A. Omitted Proofs of Useful Inequalities

A.1. Proof of Proposition 2

Proof. Let $h(x)=(1+2 x) \ln (1+x)-x$. Since $h(0)=0$, it suffices to show that $h^{\prime}(x)>0$. We calculate that

$$
h^{\prime}(x)=\frac{x}{1+x}+2 \ln (1+x)
$$

Since $h^{\prime}(0)=0$, it suffices to show that $h^{\prime \prime}(x)>0$. This can be readily verified by calculating that

$$
h^{\prime \prime}(x)=\frac{3+2 x}{(1+x)^{2}}>0 .
$$

A.2. Proof of Proposition 4

Proof. Let $f(x, y)=\ln ^{2}(1+x)+\ln ^{2}(1+y)-\ln ^{2}\left(1+\sqrt{x^{2}+y^{2}}\right)$. It suffices to show that $f(x, y) \geq 0$. The inequality is clearly true when $x=0$ or $y=0$. Note that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2\left(\frac{\log (1+x)}{1+x}-\frac{x \ln \left(1+\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}+\sqrt{x^{2}+y^{2}}}\right) \\
& \frac{\partial f}{\partial y}=2\left(\frac{\log (1+y)}{1+y}-\frac{y \ln \left(1+\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}+\sqrt{x^{2}+y^{2}}}\right)
\end{aligned}
$$

Assuming $x, y>0, \partial f / \partial x=\partial f / \partial y=0$ implies that

$$
\frac{\log (1+x)}{x(1+x)}=\frac{\log (1+x)}{y(1+y)} .
$$

It is easy to verify that $\log (1+x)) /(x(1+x))$ is decreasing w.r.t. x (checking the derivative and using Proposition 4), so we must have $x=y$. Now, let

$$
h(x)=\frac{\partial f}{\partial x}(x, x)=\frac{2 \ln (1+x)}{1+x}-\frac{\sqrt{2} \ln (1+\sqrt{2} x)}{1+\sqrt{2} x} .
$$

We shall show that $h(x)>0$ for all $x>0$. This will imply that $f(x, y)$ has no local minimum or maximum when $x, y>0$ and so it is easy to see that $f(x, y)$ attains the minimum at its boundary $x=0$ or $y=0$, yielding that $f(x, y) \geq 0$ for all $x, y \geq 0$.
To see that $h(x)>0$, let

$$
g(a)=\frac{\ln (1+a x)}{a(1+a x)}
$$

We calculate

$$
g^{\prime}(a)=\frac{a x-(1+2 a x) \ln (1+a x)}{a^{2}(1+a x)^{2}}
$$

It follows from Proposition 2 that $g^{\prime}(a)<0$. Hence $g(a)$ is decreasing w.r.t. a and $g(\sqrt{2})<g(1)$, which is exactly $\frac{1}{\sqrt{2}} h(x)>0$.

A.3. Proof of Lemma 5

Proof. It is clear that the base of the logarithm does not matter and we assume that the base is e. Let $Z=\sum_{i} \epsilon_{i} a_{i}$ and $\sigma^{2}=\sum a_{i}^{2}$. Then $\mathbb{E} Z^{2}=\sigma^{2}$ and $\mathbb{E}|Z| \leq\left(\mathbb{E}|Z|^{2}\right)^{1 / 2}=\sigma$. Let $g(x)=\ln (1+x)$ and

$$
Z_{1}=\left\{\begin{array}{ll}
|Z|, & |Z| \geq e-1 ; \\
0, & \text { otherwise },
\end{array} \quad Z_{2}= \begin{cases}0, & |Z| \geq e-1 \\
|Z|, & \text { otherwise }\end{cases}\right.
$$

Then $|Z|=Z_{1}+Z_{2}$ and

$$
\mathbb{E} g(|Z|)^{2}=\mathbb{E}\left(g\left(Z_{1}+Z_{2}\right)\right)^{2} \leq \mathbb{E}\left(g\left(Z_{1}\right)+g\left(Z_{2}\right)\right)^{2} \leq \mathbb{E} 2\left(g\left(Z_{1}\right)^{2}+g\left(Z_{2}\right)^{2}\right)
$$

where the first inequality follows from Proposition 3. For the first term, we define $h(x)=g(x) \cdot \mathbf{1}_{\{x \geq e-1\}}$. Then $h(x)^{2}$ is concave on $[0, \infty)$. Hence

$$
\mathbb{E} g\left(Z_{1}\right)^{2}=\mathbb{E} h\left(Z_{1}\right)^{2}=\mathbb{E} h(|Z|)^{2} \leq h(\mathbb{E}|Z|)^{2} \leq h(\sigma)^{2} \leq g(\sigma)^{2}
$$

