection of all the singular values of its mode-k flattening.

Remark A.1. The norm of A satisfies √√√∑r ( )√ k 2
(k)‖A‖ = ‖A(k)‖F = σi , k = 1, 2, . . . ,K,
k

(36)
ik=1

where rk is the matrix rank ofA(k).

There are various ways to define the rank of a tensor. Here we use the following definition.

Definition A.4. The rank of a tensor A is defined as

∑K
rankA := rk. (37)

k=1

Here rk is the matrix rank ofA(k), which is also called the k-rank of A. Recall that the matrix rank equals to the number of
its non-zero singular values, it follows from Definition A.3 that the tensor rank also equals to the number of its non-zero
singular values. ∑r
Remark A.2. Recall that the matrix SVD can be written in the form of outer product: A = σiuiv

>
i with r = rankA.

i=1

This can be generalised to HOSVD. For any A ∈ RI1×I2×···×IK , we have

∑r1 ∑r2 ∑rK
(1) (2) (K)A = · · · si1i2...iKu ⊗ u ⊗ · · · ⊗i u ,
1 i2 iK

(38)
i1=1 i2=1 iK=1

where rk is the k-rank of A, si1i2...iK ∈ R and (k)
u ∈ik

RIk .

We end up with the following approximation property of HOSVD, which can be viewed as an analogue of Eckart-Young-
Mirsky theorem for matrix SVD.
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Proposition A.5. Let A, Â ∈ RI1×···×IK with the k-ranks denoted as r , . . . , r and r′1 K 1, . . . , r
′
K respectively. Let

(k) (k) (k)
σ ≥1 σ ≥ · · · ≥ ≥2 σrk 0 be the singular values ofA(k), we have

∑r1 ( ) ∑r2 ( ) r
2 2 ∑K ( )2

ˆ 2 (1) (2) (K)
inf ‖A−A‖ ≤ σi + σ · · ·i + + σi , (39)
Â 1 2 K

i ′ ′
1=r1+1 i2=r2+1 i =r′K +1K

where the infimum is taken over Â ∈ RI1×···×IK such that r′ ≤k rk, k = 1, . . .K.

Remark A.3. Note that for matrix SVD, Eckart-Young-Mirsky theorem shows that the approximation error equals to the
tail sum of singular values, but for HOSVD only the upper bound holds.

B. Proofs
Now we get down to prove all the results shown in the text.

Recall that the input space X is a Hilbert space, one can apply the standard representation theorem.

Theorem B.1. (Riesz Representation Theorem) For any continuous linear functional H defined on X , there exists a unique
ρ ∈ X such that ∑∞

H(x) = ρ(s)>x(s), (40)
s=−∞

and
‖H‖ = ‖ρ‖X . (41)

Proof. See Bramwell & Kreyszig (1979), Theorem 3.8-1.

Based on this, we prove Lemma 1.

Proof of Lemma 1. By Riesz Representation Theorem, for any t ∈ Z and Ht ∈H , there exists a unique ρt ∈ X such that

∑∞
Ht(x) = ρt(s)

>x(s). (42)
s=−∞

With the fact thatH is causal, we have ∑t
Ht(x) = ρt(s)

>x(s). (43)
s=−∞

By the time homogeneity H (x) = H (x(τ)
t t+τ ) with τ = −t, we get

∑t ∑0
Ht(x) = ρ (s)>t x(s) = ρ0(s)

>x(s+ t). (44)
s=−∞ s=−∞

The conclusion follows by taking ρ(H)(s) = ρ0(−s).

Recall the example in section 4.2, where we showed that for any matrix A with the rank no more than 2, there exists
(Ĥρ ) (2,2,{M∈ H k}) such that T (Ĥ(ρ )

CNN 22 ) = A. Now we extend this to the general l and K.

Proposition B.2. For any w1,w2, . . . ,wK ∈ Rl, we have( )
TlK wK ∗ wK−1 ∗ · · ·∗w1 = wK ⊗wK−1 ⊗ · · · ⊗w1. (45)

lK−1 lK−2 l
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Proof. We prove this by induction. When K = 2, it is the usual outer product for vectors. Suppose the conclusion holds for
K, we prove forK+1. Let fK := wK ∗lK−1 wK−1∗lK−2 · · ·∗lw1 = (c1, c2, . . . , clK ) andwK+1 = (w1, w2, . . . , wl),
then ∑

(w K
K+1∗ fK)(t) = wK+1(s)fK(t− l s)

lK s∈N

= w(0)fK(t) + w(1)fK(t− lK) + · · ·+ w(l − 1)fK(t− (l − 1)lK)

= w1fK(t) + w2fK(t− lK) + · · ·+ w K
lfK(t− (l − 1)l ). (46)

The right hand side is non-zero only when t = 0, 1, 2, . . . , lK+1 − 1, which gives

