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A Proof of Preliminaries (Section 3)

A.1 Norms (Lemma 1)

Lemma 1. For a matrix A ∈ Rd×n and p ∈ [1, 2), ‖A‖p,2 ≤ ‖A‖p ≤ d
1
p−

1
2 ‖A‖p,2.

Proof. Let x ∈ Rd. For 0 < p < r,

‖x‖r ≤ ‖x‖p ≤ d
1
p−

1
r ‖x‖r

Let r = 2. Then we have
‖x‖2 ≤ ‖x‖p ≤ d

1
p−

1
2 ‖x‖2

Note that ‖A‖p,2 =
(∑

j ‖A∗j‖
p
2

) 1
p

and ‖A‖p =
(∑

j ‖A∗j‖pp
) 1
p

.

Therefore,

‖A‖p,2 =

∑
j

‖A∗j‖p2

 1
p

≤

∑
j

‖A∗j‖pp

 1
p

= ‖A‖p

and

‖A‖p =

∑
j

‖A∗j‖pp

 1
p

≤ d
1
p−

1
2

∑
j

‖A∗j‖p2

 1
p

= d
1
p−

1
2 ‖A‖p,2

A.2 Sketched Error Lower Bound (Lemma 2)

We show a lower bound on the approximation error for a sketched subset of columns, ‖SATV −SA‖p,
in terms of ‖ATV − A‖p. The lower bound holds simultaneously for any arbitrary subset AT of
chosen columns, and for any arbitrary right factor V .

We begin the proof by first showing that applying a dense p-stable sketch to a vector will not shrink
its p-norm. This is done in Lemma 2.1. We further observe that although p-stable random variables
are heavy-tailed, we can still bound their tail probabilities by applying Lemma 9 from [1]. We note
this in Lemma 2.2. Note that the Xi’s do not need to be independent in this lemma.

Equipped with Lemma 2.1, Lemma 2.2 and a net argument, we can now establish a lower bound
on ‖SATV − SA‖p. We first show in Lemma 2.3 that, with high probability, for any arbitrarily
selected subset AT of columns and for an arbitrary column A∗j , the error incurred to fit SA∗j using
the columns of SAT is no less than the error incurred to fit A∗j using the columns of AT . We then
apply a union bound over all subsets T ⊂ [n] and columns j ∈ [n] to conclude our lower bound in
Lemma 2.

Lemma 2.1. (No Contraction of p-stable Sketch) Given a matrix S ∈ Rt×m whose entries are

i.i.d. p-stable random variables rescaled by Θ

(
1

t
1
p

)
, where 1 ≤ p < 2, for any fixed y ∈ Rm, with

probability 1− 1
et , the following holds:

‖Sy‖p ≥ ‖y‖p

Proof. By p-stability, we have ‖Sy‖pp =
∑t
i=1

(
‖y‖p |Zi|

t
1
p

)p
, where the Zi are i.i.d. p-stable random

variables. Since Pr[|Zi| = Ω(1)] > 1
2 , by applying a Chernoff bound (to the indicators 1|Zi|≥C for a

sufficiently small constant C), we have
∑t
i=1 |Zi|p = Ω(t) with probability 1− 1

et . Therefore, with
probability 1− 1

et , ‖Sy‖p ≥ ‖y‖p.

Lemma 2.2. (Upper Tail Inequality for p-stable Distributions) Let p ∈ (1, 2), and m > 3. For
i ∈ [m], let Xi be a standard p-stable random variable, and let γi > 0 and γ =

∑m
i=1 γi. Let

X =
∑m
i=1 γi|Xi|p. Then, for any t ≥ 1, Pr[X ≥ tαpγ] ≤ 2 log(mt)

t , where αp > 0 is a constant that
is at most 2p−1.

Proof. Lemma 9 from [1] for p ∈ (1, 2).
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Lemma 2.3. (No Contraction for All Sketched Subsets and Columns) Let A ∈ Rd×n, and k ∈ N. Let
t = k · poly(log nd), and let S ∈ Rt×d be a matrix whose entries are i.i.d. standard p-stable random

variables, rescaled by Θ(1/t
1
p ). Finally, let m = k · poly(log k). Then, with probability 1− 1

poly(nd) ,

for all T ⊂ [n] with |T | = m, for all j ∈ [n], and for all y ∈ R|T |,

‖AT y −A∗j‖p ≤ ‖S(AT y −A∗j)‖p

Proof. Step 1: We first extend Lemma 2.1 and use a net argument to show that applying a p-stable
sketching matrix S ∈ Rt×d will not shrink the norm of any vector, i.e. ‖Sy‖p ≥ ‖y‖p simultaneously
for all y in the column span of [AT , Aj ] =: AT,j , for any fixed T ⊂ [n] with |T | = k · poly(log k), and
j ∈ [n].

For our net argument, we begin by showing that with high probability all entries of S are bounded.
Let D > 0, which we will choose appropriately later. For convenience, let S̃ ∈ Rt×n be equal to S
without the rescaling by Θ(1/t1/p) (that is, the entries of S̃ are i.i.d. p-stable random variables, and

the entries of S are those of S̃ but rescaling by Θ(1/t1/p). Consider the following two cases:

Case 1: p = 1: The S̃ij are standard Cauchy random variables. Consider the half-Cauchy random
variables Xi,j = |Si,j |. The cumulative distribution function of a half-Cauchy random variable X is

F (x) =
∫ x

0
2

π(t2+1)dt = 1−Θ( 1
x ). Thus, for any i ∈ [t] and j ∈ [d], Pr[|S̃ij | ≤ D] = 1−Θ( 1

D ), and

Pr[|Sij | ≤ D] = 1−Θ( 1
tD ) ≥ 1−Θ( 1

D ).

Case 2: p ∈ (1, 2): We apply the upper tail bound for p-stable random variables in Lemma 2.2.

For any fixed i ∈ [t] and j ∈ [d], Pr[|S̃ij |p ≤ Dp] ≥ 1−Θ( logD
Dp ), which implies that Pr[|S̃ij | ≤ D] ≥

1 − Θ( 1
D ), since p > 1. In addition, by the same argument, Pr[|Sij | ≤ D] = Pr[|S̃ij | ≤ t1/pD] =

1−Θ( 1
t1/pD

) ≥ 1−Θ( 1
D ).

Therefore, for p ∈ [1, 2), if we let E1 be the event that for all i ∈ [t] and j ∈ [m], we simultaneously
have |Sij | ≤ D, then by a union bound over all the entries in S, Pr[E1] ≥ 1−Θ( tdD ). In particular, if
we choose D = poly(nd), then E1 occurs with probability at least 1− 1

poly(nd) . Note that if E1 occurs,

then this implies that for all y ∈ Rd,

‖Sy‖p =
( t∑
i=1

∣∣∣ d∑
j=1

Sijyj

∣∣∣p)1/p

≤
( t∑
i=1

Dp ·
∣∣∣ d∑
j=1

yj

∣∣∣p)1/p

≤ Dt1/p‖y‖1 ≤ Dpoly(d)‖y‖p

Consider the unit `p ball B = {y ∈ Rd : ‖y‖p = 1, ∃z ∈ Rm s.t. y = AT,jz} in the column span of
AT,j . A subset N ⊂ B is a γ-net for B if for all y ∈ B there exists some u ∈ N such that ‖y−u‖p ≤ γ,
for some distance γ > 0. There exists such a net N for B of size |N | = ( 1

γ )O(m) by a standard greedy
construction, since the column span of AT,j has dimension at most m+ 1. Let us choose γ as follows.
First let K = poly(nd) such that ‖Sy‖p ≤ K‖y‖p (recall that ‖Sy‖p ≤ Dpoly(d)‖y‖p if E1 holds).
Then, we choose γ = 1

m2K . Thus, |N | ≤ (m2K)O(m) = 2O(m log(nd)).

Define the event E2(T, j) (here the T, j in parentheses signify that E2(T, j) is defined in terms of T
and j) as follows: for all y ∈ N simultaneously, ‖Sy‖p ≥ ‖y‖p. (Note that E2(T, j) depends on T, j
since N is a net for the column span of AT,j .) By applying Lemma 2.1, and a union bound over all
vectors y ∈ N , we find that for all y ∈ N simultaneously, ‖Sy‖p ≥ ‖y‖p with probability at least

1− |N |et = 1− 2O(m log(nd))

et — in other words, E2(T, j) has probability at least 1− 2O(m log(nd))

et .

Now, consider an arbitrary unit vector x ∈ B. There exists some y ∈ N such that ‖x−y‖p ≤ γ = 1
m2K .

If we assume that both E1 and E2(T, j) hold, then the following holds as well:

‖Sx‖p ≥ ‖Sy‖p − ‖S(x− y)‖p Triangle Inequality

≥ ‖y‖p − ‖S(x− y)‖p By event E2(T, j)

≥ ‖y‖p −K‖(x− y)‖p Implication of event E1
≥ ‖y‖p −Kγ By ‖x− y‖p ≤ γ

= ‖y‖p −O
( 1

m2

)
= ‖x‖p −O

( 1

m2

)
‖x‖p = ‖y‖p = 1
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For a sufficiently large m, O( 1
m2 ) is at most 1

2 , and thus
‖x‖p

2 = 1
2 ≥

1
m2 . This implies ‖Sx‖p ≥

‖x‖p − ‖x‖p2 =
‖x‖p

2 . We can rescale S by a factor of 2 so that ‖Sx‖p ≥ ‖x‖p.

We have shown that ‖Sy‖p ≥ ‖y‖p holds simultaneously for all unit vectors y in the column span
of AT,j , conditioning on E1 and E2(T, j). By linearity, we conclude that ‖Sy‖p ≥ ‖y‖p (1 ≤ p < 2)
holds simultaneously for all y in the column span of AT,j , conditioning on E1 and E2(T, j).

Step 2: Next, we apply a union bound over all possible subsets T ⊂ [n] of chosen columns from
A and all possible single columns A∗j for j ∈ [n], to argue that ‖S(AT y −A∗j)‖p ≥ ‖AT y −A∗j‖p
holds simultaneously for all y ∈ R|T | and all T ⊂ [n] with |T | = m = k · poly(log k) and j ⊂ [n] with
high probability.

In Step 1, we showed that E2(T, j) fails with probability 2O(m log(nd))

et , for any fixed T, j. Thus, if
we define E2,all to be the event that E2(T, j) holds for all T, j (in other words, E2,all =

⋂
T,j E2(T, j),

then the failure probability of E2,all is at most

2O(m log(nd))

et
·
(
n

m

)
· d ≤ 2O(m log(nd))

et
· nO(m) · d =

2O(m log(nd))

et

In summary, if we let D = poly(nd), then E1 succeeds with probability 1−Θ( tdD ) ≥ 1− 1
poly(nd) . In

addition, if we let D = poly(nd), and let K = Dpoly(d) = poly(nd), then E2,all holds with probability

1− 2O(m log(nd)

et . Note that if both E1 and E2,all hold, then E1 and E2(T, j) hold for all T, j, meaning
that

‖AT y −A∗j‖p ≤ ‖S(AT y −A∗j)‖p
for all T ⊂ [n] with |T | = m = k · poly(log k), j ∈ [n] and y ∈ R|T |. Moreover, E1 and E2,all
simultaneously hold with probability at least 1 − Θ( tdD ) − 2O(m log(nd)

et , which is 1 − 1
poly(nd) for

D = poly(nd) and t = Θ(m log(nd)). This completes the proof of the lemma.