Next we upper bound the second term. The first case is $\sigma \leq e-1$. Since $\mathbb{E} Z^{4} \leq 3 \sigma^{4}$, it holds that $\operatorname{Pr}\left\{Z_{2} \geq t \sigma\right\} \leq$ $\operatorname{Pr}\{|Z| \geq t \sigma\} \leq 3 / t^{4}$. Then

$$
\begin{aligned}
\mathbb{E} g\left(Z_{2}\right)^{2} & \leq \mathbb{E} g(e-1) g\left(Z_{2}\right) \\
& =\mathbb{E} g\left(Z_{2}\right) \\
& =\int_{0}^{e-1} g(x) \operatorname{Pr}\left\{Z_{2} \geq x\right\} d x \\
& =\sigma \int_{0}^{(e-1) / \sigma} g(t \sigma) \operatorname{Pr}\left\{Z_{2} \geq t \sigma\right\} d t \\
& =\sigma^{2} \int_{0}^{(e-1) / \sigma} g(t) \operatorname{Pr}\left\{Z_{2} \geq t \sigma\right\} d t \quad(\text { by Proposition 3) } \\
& \leq \sigma^{2}\left(\int_{0}^{1} g(t) d t+3 \int_{1}^{(e-1) / \sigma} \frac{g(t)}{t^{4}} d t\right) \\
& \leq C_{1} \sigma^{2} \\
& \leq C_{1}(e-1)^{2} g(\sigma)^{2}
\end{aligned}
$$

where $C_{1}>0$ is an absolute constant and the last inequality follows from the fact that $g(x) \geq x /(e-1)$ on $[0, e-1]$. The second case is $\sigma>e-1$. In this case,

$$
\mathbb{E} g\left(Z_{2}\right)^{2} \leq 1 \leq g(\sigma)^{2}
$$

Therefore, we conclude that

$$
\mathbb{E} g(|Z|)^{2} \leq 2\left(1+C_{1}(e-1)^{2}\right) g(\sigma)^{2}=C_{2} g\left(\sqrt{\sum_{i} a_{i}^{2}}\right)^{2} \leq C_{2} \sum_{i} g\left(\left|a_{i}\right|\right)^{2}
$$

where the last inequality follows from Proposition 4.

A.4. Proof of Lemma 6

Proof. We first prove the upper bound.

$$
\begin{aligned}
\|f(y+z)\|_{2}^{2} & =\sum_{i} f\left(y_{i}+z_{i}\right)^{2} \\
& \leq \sum_{i}\left[f\left(y_{i}\right)+f\left(z_{i}\right)\right]^{2} \quad(\text { Proposition 3) } \\
& =\sum_{i} f\left(y_{i}\right)^{2}+\sum_{i} f\left(z_{i}\right)^{2}+\sum_{i} 2 f\left(y_{i}\right) f\left(z_{i}\right) \\
& \leq \sum_{i} f\left(y_{i}\right)^{2}+\xi^{2} \sum_{i} f\left(y_{i}\right)^{2}+2 \sqrt{\sum_{i} f\left(y_{i}\right)^{2}} \sqrt{\sum_{i} f\left(z_{i}\right)^{2}} \quad \text { (Cauchy-Schwarz) } \\
& \leq\left(\xi^{2}+2 \xi+1\right)\|f(y)\|_{2}^{2} \\
& \leq(1+3 \xi)\|f(y)\|_{2}^{2} \quad(\text { since } \xi<1)
\end{aligned}
$$

Next we prove the lower bound. Let $I=\left\{i: y_{i} z_{i} \leq 0\right\}, J_{1}=\left\{i \in I:\left|y_{i}\right| \leq\left|z_{i}\right|\right\}$ and $J_{2}=\left\{i \in I:\left|z_{i}\right|<\left|y_{i}\right| \leq\right.$ $\left.\zeta^{-1}\left|z_{i}\right|\right\}$ for some $\zeta<1$ to be determined. Then

$$
\begin{aligned}
\|f(y+z)\|_{2}^{2} & =\sum_{i \in J_{1}} f\left(y_{i}+z_{i}\right)^{2}+\sum_{i \in J_{2}} f\left(y_{i}+z_{i}\right)^{2}+\sum_{i \in I \backslash\left(J_{1} \cup J_{2}\right)} f\left(y_{i}+z_{i}\right)^{2}+\sum_{i \notin I} f\left(y_{i}+z_{i}\right)^{2} \\
& \geq \sum_{i \in I \backslash\left(J_{1} \cup J_{2}\right)} f\left(y_{i}+z_{i}\right)^{2}+\sum_{i \notin I} f\left(y_{i}\right)^{2} .
\end{aligned}
$$

When $i \in I \backslash\left(J_{1} \cup J_{2}\right)$, we have $\left|z_{i}\right| \leq \zeta\left|y_{i}\right|$. It then follows that

$$
\log \left(\left|y_{i}+z_{i}\right|+1\right) \geq \log \left((1-\zeta)\left|y_{i}\right|+1\right) \geq(1-\zeta) \log \left(\left|y_{i}\right|+1\right)
$$

where, for the last inequality, one can easily verify that $h_{\epsilon}(x)=\frac{\log (1+(1-\epsilon) x)}{\log (1+x)}$ is increasing on $[0, \infty)$ and $\lim _{x \rightarrow 0^{+}} h_{\epsilon}(x)=$ $1-\epsilon$. Hence

$$
\sum_{i} f\left(y_{i}+z_{i}\right)^{2} \geq(1-\zeta)^{2} \sum_{i \in I \backslash\left(J_{1} \cup J_{2}\right)} f\left(y_{i}\right)^{2}+\sum_{i \notin I} f\left(y_{i}\right)^{2} \geq(1-\zeta)^{2} \sum_{i \notin J_{1} \cup J_{2}} f\left(y_{i}\right)^{2}
$$