(wK+1∗ K+1

fK) = (w1c1, w1c2, . . . , w1clK , w2c1, w2c2, . . . , w2clK , . . . , w
l

lc1, wlc2 . . . , wlclK ) ∈ R . (47)
lK

By the tensorisation for vectors discussed above,wK+1∗lK fK can be rearranged into a matrix according to row major
ordering:  

w1c1 w1c2 · · · w1clKw2c1 w2c2 · · · w2c Kl  . . . .  ∈ Rl×l
K

. (48) . . .. . . .. 
wlc1 wlc2 · · · wlclK

This is in fact the mode-K flattening ofwK+1 ⊗ TlK (fK). By the induction hypothesis, we conclude that( )
TlK+1 wK+1∗ fK = wK+1 ⊗ TlK (fK) = wK+1 ⊗wK ⊗wK−1 ⊗ · · · ⊗w1. (49)

lK

Proposition B.3. Let A ∈ Rl×l×···×l be an order ˆ (l)
K tensor with the k-rank rk, k = 1, · · · ,K. There exists ρ(H) ∈ HCNN

such that TlK (ρ(Ĥ)) = A.

Proof. Recall the linear CNN model
h0,i = xi,∑Mk

hk+1,i = wkji∗hk,j , (50)
lkj=1

ŷ = hK+1.

By linearity, there exists ρ(Ĥ) (l,K,{M∈ H k})
CNN such that

MK ∑M1
ˆ

∑ M∑K−1

ρ(H) = · · · wK,iK ∗wK−1,iK−1 ∗ · · · w1,i1 , (51)
lK lK−1

∗
l

iK=1 iK−1=1 i1=1

where wk,ik ∈ {wkij} is a filter at layer k. According to Proposition B.2, we have

∑MK M∑K−1 ∑M1

T (ρ(Ĥ)
lK ) = · · · wK,iK ⊗wK−1,iK−1

⊗ · · · ⊗w1,i1 . (52)
iK=1 iK−1=1 i1=1

The conclusion now follows from Remark A.2 for sufficient large Mk.

Now we can prove the first main theorem in the main text.
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Proof of Theorem 2. By Lemma 1 and (12) in the main text, we have∣ ∣∣∑ ∣( ) 2

ˆ 2 ̂ 2 ∣ ˆ > ∣‖H −H‖ = sup‖Ht −Ht‖ = sup sup ∣ ρ(H)(s)− ρ(H)(s) x(t− s)∣
t∈Z t∈Z ‖x‖X≤1 ∣ ∣∑∣ s∈N

ˆ ∣2≤ ∣ρ(H)(s)− ρ(H)(s)∣
s∈N

l∑K−1 ∣ ∣ ∑ ∣ ∣∣ ∣ ∞2 ∣ ∣2
= ∣ρ(H) ˆ

(s)− ρ(H)(s)∣ + ∣ρ(H)(s)∣
s=0 s=lK∥ ∥ ∞2 ∣ ∣∥ 2∥ (Ĥ

∑
= T (ρ ) (H) ∥ ∣ ∣

lK )− TlK (ρ )∥ + ∣ρ(H)(s)∣ . (53)
s=lK

Since ρ(H) ∈ `2, we can choose K appropriately large such that the second term is less than ε. According to Proposition
B.3, there exists (l)HCNN such that the first term is zero. The proof is completed.

Lemma 3 follows from Proposition A.5 and the definition of rank for tensors.

This was denoted by ‖ · ‖l,g in the main text. Here we amend the notation as we do not discuss the norm aspects.

Proposition B.4. Let ρ be a finitely supported sequence such that r(ρ) ≤ lK − 1. Denote the singular values of TlK (ρ)

by σ1 ≥ σ2 ≥ · · · ≥ σlK . For any sequence ρ̂ ∈ RlK+1

with ρ̂[0,lK−1] = ρ and ρ̂[lK ,lK+1] = 0, the singular values of
TlK+1(ρ̂) are

‖TlK (ρ)‖ = σl(K+1) ≥ σ1 ≥ σ2 ≥ · · · ≥ σlK ≥ 0 = σlK+1 = σlK+1 = · · · = σlK+l−1. (54)

Proof. The singular values of TlK+1(ρ̂) arising from mode-1 to mode-K flattening are not changed, since there are only
additions of zero columns. Now we consider the mode-(K + 1) flattening. We add zeros to an additional dimension of
the tensor such that âi1i2...iK1 = ai1i2...iK and âi1i2...iKj = 0 for 2 ≤ j ≤ l. Then the columns of TlK+1(ρ̂)(K+1) are the
vectors along the new dimension (âi1i2...iK1, 0, 0, . . . , 0) = (ai1i2...iK , 0, 0, . . . , 0), which gives a unique non-zero singular
value σl(K+1) = ‖TlK (ρ)‖, and (l − 1) zero singular values.