Lemma 2 (Sketched Error Lower Bound). Let A ∈ Rd×n and k ∈ N. Let t = k · poly(log(nd)),
and let S ∈ Rt×d be a matrix whose entries are i.i.d. standard p-stable random variables, rescaled

by Θ(1/t
1
p ). Then, with probability 1 − o(1), for all T ⊂ [n] with |T | = k · poly(log k) and for all

V ∈ R|T |×n,

‖ATV −A‖p ≤ ‖SATV − SA‖p

Proof. Let yj denote the j-th column of V , where j ∈ [n]. By applying Lemma 2.3, and a union
bound over all columns of V , the following holds with probability 1− n

poly(nd) = 1− o(1):

‖ATV −A‖p = (

n∑
j=1

‖AT yj −Aj‖pp)
1
p

≤ (

n∑
j=1

‖S(AT yj −Aj)‖pp)
1
p

= ‖SATV − SA‖p

A.3 Sketched Error Upper Bound (Lemma 3)

We show an upper bound on the approximation error of k-CSSp on a sketched subset of columns,
‖SATV − SAT ‖p, which holds for a fixed subset AT of columns and for the minimizing right factor
V = arg minV ‖SATV − SA‖p for that subset of columns.

We first adapt Lemma E.17 from [2] to establish an upper bound on the error ‖SATV − SA‖p for
any fixed V in Lemma 3.1. We then apply Lemma 3.1 to the minimizer V to conclude the upper
bound in Lemma 3.
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Lemma 3.1. (An Upper Bound on Norm of A Sketched Matrix) Given A ∈ Rn×d and p ∈ [1, 2),
and U ∈ Rn×k and V ∈ Rk×d, if S ∈ Rt×n is a dense p-stable matrix, whose entries are rescaled by

Θ

(
1

t
1
p

)
, then with probability at least 1− o(1),

‖SUV − SA‖pp ≤ O(log(td))‖UV −A‖pp

Here, the failure probability o(1) can be arbitrarily small.

Proof. Lemma E.17 from [2].

Lemma 3 (Sketched Error Upper Bound (Lemma E.11 of [2])). Let A ∈ Rd×n and k ∈ N. Let
t = k · poly(log(nd)), and let S ∈ Rt×d be a matrix whose entries are i.i.d. standard p-stable random

variables, rescaled by Θ(1/t
1
p ). Then, for a fixed subset T ⊂ [n] of columns with |T | = k · poly(log k)

and a fixed V ∈ R|T |×n, with probability 1− o(1), we have

min
V
‖SATV − SA‖p ≤ min

V
O(log1/p(nd))‖ATV −A‖p

Proof. Let X∗1 = arg minX ‖SATX − SA‖p and X∗2 = arg minX ‖ATX −A‖p. By Lemma 3.1,

‖SATX∗1 − SA‖pp ≤ ‖SATX∗2 − SA‖pp
≤ O(log(kpoly(log n)d))‖ATX∗2 −A‖pp
≤ O(log(nd))‖ATX∗2 −A‖pp

Therefore,
min
X
‖SATX − SA‖p ≤ min

X
O(log1/p(nd))‖ATX −A‖p

.
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B `p Lewis Weights and Applications

B.1 `p Lewis Weights Background

Our streaming and distributed k-CSS algorithms make use of `p,2 strong coresets and an O(1)-
approximation k-CSSp,2 subroutine, both of which applies importance sampling of the input matrix,
based on the so-called Lewis weights (see Definition 2), which can be approximated with repeated
computation of the leverage scores (see Definition 1) in polynomial time [3]. In this section, we briefly
introduce the Lewis weights and the desired properties associated with it. We further introduce `p
sensitivities and `p well-conditioned basis to aid the analysis of the desired property we need from
Lewis weights.

Definition 1 (Statistical Leverage Scores — Definition 16 of [4]). Let A ∈ Rn×d, and suppose
A = UΣV T is the “thin” SVD of A. 1 Then, for i ∈ [n], define `i(A) = ‖Ui,∗‖22 — we say `i(A) is
the ith statistical leverage score of A.

Definition 2 (`p Lewis Weights — Definition 2.2 of [3]). Let 1 ≤ p <∞, and let A ∈ Rn×d. Then,
the `p Lewis weights of A are given by a unique vector w ∈ Rn such that wi = `i(diag(w)1/2−1/pA),
where diag(w) is the n× n diagonal matrix with the entries of w on its diagonal. By Corollaries 3.4
and 4.2 of [3], such a vector w exists and is unique.

Definition 3 (`p Sensitivities [5]). Let 1 ≤ p <∞, and let A ∈ Rn×d. Let col(A) denote the column

span of A. The ith `p sensitivity of A is defined as supy∈col(A)
ypi
‖y‖pp .

Definition 4 (`p Well-conditioned Basis — Definition 3 of [6]). Let 1 ≤ p <∞ and A ∈ Rn×d of
rank k. Let q be its dual norm. Then an n× k matrix U is an (α, β, p) well-conditioned basis for the
column span of A, if (1) ‖U‖p ≤ α, and (2) for all z ∈ Rk, ‖z‖q ≤ β‖Uz‖p. W will say U is a p
well-conditioned basis for the column span of A, if α and β are kO(1), independent of d and n.

Definition 5 (`p Leverage score sampling — Theorem 5 of [7]). Let 1 ≤ p <∞ and A ∈ Rn×d of
rank k. Let U be an (α, β, p) well-conditioned basis for the column span of A. Given approximation
error ε and failure probability δ, for r ≥ C(ε, δ, p, k), the `p leverage score sampling is any sampling

probability pi ≥ min{1, ‖Ui∗‖
p
p

‖U‖pp r}, ∀i ∈ [n].

The desired property from Lewis weights we need is called an `p subspace embedding (see The-
orem 4.2). [3] shows for a matrix A ∈ Rn×d, if the rows of A are appropriately sampled using a
certain distribution based on the `p Lewis weights of A, this property holds with constant probability.
However, for our construction of strong coresets, we need this property of Lewis weights to hold with
high probability 1− δ for some small δ ∈ (0, 1

2 ). We explain why this is possible following the works
from [3, 8].

Theorem 4.2. (`p-Lewis Weights Subspace Embedding) Given an input matrix A ∈ Rn×d and
p ∈ [1, 2), there exists a distribution (λ1, λ2, . . . , λn) on the rows of A, where the distribution
is constructed based on Lewis weights sampling. If the following two conditions are met: (1)
n ≤ poly(d/ε), and (2) the minimum (row) Lewis weights of A is at least 1/poly(d/ε), then for a
sampling and rescaling matrix S with t rows, each chosen independently as the ith standard basis
vector times 1

(tλi)
1
p

with probability λi, with t = O(d · poly(log(d/δ), 1/ε)), the following holds for all

x ∈ Rd simultaneously with probability 1− δ:

‖SAx‖p = (1± ε)‖Ax‖p

Proof. The Theorem follows Theorem 7.1 of [3], except that [3] states the above property of Lewis
weights holds with constant probability. However, this result can be improved for it to hold with
probability 1−δ as follows: Using the results of [8], it is possible to construct a sampling and rescaling
matrix S (i.e. a matrix with one non-zero value per row) with dpoly(log(d/δ), 1/ε) rows such that
with probability at least 1− δ, we have ‖SAx‖p = (1± ε)‖Ax‖p simultaneously ∀x ∈ Rd.

To do this, the authors of [8] construct a sequence of v = poly((log d)/ε) sets of vectors {Vi}vi=1, and
each vector in a net over the column space can be written approximately as a sum of vectors, one
drawn from each set Vi. Then they show via Bernstein’s inequality that the vectors in all sets have
their norms preserved if one samples from the `p-Lewis weights of A, and the final bound follows
from the triangle inequality. By increasing the number of rows in S by an O(log(d/(εδ)) factor,

1meaning that if A is of rank k, then U and V have k columns, and Σ ∈ Rk×k.
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one can now argue that with probability 1 − δ, all vectors y in the column span of A have their
norm ‖y‖p preserved. This gives a total of O(dpoly(log(d/δ), 1/ε)) rows in S. However, to apply the
results from [8], we need two conditions to be satisfied: (1) n ≤ poly(d/ε), and (2) the minimum
(row) Lewis weight of A is at least 1/poly(d/ε).

We can achieve both conditions by first replacing A with TA, where T is a sampling matrix for
which T has poly(d/ε) rows and with probability 1 − δ, ‖TAx‖p = (1 ± ε)‖Ax‖p simultaneously
∀x ∈ Rd. Many constructions of such T exist with poly(d/ε log(1/δ)) rows, e.g. e.g., based on
the `p-sensitivities of A (see Definition 3) or `p leverage score sampling (see Definition 5), or the
`p-Lewis weights themselves (see Definition 2). See for example Theorem 10 of [5]. If we choose
δ > 1/ exp(poly(d/ε)), then the number of rows of TA will be at most poly(d/ε), satisfying condition
(1) of Theorem 4.2. On the other hand, if δ ≤ 1/ exp(poly(d/ε)), then log(1/δ) > poly(d/ε). In this
case, we can just sample using `p sensitivities as in Theorem 3.10 of [5]. The number of rows needed
will be poly(d/ε), which can simply be absorbed into the poly(log(1/δ)).

While (1) holds since the number of rows of T is at most poly(d/ε), we can ensure (2) also holds by
computing the (row) `p-Lewis weights of TA, and discarding any row i with `p-Lewis weight less than
1/poly(n/ε). By Lemma 5.5 of [3] this cannot make the `p-Lewis weight of any non-discarded row
decrease. Moreover, since the `p-Lewis weights are upper bounds on the `p-sensitivities for 1 < p < 2
(by Lemma 3.8 of [5] and Definition 3), discarding such rows i only changes ‖TAx‖p by a (1 ± ε)
factor for any x ∈ Rd, by the triangle inequality. Finally, since n ≤ poly(d/ε), we also have that any
`p-Lewis weight is now at least 1/poly(d/ε), as needed to now apply the result of [8]. Thus, we can
now apply the above S to non-discarded rows of TA.

B.2 Strong Coresets for `p,2 Norm Low Rank Approximation (Lemma 4)

Lemma 4 (Strong Coresets in `p,2 norm [9]). Let A ∈ Rd×n, k ∈ N, p ∈ [1, 2), and ε, δ ∈ (0, 1). Then,

in Õ(nd) time, one can find a sampling and reweighting matrix T with O( dε2 poly(log(d/ε), log(1/δ)))
columns, such that, with probability 1− δ, for all rank-k matrices U ,

min
rank-k V

‖UV −AT‖p,2 = (1± ε) min
rank-k V

‖UV −A‖p,2

where AT is called a strong coreset of A.