Now, note that

$$
\sum_{i \in J_{1}} f\left(y_{i}\right)^{2} \leq \sum_{i \in J_{1}} f\left(z_{i}\right)^{2} \leq\|f(z)\|_{2}^{2} \leq \xi^{2}\|f(y)\|_{2}^{2}
$$

and (using Proposition 3)

$$
\sum_{i \in J_{2}} f\left(y_{i}\right)^{2} \leq \zeta^{-2} \sum_{i \in J_{1}} f\left(z_{i}\right)^{2} \leq \zeta^{-2}\|f(z)\|_{2}^{2} \leq\left(\zeta^{-1} \xi\right)^{2}\|f(y)\|_{2}^{2}
$$

It follows that

$$
\begin{aligned}
\sum_{i} f\left(y_{i}+z_{i}\right)^{2} & \geq(1-\zeta)^{2}\left(\|f(y)\|_{2}^{2}-\xi^{2}\|f(y)\|_{2}^{2}-\left(\zeta^{-1} \xi\right)^{2}\|f(y)\|_{2}^{2}\right) \\
& =(1-\zeta)^{2}\left(1-\xi^{2}-\left(\zeta^{-1} \xi\right)^{2}\right)\|f(y)\|_{2}^{2}
\end{aligned}
$$

Choosing $\zeta=\left(\xi^{2} /\left(1-\xi^{2}\right)\right)^{1 / 3}$ maximizes the right-hand side, yielding

$$
\|f(y+z)\|_{2}^{2} \geq\left(1-3 \xi^{2 / 3}\right)\|f(y)\|_{2}^{2}
$$

B. Omitted Proofs from Section 3.1

B.1. Proof of Lemma 7

Proof. Note that $\left|I_{\alpha \phi}\right| \leq 1 /(\alpha \phi)$. Thus, there exists a collision with probability at most

$$
\frac{1}{w}\binom{1 /(\alpha \phi)}{2} \leq \frac{1}{2 w \alpha^{2} \phi^{2}} \leq 0.1
$$

provided that $w \geq 1 /\left(0.2 \cdot \alpha^{2} \phi^{2}\right)=5 /\left(\alpha^{2} \phi^{2}\right)$.

B.2. Proof of Lemma 8

Proof. Let $v=h(u)$. Since h is pairwise independent, $\operatorname{Pr}\{h(i)=v\}=1 / w$ for all $i \neq w$. Let

$$
Z_{v}=\sum_{i \notin\left(I_{\alpha \phi} \cup\{u\}\right)} 1_{\{h(i)=v\}}\left\|f\left(A_{i}\right)\right\|_{2}^{2}
$$

then

$$
\mathbb{E} Z_{v} \leq \sum_{i \notin I_{\alpha \phi}} \mathbb{E} \mathbf{1}_{\{h(i)=v\}}\left\|f\left(A_{i}\right)\right\|_{2}^{2} \leq \frac{M}{w}
$$

It follows from Lemma 5 that

$$
\begin{aligned}
\underset{\left\{\epsilon_{i}\right\}, h}{\mathbb{E}}\left\|f\left(\sum_{i \notin I_{\alpha \phi}} \mathbf{1}_{\{h(i)=v\}} \epsilon_{i} A_{i}\right)\right\|_{2}^{2} & \leq \underset{h}{\mathbb{E}} C \sum_{i \notin I_{\alpha \phi}}\left\|f\left(\mathbf{1}_{\{h(i)=v\}} A_{i}\right)\right\|_{2}^{2} \\
& =C \frac{\mathbb{E}}{h} Z_{v} \\
& \leq C \frac{M}{w}
\end{aligned}
$$

where we used the fact that $f(0)=0$ and $\mathbf{1}_{\{h(i)=v\}} \in\{0,1\}$ in the second step (the equality). The result follows from Markov's inequality.

B.3. Obtaining an Overestimate \widehat{M}

In this subsection we verify that $g(x)=\ln ^{2}(1+\eta x)$ is slow-jumping, slow-dropping, and predictable, where the three properties are defined in (Braverman et al., 2016).