Proposition B.5. Suppose the function g is monotonously decreasing and strictly positive. Then for anyH ∈ C such that
ρ(H) is finitely supported, we haveH ∈ C(l,g).

Proof. Let K ′ = inf{K ∈ N+ : lK ≥ r(ρ(H))}. Then for any s ≥ lK ′
∑

, l(K′+k) (K′+k)
i=s+K′ |+k σ |2i = 0 for all k ∈ N+

according to Proposition B.4, which completes the proof.

Proposition B.6. Suppose H ∈ C with ρ(H) finitely supported. Then there exists a finitely supported decreasing g such
thatH ∈ C(l,g).

Proof. The proof is a straightforward application of Proposition B.4.

Next we prove the main theorem on error bound.

Proof of theorem 4. (i) Lower bound. Since ∣ ∣∣∑ ∣∣ ( )
‖H − Ĥ >‖ = sup sup ∣ ρ(H) ˆ

(s)− ρ(H) ∣
(s) x(t− s)∣ ,

t∈Z ‖x‖X≤1 ∣ ∣
s∈N
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1
by taking a specific with (H) (Ĥ)

x xi(0) = √ sgn(ρi (t)− ρi (t)) and xi(s) = 0 otherwise, we have
d ∣ ∣1 ∣∣ (H) ˆ ∣≥ √ sup ρ (t)− ρ(H)(t)∣

d t∈N ∣ ∣1 ∣ ∣≥ √ sup ∣ρ(H)(t)∣
d t∈[lK ,∞]

1≥ √ sup ‖ρ(H)(t)‖2, (55)
d t∈[lK ,∞]

where the inequality holds by taking a specific x with xi(0) = 1 and xi(s) = 0 otherwise.

(ii) Upper bound. Following the proof of Theorem 2, or (53) gives

∑d ∥ ∥
ˆ ∥∥ (Ĥ) (H) ∥ (H)‖H −H‖ ≤ TlK (ρ )− TlK (ρ )∥+ ‖ ‖i i ρ

[lK
.

,∞ 2]
(56)

i=1

The remaining task is to bound the first term. Based on Lemma 3, we only need to calculate the maximum possible rank of
(Ĥ) . Let denote the (Ĥ)

TlK (ρi ) rk k-rank of TlK (ρi ). From Remark A.2, by absorbing the scalar si1i2...iK into any of the
vector (k)

uik , we have the following relationship:

∏K ∏K ∑K ∑K
d rk + lK ≥ d rk + rk ≥ MkMk−1, (57)
k=1 k=1 k=1 k=2∏ ˆK 1

∑K (H) ∑
thus we have K 1

k=1 rk ≥ ( −k=2MkMk−1 lK) = M , which implies rankTlK (ρi ) = k=1 rk ≥ KM K
d .

Combined with Definition 3 gives the conclusion.

Next we look in details the two examples about comparison between RNNs and CNNs in details.

Example where RNNs out-perform CNNs. We take a scalar input with d = 1. Consider a target H ∈ C with the
representation ρ(H)(t) = γt, where 0 < γ < 1. It is easy for RNNs to approximate this target, since the representation has
a power form. In fact, we have (1)

H ∈ HRNN, i.e. a RNN with one hidden unit is sufficient to achieve an exact representation
for any γ ∈ (0, 1).

For any CNN model Ĥ (l,K,{M∈ H k})
CNN , based on the lower bound of Theorem 4, we have that

‖H − Ĥ‖2 1≥ √ sup ‖ρ(H)(t)‖2. (58)
d t∈[lK ,∞]

Thus, in order to achieve an approximation error with ‖H − Ĥ‖ < ε, we have

) K

sup ‖ρ(H (t)‖2 = γl < ε. (59)
t∈[lK ,∞]

This implies lK log(ε)≥ log(γ) . That is, the number of layers necessary to achieve an approximation error smaller than ε diverges
to infinity as γ approaches 1.

Example where CNNs out-perform RNNs. We still take a scalar input with d = 1. Consider a target H ∈ C with the
representation {

ρ(H) 1, t = 2K
(t) = , K ∈ N+. (60)

0, otherwise

We have (2,K,{1})
H ∈ HCNN . That is, a K-layer CNN with one channel per layer is sufficient to achieve an exact representation.
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Recall that RNN approximates the target ρ(H) with a power sum ρ(Ĥ)(s) = c>W s−1U . Suppose here W ∈ Rm×m is a
diagonalisable matrix with negative eigenvalues. It has some special structures which are summarised in the following
theorem. { }∑m
Theorem B.7. (Borwein & Erdelyi´ , 1996) Let Em := u : u(t) = c0 + ciγ

t
i , ci ∈ R, γi > 0 , then

i=0

|u′(y)| 2m− 1
sup ≤ , y ∈ (a, b). (61)
u∈Ek

sups∈[a,b] u(s) min{y − a, b− y}

We rewrite this theorem into a discrete form.