Proof. We can obtain T with the desired number of columns using the strong coreset construction
from Lemma 16 in [9]. For our purposes, the matrix B ∈ Rn×(d+1) that we use will be different
than the B used in the statement and proof of Lemma 16 in [9]. The coreset construction in [9] has
the goal of removing a dependence on d in the coreset size. In [9], B refers to a matrix obtained by
projecting A onto a poly(k)-dimensional subspace S obtained by running a dimensionality reduction
algorithm (referred to as DimensionalityReduction in [9]) and constructing a coreset by sampling
rows from B. The rows are sampled according to the `p Lewis weights of B.

In our case, we do not want our coreset size to have a polynomial dependence on k, while a linear
dependence on d suffices. Thus, instead of using the dimensionality reduction subroutine in [9], we
simply let B be the input matrix A, concatenated with a column of 0’s (the column span of A will
be the subspace S referred to in the statement of Lemma 16 of [9]). The desired number of rows
and running time then follows from Lemma 16 of [9]. 2 Based on 1− δ `p Lewis weights subspace
embedding, the size of the coreset grows linearly in poly(log(1/δ)).

B.3 Bi-criteria O(1)-approximation algorithm for k-CSSp,2 (Theorem 1)

We introduce an O(1)-approximate bi-criteria k-CSSp,2 algorithm (Algorithm 1), which is a modi-
fication of the algorithm from [10]. The major difference is that we use `p-Lewis weight sampling,
instead of `p leverage score sampling, which reduces the number of output columns from O(k2) to
O(kpoly(log k)).

We first show how to use a sparse embedding matrix S to obtain an O(1)-approximate left factor in

Section B.3.1. We then show how to apply the `p-Lewis weight sampling to select a subset of Õ(k)
columns that gives an O(1)-approximation in Section B.3.2. Finally, we conclude the analysis of our
O(1)-approximate bi-criteria k-CSSp,2 algorithm in Section B.3.3.

2The proof of Lemma 16 of [9] mentions that for p > 1, Lewis weight sampling requires (f/ε)O(p) rows for a

matrix with C columns — this is a typo, and fpoly( log f
ε

) rows suffice.
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Algorithm 1 polynomial time, O(1)-approximation for k-CSSp,2 (1 ≤ p < 2)

Input: The data matrix A ∈ Rd×n, rank k ∈ N
Output: The left factor U ∈ Rd×Õ(k), the right factor V ∈ RÕ(k)×n such that ‖UV − A‖p,2 ≤
O(1) minrank-kAk ‖Ak −A‖p,2
S ← Õ(k)× d sparse embedding matrix, with sparsity s = poly(log k).

S′ ← n× Õ(k) sampling matrix, each column of which is a standard basis vector chosen randomly
according to the `p Lewis weights of columns of SA.
Return U ← AS′, V ← (AS′)†A {† denotes the Moore-Penrose pseudoinverse.}

B.3.1 Sparse Embedding Matrices

The sparse embedding matrix S ∈ RÕ(k)×d of [11], and used by [10], is constructed as follows:
each column of S has exactly s non-zero entries chosen in uniformly random locations. Each non-zero
entry is a random value ± 1√

s
with equal probability. s is also called the sparsity of S. Let h be the

hash function that picks the location of the non-zero entries in each column of S and σ be the hash
function that determines the sign ± of each non-zero entry.

Applying the sparse embedding matrix S to A enables us to obtain a rank-k right factor that is
at most a factor of O(1) worse than the best rank-k approximation error in the `p,2 norm. We
adapt Theorem 32 from [10] to show this in Theorem 5.5. Notice that in Theorem 32 of [10], the

number of rows required for S is O(k2), but this can be reduced to Õ(k) through a different choice
of hyperparameters when constructing the sparse embedding matrix S.

We note two choices of hyperparameters, i.e., the number m of rows and sparsity s, of S in
Theorem 5.1 and Theorem 5.2, both of which give the same result. The proof of Theorem 32
from [10] uses the hyperparameters from Theorem 5.1. We instead use the hyperparameters from

Theorem 5.2 and show in Lemma 5.3 that Õ(k) rows of S suffice to preserve certain desired
properties. We then combine Lemma 5.3 and Lemma 5.4 adapted from [10], to conclude our result
in Theorem 5.5, following the analysis from [10].

Theorem 5.1. (Theorem 3 from [11]) For a sparse embedding matrix S ∈ Rm×n with sparsity s = 1
and a data matrix U ∈ Rn×d, let ε ∈ (0, 1). With probability at least 1− δ all singular values of SU
are (1± ε) as long as m ≥ δ−1(d2 + d)/(2ε− ε2)2. For the hash functions used to construct S, σ is
4-wise independent and h is pairwise independent.

Theorem 5.2. (Theorem 9 from [11]) For a sparse embedding matrix S ∈ Rm×n with sparsity
s = Θ(log3(d/δ)/ε) and a data matrix U ∈ Rn×d, let ε ∈ (0, 1). With probability at least 1 − δ all
singular values of SU are (1± ε) as long as m = Ω(d log8(d/δ)/ε2). For the hash functions used to
construct S, we have that σ, h are both Ω(log(d/δ))-wise independent.

Lemma 5.3. Let C be a constraint set and A ∈ Rn×d, B ∈ Rn×d′ be two arbitrary matrices. For a

sparse embedding matrix S ∈ Rm×n, there is m = O(
d log8( d

εp+1 )

ε2(p+1) ), such that with constant probability,
the following hold:

i) ‖S(AX −B)‖p,2 ≥ (1− ε)‖AX −B‖p,2 for all X ∈ Rd×d
′

ii) ‖S(AX∗ −B)‖p,2 ≤ (1 + ε)‖AX∗ −B‖p,2, where X∗ = arg min
X∈C
‖AX −B‖p,2

Proof. The proof is the same as the proof of Lemma 29 from [10], except that we use a different
choice of hyperparameters in constructing S, i.e., sparsity s and the number m of rows. In the proof
of Lemma 29 from [10], the construction of S follows Theorem 5.1, where the sparsity s = 1, but
requires m = O(d2) rows. We replace the construction by Theorem 5.2, where we pick δ = εp+1.

Now the sparsity s is larger but this construction reduces the number of rows required to m = Õ(d).

If we use the construction in Theorem 5.2 with the parameters ε, δ both being εp+1, then the rest of
the proof follows from Lemma 27 of [10] (using the same argument as in Lemma 29 of [10]). As in
Lemma 29 of [10], properties (i) and (ii) of Lemma 27 of [10] follow simply because we have chosen
the parameters ε, δ of S to be εp+1 (thus, by Theorem 5.2, S is an ε-subspace embedding for A in
the `2 norm, and S is an εp+1-subspace embedding for [A,B∗,i] with probability 1− εp+1, for all i).
Finally, to show that property (iii) in Lemma 27 of [10], the only property of the matrix S that is
needed by [10] is Equation (20) of [11], which also holds when S is constructed as in Theorem 9 of
[11].
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Lemma 5.4. Consider a data matrix A ∈ Rn×d. Let the best rank-k matrix in the `p,2 norm be
Ak = arg minrank-k Ak ‖Ak−A‖p,2. For R ∈ Rd×m, if RT satisfies both of the following two conditions
for all X ∈ Rn×n:

i) ‖RT (ATkX −AT )‖p,2 ≥ (1− ε)‖ATkX −AT ‖p,2
ii) ‖RT (ATkX

∗ −AT )‖p,2 ≤ (1 + ε)‖ATkX∗ −AT ‖p,2, where X∗ = arg min
X
‖ATkX −AT ‖p,2

then

min
rank-k X

‖XRTATk −AT ‖
p
p,2 ≤ (1 + 3ε)‖ATk −AT ‖

p
p,2

Proof. Lemma 31 from [10].

Theorem 5.5. (`p,2-Low Rank Approximation) Let the data matrix be A ∈ Rd×n and k ∈ N be the
desired rank. Let S ∈ Rm×d be a sparse embedding matrix with m = O(kpoly(log k)poly( 1

ε )) rows,
and sparsity s = poly(log k). Then, the following holds with constant probability:

min
rank-k X

‖XSA−A‖p,2 ≤ (1 + 3ε) min
rank-k Ak

‖Ak −A‖p,2

Proof. The proof is the same as the proof of Theorem 32 in [10], except that we adapt a different
construction of the sparse embedding matrix S, which reduces the number of rows from O(k2) to

Õ(k) with increased sparsity s.

Consider Ak = arg minrank-k Ak ‖Ak − A‖p,2. Let Vk be a basis for the column space of Ak. By
applying Lemma 5.3 and Lemma 5.4 on the basis Vk, we conclude the above theorem by setting

the number m of rows to m = O
(
k log8( k

ε2
)

ε4

)
, and sparsity s = poly(log k) in the sparse embedding

matrix S.

B.3.2 Using Lewis Weight Sampling for Column Subset Selection

Here we show how to use `p Lewis weights sampling (discussed above in at the beginning of Section B)
for k-CSSp,2. We first introduce a technical tool, a version of Dvoretzky’s Theorem (Theorem 5.7)

which allows us to embed `n2 into `
O(n/ε2)
2 with only (1± ε) distortion, and thus enables us to switch

between the `p norm and the `2 norm and use `p Lewis weight sampling. Based on Theorem 4.2
and Theorem 5.7, we show in Theorem 5.8 that Lewis weight sampling provides a good subset of
columns, on which our later analysis of k-CSSp,2 is based.

Theorem 5.7. (Randomized Dvoretzky’s Theorem) Let n ∈ N, and ε ∈ (0, 1). Let r = n
ε2 . Let

G ∈ Rr×n be a random matrix whose entries are i.i.d. standard Gaussian random variables, rescaled
by 1√

r
. For r = n

ε2 , the following holds with probability 1− e−Θ(n), for all y ∈ Rn,

‖Gy‖p = (1± ε)‖y‖2

Proof. This follows from Theorem 1.2 from [12].