To show that g is slow-jumping, we shall verify that for any $\alpha>0, g(y) \leq\left\lfloor\frac{y}{x}\right\rfloor^{2+\alpha} x^{\alpha} g(x)$ for all $x<y$, whenever y is sufficiently large. (i) When $x \geq y / 2$, it suffices to show that $g(y) \leq x^{\alpha} g(x)$. Since $g(x)$ is increasing, it reduces to showing $g(y) \leq(y / 2)^{\alpha} g(y / 2)$. This clearly holds for all large y because one can easily check that $\ln (1+y) \leq 2 \ln \left(1+\frac{y}{2}\right)$ when $y>0$. (ii) When $x<y / 2$, we shall show that $g(y) \leq\left(\frac{y}{x}-1\right)^{2+\alpha} x^{\alpha} g(x)$, i.e., $g(y) \leq\left(\frac{y-x}{x}\right)^{2}(y-x)^{\alpha} g(x)$. Since $x<y / 2$, we have $y-x \geq y / 2$ and thus it suffices to show that $g(y) \leq \frac{1}{4}\left(\frac{y}{x}\right)^{2}\left(\frac{y}{2}\right)^{\alpha} g(x)$, and for large y that $\frac{g(y)}{y^{2}} \leq \frac{g(x)}{x^{2}}$, which can be easily verified. This concludes the proof that g is slow-jumping.

To show that g is slow-dropping, we shall verify that for any $\alpha>0$ it holds that $g(y) \geq g(x) / x^{\alpha}$ for all $x<y$ whenever y is sufficiently large. This holds obviously because $g(x)$ is increasing.

To show that g is predictable, we shall verify that for any $\gamma \in(0,1)$ and subpolynomial $\epsilon(x)$, it holds that $g(y) \geq x^{-\gamma} g(x)$ for all sufficiently large x and all $y \in\left[1, x^{1-\gamma}\right]$ such that $g(x+y)>(1+\epsilon(x)) g(x)$. This holds automatically because $g(2 x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$ and thus for any given $\epsilon(x)$, when x is sufficiently large, it would not hold that $g(x+y)>$ $(1+\epsilon(x)) g(x)$ for $y \in[1, x]$.

C. Omitted Proofs from Section 3.2

C.1. Proof of Theorem 12

Proof. For notational convenience, let $G=f(A)$. Let S be a random sample of s rows chosen from a distribution that satisfies (1). We can write the i-th sample as $G_{i}+E_{i}$ for some error vector E_{i}. Consider the singular value decomposition of $G=\sum_{t} \sigma_{t} u_{t} v_{t}^{\top}$.
For each t, we define a random vector

$$
w_{t}=\frac{1}{s} \sum_{i \in S} \frac{\left(u_{t}\right)_{i}}{p_{i}}\left(G_{i}+E_{i}\right)
$$

Note that S in general consists of sampled columns of $f(A)$ with noise. The vectors w_{t} are clearly in the subspace generated by S. We first compute $\mathbb{E} w_{t}$. We can view w_{t} as the average of s i.i.d. random variables X_{1}, \ldots, X_{s}, where each X_{j} has the following distribution:

$$
X_{j}=\frac{\left(u_{t}\right)_{i}}{p_{i}}\left(G_{i}+E_{i}\right) \text { with probability } p_{i}, \quad i=1,2, \ldots n
$$

Taking expectations,

$$
\mathbb{E} X_{j}=\sum_{i=1}^{n} \frac{\left(u_{t}\right)_{i}}{p_{i}}\left(G_{i}+E_{i}\right) p_{i}=u_{t}^{\top}(G+E)=\sigma_{t} v_{t}^{\top}+u_{t}^{\top} E
$$

Hence

$$
\mathbb{E} w_{t}=\mathbb{E} X_{j}=\sigma_{t} v_{t}^{\top}+u_{t}^{\top} E
$$

and

$$
\left\|\mathbb{E} X_{j}\right\|_{2}^{2}=\sigma_{t}^{2}+2\left\langle\sigma_{t} v_{t}^{\top}, u_{t}^{\top} E\right\rangle+\left\|u_{t}^{\top} E\right\|_{2}^{2} \leq \sigma_{t}^{2}+2\left\langle\sigma_{t} v_{t}^{\top}, u_{t}^{\top} E\right\rangle+\|E\|_{2}^{2}
$$

We also calculate that

$$
\begin{aligned}
\mathbb{E}\left\|X_{j}\right\|_{2}^{2} & =\sum_{i} \frac{\left(u_{t}\right)_{i}^{2}}{p_{i}^{2}}\left\|G_{i}+E_{i}\right\|_{2}^{2} \cdot p_{i} \\
& \leq \sum_{i} \frac{\left(u_{t}\right)_{i}^{2}}{p_{i}}\left(\left\|G_{i}\right\|_{2}+\left\|E_{i}\right\|_{2}\right)^{2} \\
& \leq \sum_{i}\left(u_{t}\right)_{i}^{2} \frac{\|G\|_{F}^{2}}{c\left\|G_{i}\right\|_{2}^{2}}(1+\gamma)^{2}\left\|G_{i}\right\|_{2}^{2} \\
& =\frac{(1+\gamma)^{2}}{c}\|G\|_{F}^{2}
\end{aligned}
$$

where we used the assumption (1) in the third line and the fact that $\left\|u_{t}\right\|_{2}=1$ in the last line. It follows that