Corollary B.8. Let u ∈ Em. Then
2m|u(t+ 1)− u(t)| ≤ supu(s). (62)
t s≥0

Proof. By the mean value theorem, there exists y ∈ [t, t + 1] such that |u(t + 1) − u(t)| = |u′(y)|. The corollary then
follows from Theorem B.7.

For a fixed m, the changes between u(t+ 1) and u(t) approaches zero as t goes to infinity. This implies that if there is a
sudden change in u far from the origin, the number of terms m must be large.

In order to achieve an approximation error with ‖H − Ĥ‖ < ε, by taking a specific x as the unit sample function where
x(0) = 0 and x(s) = 0 otherwise , we have

| − ˆ ˆε > sup sup Ht(x) Ht(x)| ≥ sup|Ht(x)−Ht(x)| (63)
t ‖x‖≤1 t

= sup|ρ(H)(t)− c>W t−1U | (64)
t

= sup|ρ(H)(t)− u(t)|, u ∈ Em2 . (65)
t

Since

|u(2K + 1)| < ε, (66)

|u(2K)− 1| < ε, (67)

we have

|u(2K + 1)− u(2K)| = |u(2K + 1)− 1− u(2K) + 1| (68)

> 1− |u(2K + 1)| − |u(2K)− 1| (69)
> 1− 2ε (70)

Combining with Corollary B.8 gives

m2 > 2K−1
1− 2ε

. (71)
1 + ε

As K increases, the number of parameters needed for RNNs to achieve an error less than ε increases exponentially, while
this increment is linear for CNNs.

C. Special structures of dilated convolutions
In this section, we discuss an interesting structure of dilated convolutions.
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Proposition C.1. Let w1, . . . ,wK be K filters with the same filter size l, s = (s1, s2, . . . , sK) with 0 ≤ sk ≤ l − 1,
k = 1, · · · ,K. Suppose all entries of wk are zero except wk(sk) = 1, then{

∗ ∗ ∗ 1, t = t̂
(wK wK−1 · · · w1)(t) = , (72)

lK−1 lK−2 l 0, otherwise

K∑−1
where t̂ = (sKsK−1 . . . s1)l := si+1l

i. That is, t̂ can be written as a base l expansion with digits sK to s1.
i=0

Proof. We prove this by induction. When K = 1, the conclusion is obvious. Suppose the conclusion holds for K, then by
(47),

(wK+1∗ fK)(t) = (w1c1, w1c2, . . . , w1clK , w2c1, w2c2, . . . , w2clK , . . . , . . . , wlc1, wlc2, . . . , wlclK ). (73)
lK

Suppose wK+1(sK+1) = cm = 1, then the position of 1 in the above vector is sK+1 l
K + cm, which means the results also

holds for K + 1.

This result allows us to construct a filter with value 1 at any specific position t̂, by choosing filters {wk} according to the
base l expansion of t̂. We illustrate this by an example.

Example C.1. Let l = 4,K = 3 and w1 = (0, 0, 0, 1),w2 = (1, 0, 0, 0),w3 = (0, 1, 0, 0). The positions of value 1 are
recorded in s = (3, 0, 1). Then {

(w3∗w2
42
∗ 1, t = 19 = (103)4
w1)(t) = (74)

41 0, otherwise

Based on above, one can define a notion of sparsity, which gives another sufficient condition for the exact representation.

Definition C.2. Suppose ρ(H) is a finitely supported sequence. The sparsity of ρ(H) is defined as the number of its non-zero
elements, which is denoted by ‖ρ(H)‖0.

Corollary C.3. Suppose ρ(H) is a finitely supported sequence with r(ρ(H)) ≤ lK−1. ThenK‖ρ(H)‖0 filters are sufficient
to achieve an exact representation.

Proof. This follows from Theorem C.1, where for each non-zero element, we can use K filters to generate it.

In the main text, we use the condition that
1

K(M + 1)K ≥ rankTlK (ρ(H)) to ensure an exact representation. Instead of
calculating the rank of TlK (ρ(H)), Corollary C.3 gives us another way to decide the number of filters sufficient to have
an exact representation. This gives us the insight that if a target is sparse in the sense that ‖ρ(H)‖0 is small, it can also be
efficiently approximated by CNNs.

Remark C.1. Notice that the rank of a tensor not only depends on its sparsity, but also depends on specific positions of the
non-zero elements. To illustrate, consider the following example( ) ( )

ρ1 = 1 0 1 0 and ρ2 = 1 0 0 1 . (75)

Both of them have a sparsity 2, but rankT22(ρ1) = 2 while rankT22(ρ2) = 4.