Theorem 5.8. (Subset of Columns by Lewis Weights Sampling) Let A ∈ Rd×n. Let S ∈ Rm×d be a
sparse embedding matrix, with m = O(k · poly(log k)poly( 1

ε )). Further, let S′ ∈ Rn×t be a sampling
matrix whose columns are random standard basis vectors generated according to the `p Lewis weights
of columns of SA (that is, the row sampling matrix (S′)T is generated based on the Lewis weights
of (SA)T ), with t = k · poly(log k). Then, for X̂ = arg minrank-k X ‖XSAS′ −AS′‖p,2, the following
holds with probability 1− o(1):

‖X̂SA−A‖p,2 ≤ Θ(1) min
rank-k Ak

‖Ak −A‖p,2

Proof. Let X∗ = arg minrank-k X∗ ‖X∗SA−A‖p,2. By the triangle inequality,

‖X̂SA−A‖p,2 ≤ ‖X∗SA− X̂SA‖p,2 + ‖X∗SA−A‖p,2

Our goal is to bound ‖X∗SA− X̂SA‖p,2. By Lemma D.28 and Lemma D.29 from [2], for any column
sampling matrix S and for any fixed matrix Y , it can be shown that E[‖Y S‖pp] = ‖Y S‖pp. In our
case, since S′ is a sampling matrix, we have E[‖Y S′‖pp] = ‖Y S′‖pp for any fixed matrix Y .
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Now let G ∈ RΘ(d)×d be a rescaled random matrix whose entries are i.i.d. standard Gaussian random
variables as in Theorem 5.7. We apply Theorem 5.7 to transform between the `p space and the
Euclidean space. Since transformation of both directions can be done with very small distortion, we
obtain a Θ(1) approximation. With constant probability, we have

‖X∗SA− X̂SA‖p,2 = Θ(1)‖G(X∗ − X̂)SA‖p By Theorem 5.7

= Θ(1)‖G(X∗ − X̂)SAS′‖p By Theorem 4.2

= Θ(1)‖(X∗ − X̂)SAS′‖p,2 By Theorem 5.7

≤ Θ(1)
(
‖X∗SAS′ −AS′‖p,2 + ‖X̂SAS′ −AS′‖p,2

)
Triangle Inequality

≤ Θ(1)‖X∗SAS′ −AS′‖p,2 Since X̂ = arg min
rank-k X

‖XSAS′ −AS′‖p,2

= Θ(1)‖G(X∗SA−A)S′‖p By Theorem 5.7

≤ Θ(1)‖G(X∗SA−A)‖p By Markov Bound on E[‖Y S′‖pp] = ‖Y S′‖
= Θ(1)‖X∗SA−A‖p,2 By Theorem 5.7

Therefore,

‖X̂SA−A‖p,2 ≤ ‖X∗SA− X̂SA‖p,2 + ‖X∗SA−A‖p,2
≤ Θ(1)‖X∗SA−A‖p,2
≤ Θ(1) min

rank-k Ak
‖A−Ak‖p,2 By Theorem 5.5

as desired. Note that we can achieve o(1) failure probability by increasing the number of columns in
S′ by a logarithmic factor — see Theorem 4.2.

B.3.3 Analysis for k-CSSp,2

We now conclude our proof that Algorithm 1 for bi-criteria k-CSSp,2 achieves an O(1) approximation
factor with polynomial running time. This result is stated as Theorem 1.

Theorem 1 (Bicriteria O(1)-Approximation Algorithm for k-CSSp,2). Let A ∈ Rd×n and k ∈ N.
There is an algorithm with (nnz(A) + d2) · kpoly(log k) runtime that outputs a rescaled subset of

columns U ∈ Rd×Õ(k) of A and a right factor V ∈ RÕ(k)×n for which V = minV ‖UV −A‖p,2, such
that with probability 1− o(1),

‖UV −A‖p,2 ≤ O(1) · min
rank-k Ak

‖Ak −A‖p,2

Proof. Approximation Factor. First notice that the minimizer X̂ of ‖X̂SAS′ −AS′‖p,2 has to

be in the column span of AS′. Thus we can write X̂ = (AS′)Y for some matrix Y . By Theorem 5.8,

‖X̂SA−A‖p,2 = ‖(AS′)Y SA−A‖p,2 ≤ Θ(1) min
rank-k Ak

‖A−Ak‖p,2

We denote Y SA = V . We take the left factor U = AS′ and solving for minV ‖UV −A‖p,2 will give
us a Θ(1) approximation to minrank-k Ak ‖A− Ak‖p,2. A good minimizer for the right factor V in
the Euclidean space is V = (AS′)†A. This concludes our result. Notice that since S′ is a sampling

matrix with Õ(k) columns, we get a rank-k left factor U as a subset of columns of A as desired.

Running time. First notice that S is a sparse embedding matrix with poly(log k) non-zero
entries. Thus computing SA takes time nnz(A) · poly(log k). By [3], computing the Lewis weights
of SA takes time nnz(SA) + poly(k) ≤ nnz(A)poly(log k) + poly(k), and computing the output left
factor U = AS′ takes time nnz(A). Computing (AS′)† takes time d2 · kpoly(log k). Computing
the right factor V = (AS′)†A takes nnz(A)kpoly(log k). Therefore, the overall running time is
(nnz(A) + d2) · kpoly(log k).

Failure Probability. For the failure probability of the first step, note that we can select the
parameter δ for the sparse embedding matrix S to be 1

poly(d) , at the cost of a logarithmic factor in

the number of rows. Similarly, the failure probability of the second step is o(1) as mentioned in
Theorem 5.8.
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C The Streaming Algorithm and Full Analysis (Section 4)

We give a single-pass streaming algorithm for k-CSSp (1 ≤ p < 2) in Algorithm 2, which is based
on the Merge-and-Reduce framework (see, e.g. [13]) previously used in graph streaming algorithms,
for instance.

Algorithm 2 A one-pass streaming algorithm for bi-criteria k-CSSp in the column-update streaming
model.

Input: A matrix A ∈ Rd×n whose columns arrive one at a time, p ∈ [1, 2), rank k ∈ N and batch
size r = kpoly(log(nd)).

Output: A subset of Õ(k) columns AI .
Generate a dense p-stable sketching matrix S ∈ Rkpoly(log(nd))×d.
A list C ← {} of strong coresets and corresponding level numbers.
A list D ← {} of unsketched column subsets of A corresponding to the list C of strong coresets
and their level numbers.
A list of sketched columns M ← {}.
A list of corresponding unsketched columns L← {}.
for Each column A∗j seen in the data stream do
M ←M ∪ SA∗j
L← L ∪A∗j
if length of M == r then
C ← C ∪ (M, 0), D ← D ∪ L
C,D ← Recursive Merge(C,D) {// Algorithm 3}
M ← {}, L← {}

end if
end for
C ← C ∪ (M, 0), D ← D ∪ L
C,D ← Recursive Merge(C,D) {// Algorithm 3}
I ← The column indices obtained by applying to the concatenation of the strong coresets in C.
(Here, I is a set of column indices and |I| = k · poly(log k).)
Finally, recover AI by mapping the selected indices I to unsketched columns in D.

Algorithm 3 Recursive Merge

Input: A list C of strong coresets and their corresponding level numbers. A list D of (unsketched)
column subsets of A corresponding to the sketched columns in C.
Output: New C, where the list of strong coresets is greedily merged, and the corresponding new
D.
if length of C == 1 then

Return C,D.
else

Let (C−2, l−2), (C−1, l−1) be the second to last and last elements of the list C (i.e. the second
to last and last sets of columns C−2, C−1 with their corresponding level l−2, l−1 from list C).
if l−2 == l−1 then

Remove (C−2, l−2), (C−1, l−1) from C.
Remove the corresponding D−2, D−1 from D.
Compute a strong coreset C0 of (i.e., sample and rescale columns from) C−2∪C−1, as described
in the proof of Lemma 4 — C0 has at least k · poly(log nd) columns. Record the original
indices I in C−2 ∪ C−1 of the columns selected in C0.
Map indices I to columns in D−2 ∪D−1 to form a new subset of columns D0.
C ← C ∪ (C0, l−1 + 1), D ← D ∪D0.
Recursive Merge(C,D).

else
Return C,D.

end if
end if

To analyze our streaming algorithm, we first need Lemma 5 to show how the approximation error
propagates through each level of the binary tree induced by the merge operator. It shows how a
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strong coreset C0, computed at level l of the tree, approximates the projection error for the union of
all columns at the leaves of the subtree rooted at C0.

Lemma 5 (Approximation Error from Merging). Let C0 be a strong coreset constructed in a step
of Algorithm 3 (Recursive Merge), i.e. C−1 and C−2 are two strong coresets at levels l − 1 of
the binary tree, and C0 is a strong coreset at level l obtained by taking a strong coreset for the
concatenation of C−1 and C−2. Then,

• If C0 is a strong coreset of C−1 ∪ C−2, constructed as described in Lemma 4, with at least
k
γ2 · poly(log(nd/γ)) columns, then with probability at least 1− 1

n2 ,

min
V
‖UV − C0‖p,2 = (1± γ) min

V
‖UV − (C−1 ∪ C−2)‖p,2

for all matrices U of rank at most k, simultaneously.

• If C is a strong coreset at level l of the binary tree, and M is the union of the columns of SA
represented as leaves of the subtree rooted at C, then with probability at least 1− q

n2 ,

min
V
‖UV −C‖p,2 = (1± γ)l‖UV −M‖p,2

for all rank-k matrices U , simultaneously, as long as the coresets computed in each merge
operation have at least k

γ2 · poly(log(nd/γ)) columns. Here, q is the number of nodes in the
subtree rooted at C.

Proof. The first statement is a direct consequence of Lemma 4 — we are applying Lemma 4, setting
approximation error ε = γ, failure probability δ = 1

n2 and rank k = k. Note that the coreset
construction described in the proof of Lemma 4 requires O(d log d/ε2) · log(1/δ) columns to be
sampled, but in our case, d = k · poly(log nd), since SA has k · poly(log nd) rows.

We show the second statement by using the first statement, together with induction on the number
of merge operations l, and a union bound over all the merge operations performed. The union bound
is simply as follows: note that for each node C0 in the subtree rooted at C, with probability 1− 1

n2 ,

min
V
‖UV − C0‖p,2 = (1± γ) min

V
‖UV − (C−1 ∪ C−2)‖p,2

for all U of rank k, where C−1 and C−2 are the two coresets corresponding to the children of C0 (this
is simply by the first statement of Lemma 5). Thus, by a union bound, this holds simultaneously for
all nodes C0 in the subtree rooted at C, with probability at least 1− q

n2 , where q is the number of
nodes in the subtree rooted at C. In other words, let E be the event that for all nodes C0, C0 is
a strong coreset of C−1 ∪ C−2 — then E occurs with probability at least 1 − q

n2 . Note that since
q ≤ 2n, a failure probability δ = 1

n2 suffices to pay for the union bound.

Assuming E holds, we can apply induction. First let us consider the base case where l = 1 — here,
the desired result clearly holds since it is implied by the event E (since the subtree rooted at C only
has two other nodes, C−1 and C−2).