$$
\begin{aligned}
\mathbb{E}\left\|w_{t}\right\|_{2}^{2} & =\mathbb{E}\left\|\frac{1}{s} \sum_{j} X_{j}\right\|_{2}^{2}=\frac{1}{s} \sum_{j} \mathbb{E}\left\|X_{j}\right\|_{2}^{2}+\frac{1}{s^{2}} \sum_{j \neq \ell}\left\langle\mathbb{E} X_{j}, \mathbb{E} X_{\ell}\right\rangle \\
& \leq \frac{(1+\gamma)^{2}}{s c}\|G\|_{F}^{2}+\frac{s(s-1)}{s^{2}}\left(\sigma_{t}^{2}+2\left\langle\sigma_{t} v_{t}^{\top}, u_{t}^{\top} E\right\rangle+\|E\|_{2}^{2}\right)
\end{aligned}
$$

and thus

$$
\begin{align*}
\mathbb{E}\left\|w_{t}-\sigma_{t} v_{t}^{\top}\right\|_{2}^{2} & =\mathbb{E}\left\|w_{t}\right\|_{2}^{2}-2\left\langle\mathbb{E} w_{t}, \sigma_{t} v_{t}^{\top}\right\rangle+\sigma_{t}^{2} \\
& \leq \frac{(1+\gamma)^{2}}{s c}\|G\|_{F}^{2}+\sigma_{t}^{2}+2\left\langle\sigma_{t} v_{t}^{\top}, u_{t}^{\top} E\right\rangle+\|E\|_{2}^{2}-2 \sigma_{t}^{2}-2\left\langle u_{t}^{T} E, \sigma_{t} v_{t}^{\top}\right\rangle+\sigma_{t}^{2} \tag{2}\\
& =\frac{(1+\gamma)^{2}}{s c}\|G\|_{F}^{2}
\end{align*}
$$

If w_{t} were exactly equal to $\sigma_{t} v_{t}^{\top}$ (instead of just in expectation), we would have

$$
G \sum_{t=1}^{k} v_{t} v_{t}^{\top}=G \sum_{t=1}^{k} w_{t}^{\top} w_{t}
$$

which would be sufficient to prove the theorem. We wish to carry this out approximately. To this end, define $\hat{y}_{t}=\frac{1}{\sigma_{t}} w_{t}^{\top}$ for $t=1,2, \ldots, s$ and let $V_{1}=\operatorname{span}\left(\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{s}\right) \subseteq V$. Let $y_{1}, y_{2}, \ldots, y_{n}$ be an orthonormal basis of \mathbb{R}^{n} with $V_{1}=\operatorname{span}\left(y_{1}, y_{2}, \ldots, y_{l}\right)$, where $l=\operatorname{dim}\left(V_{1}\right)$. Let

$$
B=\sum_{t=1}^{l} G y_{t} y_{t}^{\top} \quad \text { and } \quad \hat{B}=\sum_{t=1}^{k} G v_{t} \hat{y}_{t}^{\top}
$$

The matrix B will be our candidate approximation to G in the span of S. We shall bound its error using \hat{B}. Note that for any $i \leq k$ and $j>l$, we have $\left(\hat{y}_{i}\right)^{\top} y_{j}=0$. Thus,

$$
\begin{equation*}
\|G-B\|_{F}^{2}=\sum_{i=1}^{n}\left\|(G-B) y^{(i)}\right\|_{2}^{2}=\sum_{i=l+1}^{n}\left\|G y^{(i)}\right\|_{2}^{2}=\sum_{i=l+1}^{n}\left\|(G-\hat{B}) y^{(i)}\right\|_{2}^{2} \leq\|G-\hat{B}\|_{F}^{2} \tag{3}
\end{equation*}
$$

Also,

$$
\|G-\hat{B}\|_{F}^{2}=\sum_{i=1}^{n}\left\|u_{i}^{\top}(G-\hat{B})\right\|_{2}^{2}=\sum_{i=1}^{k}\left\|\sigma_{i} v_{i}^{\top}-w_{i}\right\|_{2}^{2}+\sum_{i=k+1}^{n} \sigma_{i}^{2}
$$

Taking expectations and using (2), we obtain that

$$
\begin{equation*}
\mathbb{E}\|G-\hat{B}\|_{F}^{2} \leq \sum_{i=k+1}^{n} \sigma_{i}^{2}+\frac{k(1+\gamma)^{2}}{s c}\|G\|_{F}^{2} \tag{4}
\end{equation*}
$$

Note that \hat{B} is of rank at most k and D_{k} is the best rank- k approximation to G. We have

$$
\|G-\hat{B}\|_{F}^{2} \geq\left\|G-D_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2}
$$

Thus $\|G-\hat{B}\|_{F}^{2}-\left\|G-D_{k}\right\|_{F}^{2}$ is a non-negative random variable. It follows from (4) that

$$
\operatorname{Pr}\left\{\|G-\hat{B}\|_{F}^{2}-\left\|G-D_{k}\right\|_{F}^{2} \geq \frac{10 k(1+\gamma)^{2}}{s c}\|G\|_{F}^{2}\right\} \leq \frac{1}{10}
$$

The result follows from (3) and the fact that $\|E\|_{F}^{2} \leq \gamma\|G\|_{F}^{2}$.