Now suppose l > 1, and the second statement of Lemma 5 holds for C at levels less than l. Now,
suppose C is at level l, and let C−1 and C−2 be the coresets corresponding to the children of C in
the binary tree. Let M−1,M−2 each be the contiguous submatrices of SA represented by the leaves
of the subtrees rooted at C−1 and C−2 respectively. Note that by its definition, M = M−1 ∪M−2,
where M is as defined in the second statement of Lemma 5. Let q1, q2 be the number of nodes in
the subtree rooted at C−1 and C−2 respectively, and q = q1 + q2 be the number of nodes in the
subtree rooted at C. By the induction hypothesis, since C−1 and C−2 are at levels l − 1, for all
rank-k matrices U , with probability 1− q1

n2 ,

min
V
‖UV − C−1‖p,2 = (1± γ)l−1 min

V
‖UV −M−1‖p,2

and with probability 1− q2
n2 ,

min
V
‖UV − C−2‖p,2 = (1± γ)l−1 min

V
‖UV −M−2‖p,2

Thus, for any matrix U of rank k, with probability 1− q
n2 ,

min
V
‖UV −C‖p,2 = (1± γ) min

V
‖UV − (C−1 ∪ C−2)‖p,2
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= (1± γ)
(

min
V
‖UV − C−1‖pp,2 + min

V
‖UV − C−2‖pp,2

)1/p

= (1± γ) ·
(

(1± γ)p(l−1) ·min
V
‖UV −M−1‖pp,2 + (1± γ)p(l−1) ·min

V
‖UV −M−2‖pp,2

)1/p

= (1± γ)l ·
(

min
V
‖UV −M−1‖pp,2 + min

V
‖UV −M−2‖pp,2

)1/p

= (1± γ)l min
V
‖UV −M‖p,2

Here, the first equality is because the event E occurs (meaning C is a (1± γ)-approximate strong
coreset for C−1 ∪ C−2). The second is by the definition of the `p,2 norm (since after raising it to the
pth power, it decomposes across columns). The third equality is by the induction hypothesis, and
the last equality is again because the pth power of the `p,2 norm decomposes across columns. This
completes the proof of Lemma 5.

Finally, using Lemma 5, we give a full analysis of our single-pass streaming algorithm, Algorithm 2.

Theorem 2 (A One-pass Streaming Algorithm for k-CSSp). In the column-update streaming model,
let A ∈ Rd×n be the data matrix whose columns arrive one at each time in a data stream. Given
p ∈ [1, 2) and a desired rank k ∈ N, Algorithm 2 outputs a subset of columns AI ∈ Rd×kpoly(log(k)) in

Õ(nnz(A)k + nk + k3) time, such that with probability 1− o(1),

min
V
‖AIV −A‖p ≤ Õ(k1/p−1/2) min

L⊂[n],|L|=k
‖ALV −A‖p

Moreover, Algorithm 2 only needs to process all columns of A once and uses Õ(dk) space throughout
the stream.

Proof. Approximation Factor: Note that n/r, the number of leaves, might not be a power of 2,
and so we might get a list of coresets instead of a single one at the end of the stream. Consider
the list C, of coresets and their corresponding level numbers, left at the end of the stream, before
Algorithm 2 applies Recursive Merge after the data stream for the last time (to get a single output
coreset). Denote these coresets by C1,C2, . . . ,Ct, where t = |C|.

First, since strong coresets are subsets consisting of subsampled and reweighted columns of SA, we
can let SAT denote the concatenation of the Ci, where T is a sampling and reweighting matrix.
In addition, note that for each Ci, the subtree rooted at Ci has depth at most log(n/r), since all
leaves represent contiguous blocks of r columns, and each coreset also has r columns. We bound
minV ‖AIV − A‖p using Lemma 5 and these observations. In the following, let L ⊂ [n], |L| = k
denote the subset of k columns of A that gives the minimum k-CSSp cost, i.e. the one minimizing
minV ‖ALV −A‖p. First note that with probability 1− o(1),

min
V
‖AIV −A‖p ≤ ‖AIV ′ −A‖p (where V ′ = arg min

V
‖SAIV − SA‖p,2)

≤ ‖SAIV ′ − SA‖p By Lemma 2

= Õ(k
1
p−

1
2 )‖SAIV ′ − SA‖p,2 By Lemma 1

where I is the subset of column indices output by the bi-criteria O(1)-approximation algorithm for
k-CSSp,2 that we apply at the end of Algorithm 2. Let (SAT )∗ denote the best rank k approximation
to SAT in the `p,2-norm. By Theorem 1, with probability 1− o(1),

Õ(k
1
p−

1
2 )‖SAIV ′ − SA‖p,2 ≤ Õ(k

1
p−

1
2 ) ·O(1)‖(SAT )∗ − SAT‖p,2

≤ Õ(k
1
p−

1
2 ) min

V
‖SALV − SAT‖p,2

Now, recall that SAT is the concatenation of the coresets Ci — since the pth power of the `p,2 norm
decomposes across columns,

min
V
‖SALV − SAT‖pp,2 =

t∑
i=1

min
V
‖SALV −Ci‖pp,2
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Suppose that the subtree rooted at Ci has qi nodes, and has depth li, and in addition, let Mi be the
contiguous range of columns of SA which are represented by the leaves of the subtree rooted at Ci.
Then, by the second statement of Lemma 5, with probability at least 1− qi

n2 ,

min
V
‖SALV −Ci‖p,2 = (1± γ)li min

V
‖SALV −Mi‖p,2

Thus, by a union bound, this occurs simultaneously for all i ∈ [t] with probability at least 1 −∑t
i=1

qi
n2 = 1− 1

n (since the subtrees rooted at the Ci’s together contain all coresets ever created by
the streaming algorithm). Thus, with probability at least 1− 1

n ,

min
V
‖SALV − SAT‖pp,2 =

t∑
i=1

min
V
‖SALV −Ci‖pp,2

=

t∑
i=1

(1± γ)pli min
V
‖SALV −Mi‖pp,2

= (1± γ)p log(n/r) min
V
‖SALV − SA‖pp,2

(1)

where the last equality is because SA is the concatenation of the Mi, by their definition, and the
subtree rooted at Ci has depth at most log(n/r). Taking pth roots, with probability 1− 1/n,

min
V
‖SALV − SAT‖p,2 = (1± γ)log(n/r) min

V
‖SALV − SA‖p,2

Setting γ = ε
2 log(n/r) , we obtain the following with probability 1− 1/n,

min
V
‖SALV − SAT‖p,2 = (1± ε) min

V
‖SALV − SA‖p,2

Thus, by a union bound over all the events, with probability 1− o(1),

Õ(k
1
p−

1
2 ) min

V
‖SALV − SAT‖p,2 ≤ Õ(k

1
p−

1
2 ) min

V
‖SALV − SA‖p,2

≤ Õ(k
1
p−

1
2 ) min

V
‖SALV − SA‖p By Lemma 1

≤ Õ(k
1
p−

1
2 ) · log1/p(nd) min

V
‖ALV −A‖p By Lemma 3

and we conclude that minV ‖AIV −A‖p ≤ Õ(k
1
p−

1
2 ) minV ‖ALV −A‖p with probability 1− o(1).

Space Complexity: Since the nodes are merged greedily during the data stream, and within the
list C are in decreasing order according to their level, at most one node at each level l is in the list C
at any time. Since the number of columns at each node in the binary tree is Õ(k) (i.e. the size of

one coreset), the total space complexity is Õ(kd), suppressing logarithmic factors in n, d, k.

Running time: Since generating a single p-stable random variable takes O(1) time, generating the
dense p-stable sketching matrix S takes O(dk · poly(log(nd))) time. Computing SA∗j ,∀j ∈ [n] takes
a total of O(nnz(A) · kpoly(log(nd))) time. By Lemma 4, merging two coresets, which are matrices

of size Õ(k)× Õ(k), takes Õ(k2) time. The merging operation is performed at most O(n/k) times,

so the total time it takes for merging is Õ(nk). By Theorem 1, the k-CSSp,2 algorithm takes at most
k3poly(log(knd)) time to find the final subset of columns. Since the number of selected columns
is kpoly(log k), it takes kpoly(log k) time to map the indices and recover the original columns AI .

Therefore, the overall running time is Õ(nnz(A)k + nk + k3), suppressing a low degree polynomial
dependency on log(knd).

14



D The Distributed Protocol and Full Analysis (Section 5)

We give our one-round distributed protocol for k-CSSp (1 ≤ p < 2) in Algorithm 4 and the full
analysis below.

Algorithm 4 A one-round protocol for bi-criteria k-CSSp in the column partition model

Initial State:
Server i holds matrix Ai ∈ Rd×ni , ∀i ∈ [s].
Coordinator:
Generate a dense p-stable sketching matrix S ∈ Rk poly(log(nd))×d.
Send S to all servers.
Server i:
Compute SAi.
Let the number of samples in the coreset be t = O(kpoly(log(nd)) log(1/δ)). Construct a coreset of
SAi under the `p,2 norm by applying a sampling matrix Di of size ni× t and a diagonal reweighting
matrix Wi of size t× t.
Let Ti = DiWi. Send SAiTi along with AiDi to the coordinator.
Coordinator:
Column-wise stack SAiTi to obtain SAT = [SA1T1, SA2T2, . . . , SAsTs].
Apply k-CSSp,2 on SAT to obtain the indices I of the subset of selected columns with size
O(k · poly(log k)).
Since Di’s are sampling matrices, the coordinator can recover the original columns of A by mapping
indices I to AiDi’s.
Denote the final selected subset of columns by AI . Send AI to all servers.
Server i:
Solve minVi ‖AIVi − Ai‖p to obtain the right factor Vi. AI and V will be factors of a rank-
k · poly(log k) factorization of A, where V is the (implicit) column-wise concatenation of the
Vi.

Theorem 3 (A One-round Protocol for Distributed k-CSSp). In the column partition model, let
A ∈ Rd×n be the data matrix whose columns are partitioned across s servers and suppose server i
holds a subset of columns Ai ∈ Rd×ni , where n =

∑
i∈[s] ni. Then, given p ∈ [1, 2) and a desired rank

k ∈ N, Algorithm 4 outputs a subset of columns AI ∈ Rd×kpoly(log(k)) in Õ(nnz(A)k + kd+ k3) time,
such that with probability 1− o(1),

min
V
‖AIV −A‖p ≤ Õ(k1/p−1/2) min

L⊂[n],|L|=k
‖ALV −A‖p

Moreover, Algorithm 4 uses one round of communication and Õ(sdk) words of communication.

Proof. Approximation Factor: In the following proof, let L ⊂ [n], |L| = k denote the best possible
subset of k columns of A that gives the minimum k-CSSp cost, i.e., the cost minV ‖ALV − A‖p
achieves minimum. First, note that with probability 1− o(1),

min
V
‖AIV −A‖p ≤ ‖AIV ′ −A‖p V ′ := arg min

V
‖SAIV − SA‖p,2

≤ ‖SAIV ′ − SA‖p By Lemma 2

= Õ(k
1
p−

1
2 )‖SAIV ′ − SA‖p,2 By Lemma 1

SAI is the selected columns output from the bi-criteria O(1)-approximation k-CSSp,2 algorithm. Let
(SAT )∗ denote the best rank k approximation to SAT . By Theorem 1, with probability 1− o(1),

Õ(k
1
p−

1
2 )‖SAIV ′ − SA‖p,2 ≤ Õ(k

1
p−

1
2 ) ·O(1)‖(SAT )∗ − SAT‖p,2

≤ Õ(k
1
p−

1
2 ) min

V
‖SALV − SAT‖p,2

Note that SAT = [SA1T1, . . . , SAsTs] is a column-wise concatenation of all coresets of SAi, ∀i ∈ [s].
By Lemma 4, and a union bound over the i ∈ [s], with probability 1− sδ = 1− o(1),

(min
V
‖SALV − SAT‖pp,2)1/p = (

s∑
i=1

min
Vi
‖SALVi − SAiTi‖pp,2)1/p
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= (

s∑
i=1

(1± ε)p min
Vi
‖SALVi − SAi‖pp,2)1/p

= (1± ε)(
s∑
i=1

min
Vi
‖SALVi − SAi‖pp,2)1/p

= (1± ε) min
V
‖SALV − SA‖p,2

Hence, by a union bound over all the events, with probability 1− o(1),

Õ(k
1
p−

1
2 ) min

V
‖SALV − SAT‖p,2 ≤ Õ(k

1
p−

1
2 ) min

V
‖SALV − SA‖p,2

≤ Õ(k
1
p−

1
2 ) min

V
‖SALV − SA‖p By Lemma 1

≤ Õ(k
1
p−

1
2 ) · log1/p(nd) min

V
‖ALV −A‖p By Lemma 3

Thus, minV ‖AIV −A‖p ≤ Õ(k
1
p−

1
2 ) minV ‖ALV −A‖p with probability 1− o(1).

Communication Cost: Sharing the dense p-stable sketching matrix S with all servers costs
O(sdk · poly(log(nd))) communication (this can be removed with a shared random seed). Sending

all coresets SAiTi (∀i ∈ [s]) and the corresponding columns AiDi to the coordinator costs Õ(sdk)

communication, since each coreset contains only Õ(k) columns (note that since we compute s coresets,
each coreset computation should have a failure probability of 1

poly(s) to allow us to union bound —

this only increases the communication cost by a log(s) factor, however). Finally, the coordinator

needs Õ(sdk) words of communication to send the Õ(k) selected columns to each server. Therefore,

the overall communication cost is Õ(sdk), suppressing a logarithmic factor in n, d.

Running time: Since generating a single p-stable random variable takes O(1) time, generating
the dense p-stable sketching matrix S takes O(dk · poly(log(nd))) time. Computing all SAi’s takes
O(nnz(A)k · poly(log(nd))) time. By Lemma 4, computing all coresets for SAiTi,∀i ∈ [s] takes time

Õ(kd). By Theorem 1, the k-CSSp,2 algorithm takes time (nnz(SAT )+k2poly(log nd))·kpoly(log k) ≤
k3poly(log(knd)) to find the set of selected columns. Since the number of selected columns is
O(kpoly(log k)), it then takes the protocol O(kpoly(log k)) time to map the indices and recover the

original columns AI . Therefore, the overall running time is Õ((nnz(A)k + kd+ k3), suppressing a
low degree polynomial dependency on log(knd). After the servers receive AI , it is possible to solve

minVi ‖AIVi −Ai‖p in Õ(nnz(AI)) + poly(d log n) time , ∀i ∈ [s] due to [14, 15].
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E A High Communication Cost Protocol for k-CSSp (p ≥ 1)
(Section 1)

We describe in detail the naive protocol for distributed k-CSSp mentioned in Section 1, which works
for all p ≥ 1, in the column partition model, and which achieves an O(k2)-approximation to the best
rank-k approximation, using O(1) rounds and polynomial time but requiring a communication cost
that is linear in n+ d. The inputs are a column-wise partitioned data matrix A ∈ Rd×n distributed
across s servers and a rank parameter k ∈ N. Each server i holds part of the data matrix Ai ∈ Rd×ni ,
∀i ∈ [s], and such that

∑s
i=1 ni = n.

We use a single machine, polynomial time bi-criteria k-CSSp algorithm as a subroutine of the protocol,

e.g., Algorithm 3 in [16], which selects a subset of Õ(k) columns AT of the data matrix A ∈ Rd×n
in polynomial time, for which minX ‖ATX −A‖p ≤ O(k) minrank-k Ak ‖A−Ak‖p, ∀p ≥ 1.

Algorithm 5 A protocol for k-CSSp (p ≥ 1)

Initial State: Server i holds matrix Ai ∈ Rd×ni , ∀i ∈ [s].
Server i:
Apply polynomial time bi-criteria k-CSSp on Ai to obtain a subset Bi of columns as the left factor.
Solve for the right factor Vi = arg minVi ‖UiVi −Ai‖p. Send Ui and Vi to the coordinator.
Coordinator:
Column-wise concatenate the UiVi to obtain UV = [U1V1, . . . , UsVs]. Apply a polynomial time
bi-criteria k-CSSp algorithm on UV to obtain a subset C of columns. Send C to each server.
Server i:
Solve minXi ‖CXi −Ai‖p to obtain the right factor.

Approximation Factor. Let UV denote the column-wise concatenation of the UiVi. Let X∗ =
arg minX ‖CX −A‖p. Then,

‖CX∗ −AS‖p ≤ ‖CX∗ − UV ‖p + ‖UV −A‖p By the triangle inequality

≤ O(k) min
rank-k (UV )k

‖UV − (UV )k‖p + ‖UV −A‖p By the O(k)-approximation of k-CSSp

≤ O(k)‖UV −A‖p

= O(k)(

s∑
i=1

‖UiVi −Ai‖p)

≤ O(k)(

s∑
i=1

O(k) min
rank-k A∗i

‖Ai −A∗i ‖p) By the O(k)-approximation of k-CSSp

≤ O(k2)

s∑
i=1

‖Ai − (A∗)i‖p A∗ = arg min
rank-k A∗

‖A−A∗‖p

= O(k2)‖A−A∗‖p

Communication Cost. Since Ui ∈ Rd×Õ(k) and Vi ∈ RÕ(k)×ni , sending Ui and Vi costs Õ(skn).

Since C ∈ Rd×Õ(k), sending C from the coordinator to all servers costs Õ(sdk). Thus the overall

communication cost is Õ(s(n+ d)k).

Running time. According to [16], applying the k-CSSp algorithm and solving `p regression can
both be done in polynomial time. Thus the overall running time of the protocol is polynomial.

Problems with this protocol. Although this protocol works for all p ≥ 1, a communication cost
that linearly depends on the large dimension n is too high, and furthermore, the output C is not
a subset of columns of A, because the protocol applies k-CSSp on a concatenation of both the left
factor Ui and the right factor Vi. Ui is a subset of columns of Ai but Vi is not necessarily a sampling
matrix. One might wonder whether it is possible that each server only sends Ui and the coordinator
then runs k-CSSp on a concatenation of the Ui. This will not necessarily give a good approximation
to minrank-k Ak ‖A−Ak‖p because the columns not selected in the Ui locally on each server might
become globally important. Finally, although it is possible to improve the approximation factor
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to Õ(k) by making use of an Õ(
√
k)-approximation algorithm for `p-low rank approximation that

also selects a subset of columns [17], this protocol would still suffer from all of the aforementioned
problems.
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F Greedy k-CSSp,2 and Full Analysis (Section 6)

Algorithm 6 Greedy k-CSSp,2.

Input: The data matrix A ∈ Rd×n. A desired rank k ∈ N and p ∈ [1, 2). The number of columns
to be selected r ≤ n. Failure probability δ ∈ (0, 1).
Output: A subset of r columns AT .
Indices of selected columns T ← {}.
for i = 1 to r do
C ← Sample n

k log( 1
δ ) indices from {1, 2, . . . , n} \ T uniformly at random.

Column index j∗ ← arg minj∈C(minV ‖AT∪jV −A‖p,2)
T ← T ∪ j∗.

end for
Map indices T to get the selected columns AT .

We propose a greedy algorithm for selecting columns in k-CSSp,2 (Algorithm 6) for p ∈ [1, 2). We
give a detailed analysis on the first additive approximation compared to the error of the optimal
column subset for Greedy k-CSSp,2. Our analysis is inspired by the analysis of the Frobenius norm
Greedy k-CSS2 algorithm in [18].

Notice that during each iteration, the algorithm needs to evaluate the error minV ‖AT∪jV −A‖p,2
to greedily pick the next column j. A standard greedy algorithm which considers all unselected
columns in [n] \T would need O(nr) evaluations of the regression error minV ‖AT∪jV −A‖p,2, which
is too expensive. To improve the running time, we adopt the Lazier-than-lazy framework for greedy
algorithms originally introduced in [19] and used by [18] in greedy k-CSS2. Instead of considering all
unselected columns at each iteration, we first randomly sample n

k log( 1
δ ) candidate columns from

[n] \ T and greedily pick the next column only among those candidates. This reduces the number of
evaluations of minV ‖AT∪jV −A‖p,2 to O(n log( 1

δ )).

To aid the analysis, we first define a utility function that quantifies how well the selected columns
approximate the original matrix in Notation below as in [18]. We show in Lemma 7.2 an im-
provement of the utility function with one additional column when projecting a single vector, based
on Lemma 7.1 from [18]. We then show an improvement of the utility function when projecting
a matrix in Lemma 7.3, by applying Lemma 7.2 and Jensen’s Inequality, following the analysis
in [18]. With Lemma 7.3, we show a large expected improvement in the utility function by choosing
a column from a subsampled candidates, based on Lemma 6 from [18]. Finally, we conclude by
giving the convergence rate and the running time for Lazier-than-lazy based Greedy k-CSSp,2 in
Theorem 4.

Notation Consider the input matrix A ∈ Rd×n (n � d). Let B be the matrix of normalized
columns of A, where the j-th column of B is B∗j = A∗j/‖A∗j‖2. Let πT be the projection matrix
onto the column span of AT or equivalently BT . Let σmin(M) denote the minimum singular value of
some matrix M .

To aid our analysis, we define a utility function Φ as follows, inspired by [18]. For a subset T ⊂ [n]
and a matrix M ∈ Rd×t (or a vector M ∈ Rd),

ΦM (T ) = ‖M‖pp,2 − ‖M − πTM‖
p
p,2 =

t∑
i=1

(
‖M∗i‖p2 − ‖M∗i − πTM∗i‖

p
2

)
=

t∑
i=1

ΦM∗i(T )

Observe that as the number of columns selected and added to T increases, we get a more accurate
estimation of M and thus the approximation error ‖M − πTM‖p,2 decreases, which results in an
increase in the utility function ΦM (T ).