C.2. Proof of Corollary 13

Proof. First, it follows from a Chernoff bound and a union bound that we can guarantee with probability at least 0.9 that all samples have the form $f\left(A_{i}\right)+E_{i}$ with small $\left\|E_{i}\right\|_{2}$. Then, it follows from another Chernoff bound that with probability at least 0.9 , it holds that there are $s / 2$ samples from A^{\prime}. We apply Theorem 12 to A^{\prime} and $s / 2$ and obtain that

$$
\left\|f\left(A^{\prime}\right)-f\left(A^{\prime}\right) \sum_{j} y_{j} y_{j}^{\top}\right\|_{F}^{2} \leq \min _{D: \operatorname{rank}(D) \leq k}\left\|f\left(A^{\prime}\right)-D\right\|_{F}^{2}+\frac{30 k}{s c}\left\|f\left(A^{\prime}\right)\right\|_{F}^{2}
$$

Suppose that $A^{\prime \prime}$ is the submatrix of A which consists of the rows of A that are not in A^{\prime}. Then $f(A)$ is the (interlacing) concatenation of $f\left(A^{\prime}\right)$ and $f\left(A^{\prime \prime}\right)$. Since $\left\|f\left(A^{\prime \prime}\right)\right\|_{F}^{2} \leq \epsilon\|f(A)\|_{F}^{2}$ and y_{1}, \ldots, y_{k} remains valid if we add more samples,

$$
\begin{aligned}
& \left\|f(A)-f(A) \sum_{j} y_{j} y_{j}^{\top}\right\|_{F}^{2} \\
= & \left\|f\left(A^{\prime}\right)-f\left(A^{\prime}\right) \sum_{j} y_{j} y_{j}^{\top}\right\|_{F}^{2}+\left\|f\left(A^{\prime \prime}\right)-f\left(A^{\prime \prime}\right) \sum_{j} y_{j} y_{j}^{\top}\right\|_{F}^{2} \\
\leq & \min _{D: \operatorname{rank}(D) \leq k}\left\|f\left(A^{\prime}\right)-D\right\|_{F}^{2}+\frac{30 k}{s c}\|f(A)\|_{F}^{2}+\left\|f\left(A^{\prime \prime}\right)\right\|_{F}^{2} \\
\leq & \min _{D: \operatorname{rank}(D) \leq k}\|f(A)-D\|_{F}^{2}+\left(\frac{30 k}{s c}+\epsilon\right)\|f(A)\|_{F}^{2}
\end{aligned}
$$

The overall failure probability combines that of Theorem 10, Theorem 12 and the events at the beginning of this proof.
For the second result, take $s=O(k / \epsilon)$ and rescale ϵ.

D. Proof of Theorem 16

By Theorem 10, for every $i \in[s]$, there exists $j(i)$ such that $h_{i}=\left(f(A)_{j(i)}, b_{j(i)}\right)+F_{j(i)}$, where $F_{i}=\frac{E_{i}}{\sqrt{s p_{i}}}$. We define a new matrix S such that in the i-th row of $S, S_{i, j(i)}=\frac{1}{\sqrt{s p_{j(i)}}}$ and the other entries are zero. By Theorem 15, we have that the row-sampling probability we use is a $(1 \pm O(\epsilon))$ approximation to the true sampling probability. Therefore, we define matrix \hat{S} such that in the i-th row of $\hat{S}, \hat{S}_{i, j(i)}=\frac{1}{\sqrt{s \hat{p}_{j(i)}}}$ and the other entries are zero, and matrix \hat{F} is such that $\hat{F}_{i}=\frac{E_{i}}{\sqrt{s \hat{p}_{i}}}$. Then, we find that $\hat{S}(f(A) \quad b)+\hat{F}=T$.

Proof. For notational convenience, we let $G=f(A)$ with singular value decomposition $G=U \Sigma V^{\top}$. We shall show that $\left\|I_{d}-(\hat{S} U)^{\top}(\hat{S} U)\right\|_{2}$ is small, for which we first show $\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2}$ is small.
Let $X_{i}=I_{d}-Y_{i}^{T} Y_{i}$ and $Y_{i}=\frac{U_{j(i)}}{\sqrt{P_{j(i)}}}$, where U_{t} is the t-th row of U, which means that the $j(i)$-th row of M is chosen in the i-th trial. Since

$$
\mathbb{E}\left(X_{i}\right)=I_{d}-\mathbb{E}\left(Y_{i}^{T} Y_{i}\right)=I_{d}-\sum_{t=1}^{n} p_{t} \frac{U_{t}^{T}}{\sqrt{p_{t}}} \frac{U_{t}}{\sqrt{p_{t}}}=I_{d}-\sum_{t=1}^{n} U_{t}^{T} U_{t}=0
$$

we can apply Lemma 1 to X_{1}, \ldots, X_{s}, for which we need to upper bound $\left\|X_{i}\right\|_{2}$ and $\left\|\mathbb{E}\left(X_{i}^{2}\right)\right\|_{2}$.
We first bound $\left\|X_{i}\right\|_{2}$.