Lemma 7.1. Let S, T ⊂ [n] be two sets of column indices, with S = {i1, . . . , ik} and ‖πSu‖2 ≥
‖πTu‖2 for some vector u ∈ Rd. Then,

k∑
j=1

(
‖πT ′ju‖

2
2 − ‖πTu‖22

)
≥ σmin(BS)2 (‖πSu‖22 − ‖πTu‖22)2

4‖πSu‖22

where T ′j = T ∪ {ij} for all j ∈ [k].
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Proof. Lemma 2 from [18], except that we replace the condition for S and T , i.e., Φu(S) ≥ Φu(T )
in [18] with ‖πSu‖2 ≥ ‖πTu‖2. The two conditions are equivalent, since

Φu(S) ≥ Φu(T )

⇔ ‖u‖p2 − ‖u− πSu‖
p
2 ≥ ‖u‖

p
2 − ‖u− πTu‖

p
2

⇔ ‖u− πSu‖2 ≤ ‖u− πTu‖2
⇔ ‖u‖22 − ‖πSu‖22 ≤ ‖u‖22 − ‖πTu‖22

⇔ ‖πSu‖2 ≥ ‖πTu‖2

Lemma 7.2. (Utility Improvement by Projecting a Single Vector) Give p ∈ [1, 2). Let S, T ⊂ [n] be
two sets of column indices, with Φu(S) ≥ Φu(T ) for some vector u ∈ Rd. Let k = |S|, and for i ∈ S,
let T ′i = T ∪ {i}. Then,

∑
i∈S

(
Φu(T ′i )− Φu(T )

)
≥ pσmin(BS)2

16
· (Φu(S)− Φu(T ))2/p+1

Φu(S)2/p

Proof. To aid the analysis, we define the decreasing function g : (−∞, ‖u‖22]→ R by

g(x) = (‖u‖22 − x)p/2

and the derivative of g is

|g′(x)| = p

2
(‖u‖22 − x)p/2−1

which is an increasing function for p < 2. Then,

k∑
i=1

(
Φu(T ′i )− Φu(T )

)
=

k∑
i=1

(
‖u− πTu‖p2 − ‖u− πT ′iu‖

p
2

)
By definition of Φ

=

k∑
i=1

(
(‖u‖22 − ‖πTu‖22)p/2 − (‖u‖22 − ‖πT ′iu‖

2
2)p/2

)
By Pythagorean Theorem

=

k∑
i=1

(
g(‖πTu‖22)− g(‖πT ′iu‖

2
2)
)

By definition of g

≥
k∑
i=1

|g′(‖πTu‖22)|
(
‖πT ′iu‖

2
2 − ‖πTu‖22

)
Mean Value Theorem and

‖πTu‖2 ≤ ‖πT ′iu‖2

= |g′(‖πTu‖22)|
k∑
i=1

(
‖πT ′iu‖

2
2 − ‖πTu‖22

)
=
p

2

(
‖u‖22 − ‖πTu‖22

)p/2−1 k∑
i=1

(
‖πT ′iu‖

2
2 − ‖πTu‖22

)
=
p

2
‖u− πTu‖p−2

2

k∑
i=1

(
‖πT ′iu‖

2
2 − ‖πTu‖22

)
≥ p

2
‖u− πTu‖p−2

2 · σmin(BS)2 (‖πSu‖22 − ‖πTu‖22)2

4‖πSu‖22
Lemma 7.1

=
pσmin(BS)2

2
· (‖u− πTu‖22 − ‖u− πSu‖22)2

4‖πSu‖22‖u− πTu‖
2−p
2

Now we can lower bound

‖u− πTu‖22 − ‖u− πSu‖22 = ‖u− πTu‖2−p2 ‖u− πTu‖p2 − ‖u− πSu‖
2−p
2 ‖u− πSu‖p2

≥ ‖u− πTu‖2−p2

(
‖u− πTu‖p2 − ‖u− πSu‖

p
2

)
since ‖u− πSu‖2 ≤ ‖u− πTu‖2

= ‖u− πTu‖2−p2

(
Φu(S)− Φu(T )

)
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Thus,

k∑
i=1

(
Φu(T ′i )− Φu(T )

)
≥ pσmin(BS)2

2
· (‖u− πTu‖22 − ‖u− πSu‖22)2

4‖πSu‖22‖u− πTu‖
2−p
2

≥ pσmin(BS)2

2
·

(
Φu(S)− Φu(T )

)2

· ‖u− πTu‖2(2−p)
2

4‖πSu‖22‖u− πTu‖
2−p
2

=
pσmin(BS)2

2
·

(
Φu(S)− Φu(T )

)2

· ‖u− πTu‖2−p2

4‖πSu‖22

Now to finish the proof, let us lower bound
‖u−πTu‖2−p2

‖πSu‖22
. First, observe that ‖u‖p2‖u − πSu‖

2−p
2 −

‖u‖2−p2 ‖u− πSu‖p2 ≥ 0. To see why, observe that the following equivalences hold:

‖u‖p2‖u− πSu‖
2−p
2 ≥ ‖u‖2−p2 ‖u− πSu‖p2

⇔ ‖u‖p2/‖u‖
2−p
2 ≥ ‖u− πSu‖p2/‖u− πSu‖

2−p
2

⇔ ‖u‖2p−2
2 ≥ ‖u− πSu‖2p−2

2

and the last statement is true, since ‖u‖2 ≥ ‖u− πSu‖2 and f(x) = x2p−2 is a monotone function.
Thus,

‖u− πTu‖2−p2

‖πSu‖22
=

‖u− πTu‖2−p2

‖u‖22 − ‖u− πSu‖22

≥ ‖u− πTu‖2−p2

‖u‖22 − ‖u− πSu‖22 + ‖u‖p2‖u− πSu‖
2−p
2 − ‖u‖2−p2 ‖u− πSu‖p2

=
‖u− πTu‖2−p2

(‖u‖p2 − ‖u− πSu‖
p
2)(‖u‖2−p2 + ‖u− πSu‖2−p2 )

=
1

Φu(S)
· ‖u− πTu‖2−p2

‖u‖2−p2 + ‖u− πSu‖2−p2

≥ 1

2Φu(S)
· ‖u− πTu‖

2−p
2

‖u‖2−p2

Since ‖u‖2−p2 ≥ ‖u− πSu‖2−p2

=
1

2Φu(S)
·
(‖u− πTu‖p2

‖u‖p2

)2/p−1

=
1

2Φu(S)
·
(‖u‖p2 − Φu(T )

‖u‖p2

)2/p−1

By definition of Φ

≥ 1

2Φu(S)
·
(

1− Φu(T )

Φu(S)

)2/p−1

Since Φu(S) ≤ ‖u‖p2

=
(Φu(S)− Φu(T ))2/p−1

2Φu(S)2/p

Combining all the above inequalities gives

k∑
i=1

(
Φu(T ′i )− Φu(T )

)
≥ pσmin(BS)2

2
·

(
Φu(S)− Φu(T )

)2

· ‖u− πTu‖2−p2

4‖πSu‖22

≥ pσmin(BS)2

8
·
(

Φu(S)− Φu(T )
)2

· (Φu(S)− Φu(T ))2/p−1

2Φu(S)2/p

=
pσmin(BS)2

16
· (Φu(S)− Φu(T ))2/p+1

Φu(S)2/p

This completes the proof.

Lemma 7.3. (Utility Improvement by Projecting a Matrix) Given p ∈ [1, 2). Let A ∈ Rd×n, and
T, S ⊂ [n] be two sets of column indices, with ΦA(S) ≥ ΦA(T ). Furthermore, let k = |S|. Then,
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there exists a column index i ∈ S such that

ΦA(T ∪ {i})− ΦA(T ) ≥ pσmin(BS)2 (ΦA(S)− ΦA(T ))2/p+1

16kΦA(S)2/p

Proof. The proof mostly follows the proof of Lemma 1 in [18]. We combine Lemma 7.2 with
Jensen’s inequality to conclude an improvement of the utility function with one additional column
when projecting a matrix instead of a single column.

For j ∈ [n], we define δj = min(1,
ΦA∗j (T )

ΦA∗j (S) ). Note that δj is 1 if the j-th column A∗j has a larger

projection onto BT than BS , and
ΦA∗j (T )

ΦA∗j (S) otherwise. Note that f(x) = x2/p+1 is convex on x ∈ [0,∞),

∀1 ≤ p < 2, based on which we will apply Jensen’s inequality.

Let k = |S|. For i ∈ [k], let T ′i = T ∪ {i}.

1

pσmin(BS)2

k∑
i=1

(
ΦA(T ′i )− ΦA(T )

)
=

1

pσmin(BS)2

n∑
j=1

k∑
i=1

(
ΦA∗j (T

′
i )− ΦA∗j (T )

)
By definition of Φ

≥
n∑
j=1

(1− δj)2/p+1

16
· ΦA∗j (S) By Lemma 7.2

=
ΦA(S)

16

n∑
j=1

(1− δj)2/p+1 ·
ΦA∗j (S)∑n
i=1 ΦA∗i(S)

Note ΦA(S) =

n∑
i=1

ΦA∗i(S)

≥ ΦA(S)

16

( n∑
j=1

(1− δj) ·
ΦA∗j (S)∑n
i=1 ΦA∗i(S)

)2/p+1

By Jensen’s Inequality

=
1

16ΦA(S)2/p

( n∑
j=1

(1− δj) · ΦA∗j (S)
)2/p+1

≥ 1

16ΦA(S)2/p

( n∑
j=1

(ΦA∗j (S)− ΦA∗j (T ))
)2/p+1

Since 1− δj ≥ 1−
ΦA∗j (T )

ΦA∗j (S)

⇒ (1− δj) · ΦA∗j (S)

≥ ΦA∗j (S)− ΦA∗j (T )

=
(ΦA(S)− ΦA(T ))2/p+1

16ΦA(S)2/p

Hence,
k∑
i=1

(
ΦA(T ′i )− ΦA(T )

)
≥ pσmin(BS)2 (ΦA(S)− ΦA(T ))2/p+1

16ΦA(S)2/p

This implies there is at least one column of BS , with index i ∈ S, such that when i is added to T ,

the utility function ΦA(T ) increases by at least 1
k · pσmin(BS)2 (ΦA(S)−ΦA(T ))2/p+1

16ΦA(S)2/p
.

Lemma 7.4 (Expected Increase in Utility). Given p ∈ [1, 2). Let A ∈ Rd×n, and let T, S ⊂ [n] be

two sets of column indices, with k := |S| and ΦA(S) ≥ ΦA(T ). Let T be a set of n log(1/δ)
k column

indices of A, chosen uniformly at random from [n] \ T . Then,

E[max
i∈T

ΦA(T ∪ {i})]− ΦA(T ) ≥ (1− δ) · pσmin(BS)2 · (ΦA(S)− ΦA(T ))2/p+1

16kΦA(S)2/p

Proof. The proof is nearly identical to the proof of Lemma 6 of [18] — we include the full proof
for completeness. The first step in the proof is showing that T ∩ (S \ T ) is nonempty with high
probability. Then, by conditioning on T ∩ (S \ T ) being nonempty, we can show that the expected
increase in utility is large. For the purpose of this analysis, we assume that the columns of T are
sampled independently with replacement. At the end of the proof, we discuss sampling the columns
of T without replacement.
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First, observe that

Pr[T ∩ (S \ T ) = ∅] =

O
(
n log(1/δ)

k

)∏
t=1

(
1− |S \ T |

n− |T |

)
=
(

1− |S \ T |
n− |T |

)O(n log(1/δ)
k

)
≤ e−

|S\T |
n−|T | ·

n log(1/δ)
k By 1− x ≤ e−x

≤ e−
|S\T | log(1/δ)

k Because n− |T | < n

meaning that

Pr[T ∩ (S \ T ) 6= ∅] ≥ 1− e−
|S\T | log(1/δ)

k

= 1− δ
|S\T |
k

≥ (1− δ) |S \ T |
k

Since |S \ T | ≤ k, and 1− δx ≥ (1− δ)x for x, δ ∈ [0, 1]

Therefore,

E[max
i∈T

ΦA(T ∪ {i})− ΦA(T )]

≥ Pr[T ∩ (S \ T ) 6= ∅] · E
[

max
i∈T

ΦA(T ∪ {i})− ΦA(T )
∣∣∣T ∩ (S \ T ) 6= ∅

]
≥ (1− δ) |S \ T |

k
· E
[

max
i∈T

ΦA(T ∪ {i})− ΦA(T )
∣∣∣T ∩ (S \ T ) 6= ∅

]
≥ (1− δ) |S \ T |

k
· E
[

max
i∈T

ΦA(T ∪ {i})− ΦA(T )
∣∣∣|T ∩ (S \ T )| = 1

]
(Since it is always better for T ∩ (S \ T ) to be larger)

= (1− δ) |S \ T |
k

·
∑
i∈S\T (ΦA(T ∪ {i})− ΦA(T ))

|S \ T |
(Since the single element of T ∩ (S \ T ) is uniformly random in (S \ T ))

= (1− δ) ·
∑
i∈S(ΦA(T ∪ {i})− ΦA(T ))

|S|
(Since ΦA(T ∪ {i}) = ΦA(T ) for i ∈ T )

≥ (1− δ) · 1

k
· pσmin(BS)2 (ΦA(S)− ΦA(T ))2/p+1

16ΦA(S)2/p

(By Lemma 7.3.)

This proves the lemma in the case where the columns are sampled with replacement. Now, we discuss
what happens when sampling without replacement. Note that the expected increase in utility can
only be higher if the columns of T are sampled without replacement. Intuitively, this is because if T
has some repeated columns, then it is always better to replace those repeated columns with other
columns of A. Thus, for each instance of T where some columns are sampled multiple times, we can

“move” all of the probability mass from this instance of T to other sets T
′ ⊂ [n] \ T , which contain T

but do not have repeated elements. This leads to the uniform distribution on subsets of [n] \ T with
no repeated elements, i.e., the distribution that results from sampling without replacement.

Using this lemma, we analyze the convergence rate and the running time of Algorithm 6:

Theorem 4 (Greedy k-CSS1,2). Let p ∈ [1, 2). Let A ∈ Rd×n be the data matrix and k ∈ N be the
desired rank. Let AL be the best possible subset of k columns, i.e., AL = arg minAL minV ‖ALV −A‖p,2.
Let σ be the minimum non-zero singular value of the matrix B of normalized columns of AL, (i.e.,
the j-th column of B is B∗j = (AL)∗j/‖(AL)∗j‖2). Let T ⊂ [n] be the subset of output column indices
selected by Algorithm 6, for ε, δ ∈ (0, 1), for |T | = Ω( k

pσ2ε2 ), with probability 1− δ,

E[min
V
‖ATV −A‖p,2] ≤ min

V
‖ALV −A‖p,2 + ε‖A‖p,2

The overall running time is O( n
pσ2ε2 log( 1

δ ) · ( dk2

p2σ4ε4 + ndk
pσ2ε2 )).
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Proof. Convergence Rate. The proof uses the same strategy as that of Theorem 5 of [18], with
minor modifications. Let S := BL be the best subset of columns of B. Let Tt be the subset of
columns of B selected by Algorithm 6 after t iterations (in particular, T0 = ∅). In addition, let
F = ΦA(S) = ΦA(S)−ΦA(T0) be the distance from the current value of the utility function to the best
achievable value. Let ∆t denote a small amount at time t that is used to quantify our progress as how
good the currently selected subset of columns approximates the matrix. When no column is selected,
∆0 = F . Let ∆i+1 = ∆i

2 . Now, fix a time t such that for some i, ∆i ≥ ΦA(S)−ΦA(Tt) ≥ ∆i+1 = ∆i

2 .
Then, we bound the number of additional iterations t′ needed so that

E[ΦA(S)− ΦA(Tt+t′) | Tt] ≤ ∆i+1

For convenience, for each k ≥ 0, define Ek := E[ΦA(Tt+k) | Tt]. Then, our goal is to find t′ such that

ΦA(S)− Et′ ≤ ∆i+1

However, observe that from Lemma 7.4 above, we obtain

Ek+1 − Ek = E
[
ΦA(Tt+k+1)− ΦA(Tt+k)

∣∣∣Tt]
= E

[
E
[
ΦA(Tt+k+1)− ΦA(Tt+k)

∣∣Tt+k]∣∣∣Tt] By E[E[X|Y ]] = E[X]

≥ E
[
(1− δ) · pσmin(BS)2 · (ΦA(S)− ΦA(Tt+k))2/p+1

16kΦA(S)2/p

∣∣∣Tt] By Lemma 7.4

=
(1− δ) · pσmin(BS)2

16kΦA(S)2/p
· E
[
(ΦA(S)− ΦA(Tt+k))2/p+1|Tt

]
≥ (1− δ) · pσmin(BS)2

16kΦA(S)2/p
·
(
E[ΦA(S)− ΦA(Tt+k)|Tt]

)2/p+1

By Jensen’s Inequality

= (1− δ) · pσmin(BS)2 · (ΦA(S)− Ek)2/p+1

16kΦA(S)2/p

Now, suppose that ∆i ≥ ΦA(S)−Es ≥ ∆i+1, for s = 0, . . . , t′− 1. Then, for all such s, Es+1−Es ≥
(1−δ)pσmin(BS)2∆

2/p+1
i+1

16kF 2/p . Summing these inequalities for s = 0, . . . , t′ − 1, we find that

Et′ − E0 ≥
(1− δ)pσmin(BS)2

16kF 2/p
·∆2/p+1

i+1 · t′

and for the increase from E0 to Et′ to be greater than ∆i+1, it suffices to have

t′ ≥ 32kF 2/p

∆
2/p
i+1 · (1− δ)pσmin(BS)2

In summary, if ΦA(S) − E[ΦA(Tt)] ≤ ∆i, then in at most s = 32kF 2/p

∆
2/p
i+1·(1−δ)pσmin(BS)2

iterations,

ΦA(S)− E[ΦA(Tt+s)] ≤ ∆i+1. Thus, if we let N ∈ N such that ∆N+1 ≤ ε
(1−δ)p/2F ≤ ∆N , then the

number of iterations t needed to have ΦA(S)− E[ΦA(Tt)] < ∆N+1 is at most

N∑
i=0

32kF 2/p

∆
2/p
i+1 · (1− δ)pσmin(BS)2

=
32kF 2/p

(1− δ)pσmin(BS)2

N∑
i=0

1

∆
2/p
i+1

=
32kF 2/p

(1− δ)pσmin(BS)2

N∑
i=0

1

4(N−i)/p ·
1

∆
2/p
N+1

≤ 32kF 2/p

(1− δ)pσmin(BS)2
· 41/p(1− δ)
ε2/pF 2/p

N∑
i=0

1

4(N−i)/p Since ∆
2/p
N+1 ≥ (

εF

2(1− δ)p/2
)2/p

≤ 128k

pσmin(BS)2ε2/p

N∑
i=0

1

2i
Since p < 2

≤ 256k

pσmin(BS)2ε2/p
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Thus, after t = O( k
pσmin(BS)2ε2/p

) iterations,

ΦA(S)− E[ΦA(Tt)] ≤
ε

(1− δ)p/2
ΦA(S) ≤ ε√

1− δ
ΦA(S)

meaning

‖A‖pp,2 − ‖A− πSA‖
p
p,2 − E[‖A‖pp,2 − ‖A− πTA‖

p
p,2] ≤ ε√

1− δ
‖A‖pp,2 −

ε√
1− δ

‖A− πSA‖pp,2

and rearranging gives

E[‖A− πTA‖pp,2] ≤
(

1− ε√
1− δ

)
‖A− πSA‖pp,2 +

ε√
1− δ

‖A‖pp,2

and observe that if we select δ = ε, then 1√
1−δ = O(1) for ε < 1

2 . Therefore,

E[‖A− πTA‖p,2] ≤ E[‖A− πTA‖pp,2]1/p (By Jensen’s inequality since x1/p is concave)

≤
(

(1−O(ε))‖A− πSA‖pp,2 +O(ε)‖A‖pp,2
)1/p

≤ (1−O(ε))1/p‖A− πSA‖p,2 +O(ε)1/p‖A‖p,2 (x+ y)1/p ≤ x1/p + y1/p

≤ ‖A− πSA‖p,2 +O(ε)1/p‖A‖p,2

In summary, if we select O( k
pσmin(BS)2ε2/p

) columns, then

E[‖A− πTA‖p,2] ≤ ‖A− πSA‖p,2 +O(ε)1/p‖A‖p,2

and replacing ε with O(εp), we find that

E[‖A− πTA‖p,2] ≤ ‖A− πSA‖p,2 + ε‖A‖p,2

after O( k
pσmin(BS)2ε2 ) iterations.

Running Time. Each evaluation of the error minV ‖AT∪jV − A‖p,2 takes O(d|T |2 + nd|T |)
time by taking the pseudo-inverse of AT∪j . Since the algorithm samples n

k log( 1
δ ) columns at each

iteration, the time it takes for each iteration is O(nk log( 1
δ )(d|T |2 + nd|T |)). If we set the number of

iterations, i.e. the number of selected columns r = max |T | = k
pσ2ε2 , the overall running time is then

O( k
pσ2ε2 ·

n
k log( 1

δ ) · ( dk2

p2σ4ε4 + ndk
pσ2ε2 )) = O( n

pσ2ε2 log( 1
δ ) · ( dk2

p2σ4ε4 + ndk
pσ2ε2 )).
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G Additional Experimental Details

Hyperparameters for k-CSS1,2. There are two additional hyperparameters for our O(1)-
approximation bi-criteria k-CSS1,2 (see Section B.3 for a complete description of this algorithm),
i.e. the size of the sparse embedding matrix and its sparsity, which we use to generate a rank-k left
factor that gives an O(1)-approximation (see Section B.3.1 for details on the embedding matrix and
sparsity). In the experiments, we set both the sparsity and the size of the sketching matrix we use to
be k

2 , where k is the number of output columns.
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Krause. Lazier than lazy greedy. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, page 1812–1818. AAAI Press, 2015.

28


	Appendices
	Proof of Preliminaries (Section 3)
	Norms (Lemma 1)
	Sketched Error Lower Bound (Lemma 2)
	Sketched Error Upper Bound (Lemma 3)

	p Lewis Weights and Applications
	p Lewis Weights Background
	Strong Coresets for p, 2 Norm Low Rank Approximation (Lemma 4)
	Bi-criteria O(1)-approximation algorithm for k-CSSp, 2 (Theorem 1)
	Sparse Embedding Matrices
	Using Lewis Weight Sampling for Column Subset Selection
	Analysis for k-CSSp, 2


	The Streaming Algorithm and Full Analysis (Section 4)
	The Distributed Protocol and Full Analysis (Section 5)
	A High Communication Cost Protocol for k-CSSp (p 1) (Section 1)
	Greedy k-CSSp, 2 and Full Analysis (Section 6)
	Additional Experimental Details