$$
\left\|X_{i}\right\|_{2}=\left\|I_{d}-Y_{i}^{\top} Y_{i}\right\|_{2} \leq 1+\frac{\left\|U_{i}^{\top} U_{i}\right\|_{2}}{p_{i}} \leq 1+\frac{\left\|U_{i}\right\|_{2}^{2}}{c\left\|G_{i}\right\|_{2}^{2}}\|G\|_{F}^{2} \leq 1+\frac{\sigma_{1}^{2}+\cdots+\sigma_{d}^{2}}{c \sigma_{d}^{2}} \leq 1+\frac{d \kappa^{2}}{c}
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{d}$ are the singular values of G, and in the penultimate inequality we use the fact that $\left\|G_{i}\right\|_{2}=$ $\left\|U_{i} \Sigma V^{T}\right\|_{2}=\left\|U_{i} \Sigma\right\|_{2} \geq \sigma_{d}\left\|U_{i}\right\|_{2}$.
Next, we bound $\left\|\mathbb{E}\left(X_{i}^{2}\right)\right\|_{2}$. Observe that

$$
\begin{aligned}
\mathbb{E}\left(X_{i}^{2}+I_{d}\right) & =I_{d}+\mathbb{E}\left(I_{d}-Y_{i}^{\top} Y_{i}\right)\left(I_{d}-Y_{i}^{\top} Y_{i}\right)=I_{d}+\mathbb{E}\left(I_{d}-2 Y_{i}^{\top} Y_{i}+Y_{i}^{\top} Y_{i} Y_{i}^{\top} Y_{i}\right) \\
& =2 I_{d}-\mathbb{E}\left(Y_{i}^{\top} Y_{i}\right)+\mathbb{E}\left(Y_{i}^{\top} Y_{i}\left\|Y_{i}\right\|_{2}^{2}\right)=\mathbb{E}\left(\frac{\left\|U_{j(i)}\right\|_{2}^{2}}{p_{j(i)}} Y_{i}^{\top} Y_{i}\right)
\end{aligned}
$$

and thus

$$
\left\|\mathbb{E}\left(X_{i}^{2}+I_{d}\right)\right\|_{2}=\left\|\mathbb{E}\left(\frac{\left\|U_{j(i)}\right\|_{2}^{2}}{p_{j(i)}} Y_{i}^{\top} Y_{i}\right)\right\|_{2} \leq\left\|\mathbb{E}\left(\frac{\left\|U_{i}\right\|_{2}^{2}}{c\left\|G_{i}\right\|_{2}^{2}}\|G\|_{F}^{2} Y_{i}^{\top} Y_{i}\right)\right\|_{2} \leq\left\|\mathbb{E}\left(\frac{d \kappa^{2}}{c} Y_{i}^{\top} Y_{i}\right)\right\|_{2}=\frac{d \kappa^{2}}{c}
$$

It follows immediately from the triangle inequality that

$$
\left\|\mathbb{E} X_{i}^{2}\right\|_{2} \leq\left\|\mathbb{E}\left(X_{i}^{2}+I_{d}\right)\right\|_{2}+\left\|I_{d}\right\|_{2} \leq \frac{d \kappa^{2}}{c}+1
$$

Invoking Lemma 1, for

$$
W=\frac{1}{s} \sum_{i=1}^{s} X_{i}=I_{d}-\frac{1}{s} \sum_{i=1}^{s} Y_{i}^{\top} Y_{i}=I_{d}-(S U)^{\top}(S U)
$$

and $\rho=\sigma^{2}=1+d \kappa^{2} / c$, we have that

$$
\operatorname{Pr}\left\{\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2}>\epsilon\right\} \leq 2 d \exp \left(-\frac{\epsilon^{2} s}{\sigma^{2}+\rho \epsilon / 3}\right) \leq 2 d \exp \left(-\frac{\epsilon^{2} s}{2 d \kappa^{2} / c}\right) \leq \delta
$$

by our choice of s. Equivalently, with probability at least $1-\delta$, it holds that $\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2} \leq \epsilon$, which implies that $\|S G x\|_{2}=(1 \pm \epsilon)\|G x\|_{2}$ for all $x \in \mathbb{R}^{d}$. We condition on this event in the rest of the proof.
Second, we show that the error between $\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2}$ and $\left\|I_{d}-(\hat{S} U)^{\top}(\hat{S} U)\right\|_{2}$ is small.

$$
\begin{aligned}
\left\|I_{d}-(\hat{S} U)^{\top}(\hat{S} U)\right\|_{2} & \leq\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2}+\left\|(\hat{S} U)^{\top}(\hat{S} U)-(S U)^{\top}(S U)\right\|_{2} \\
& \leq \epsilon+\left\|(\hat{S} U)^{\top}(\hat{S} U)-(S U)^{\top}(S U)\right\|_{2}
\end{aligned}
$$

Observe that $(\hat{S} U)^{\top}(\hat{S} U)=\sum_{i=1}^{s} \frac{U_{j(i)}^{\top} U_{j(i)}}{s \hat{p}_{j(i)}}=\sum_{i=1}^{s} \frac{U_{j(i)}^{\top} U_{j(i)}}{(1 \pm O(\epsilon)) s p_{j(i)}}=\frac{(S U)^{\top}(S U)}{1 \pm O(\epsilon)}$ and thus

$$
\left\|(\hat{S} U)^{\top}(\hat{S} U)-(S U)^{\top}(S U)\right\|_{2}=O(\epsilon)\left\|(S U)^{\top}(S U)\right\|_{2}
$$

We have proved that $\left\|I_{d}-(S U)^{\top}(S U)\right\|_{2} \leq \epsilon$, so we have $\left\|I_{d}-(\hat{S} U)^{\top}(\hat{S} U)\right\|_{2} \leq \epsilon+O(\epsilon)(1+\epsilon)=O(\epsilon)$. By rescaling ϵ^{\prime}, we can assume that $\left\|I_{d}-(\hat{S} U)^{\top}(\hat{S} U)\right\|_{2} \leq \epsilon$.
Now consider the subspace spanned by the columns of M together with b. For any vector $y=G x-b,\|\hat{S} y\|_{2}=$ $(1 \pm \epsilon)\|y\|_{2}$. Recall that we have defined $\hat{F}_{i}=\frac{E_{i}}{\sqrt{\overline{p_{i}}}}$, where \hat{F}_{i} and E_{i} are the corresponding i-th row of F and E. Let $\hat{F}^{(1)}$ be the first d columns of \hat{F} and $\hat{F}^{(2)}$ be the last column of \hat{F}. Hence, the original linear regression problem can be written as min $\left\|\left(\hat{S} G+\hat{F}^{(1)}\right) x-\left(\hat{S} b+\hat{F}^{(2)}\right)\right\|_{2}$.
Note that $\tilde{x}=\arg \min _{x}\left\|\left(\hat{S} G+\hat{F}^{(1)}\right) x-\left(\hat{S} b+\hat{F}^{(2)}\right)\right\|_{2}$ satisfies

$$
\begin{aligned}
\min _{\hat{x}}\left\|\left(\hat{S} G+\hat{F}^{(1)}\right) \tilde{x}-\left(\hat{S} b+\hat{F}^{(2)}\right)\right\|_{2} & \leq\left\|\left(\hat{S} G+\hat{F}^{(1)}\right) x^{*}-\left(\hat{S} b+\hat{F}^{(2)}\right)\right\|_{2} \\
& \leq\left\|\hat{S}\left(G x^{*}-b\right)\right\|_{2}+\left\|\hat{F}^{(1)} x^{*}-\hat{F}^{(2)}\right\|_{2} \\
& \leq(1+\epsilon)\left\|G x^{*}-b\right\|_{2}+\|\hat{F}\|_{2} \sqrt{\left\|x^{*}\right\|_{2}^{2}+1}
\end{aligned}
$$

where the third inequality holds because \hat{S} is a subspace embedding for the column space of G together with b and $x^{*}=\arg \min _{x \in \mathbb{R}^{d}}\|G x-b\|_{2}$.
Now, consider the upper bound on $\|\hat{F}\|_{2}$. Since

$$
\left\|\hat{F}_{i}\right\|_{2}^{2}=\frac{\left\|E_{i}\right\|_{2}^{2}}{s \hat{p}_{i}} \leq \gamma^{2} \frac{\left\|G_{i}\right\|_{2}^{2}+\left|b_{i}\right|^{2}}{s c\left(\left\|G_{i}\right\|_{2}^{2}+\left|b_{i}\right|^{2}\right)}\left(\|G\|_{F}^{2}+\|b\|_{2}^{2}\right) \leq \frac{\gamma^{2}}{s c}\left(\|G\|_{F}^{2}+\|b\|_{2}^{2}\right)
$$

and

$$
\left\|x^{*}\right\|_{2}=\left\|G^{\dagger} b\right\|_{2} \leq \frac{\|b\|_{2}}{\sigma_{\min }(G)},
$$

we have that

$$
\begin{aligned}
\min _{\tilde{x}}\left\|\left(\hat{S} G+\hat{F}^{(1)}\right) \tilde{x}-\left(\hat{S} b+\hat{F}^{(2)}\right)\right\|_{2} & \leq(1+\epsilon)\left\|G x^{*}-b\right\|_{2}+\|\hat{F}\|_{2} \sqrt{\left\|x^{*}\right\|_{2}^{2}+1} \\
& \leq(1+\epsilon)\left\|G x^{*}-b\right\|_{2}+\frac{\gamma}{\sqrt{c}} \sqrt{\|G\|_{F}^{2}+\|b\|_{2}^{2}} \cdot \sqrt{\frac{\|b\|_{2}^{2}}{\sigma_{\min }^{2}(G)}+1} \\
& \leq(1+\epsilon)\left\|G x^{*}-b\right\|_{2}+\frac{\gamma}{\sqrt{c}}\left(\sqrt{\|G\|_{F}^{2}+\|b\|_{2}^{2}}+\sqrt{d+\frac{\|b\|_{2}^{2}}{\|G\|_{2}^{2}} \kappa\|b\|_{2}}\right) .
\end{aligned}
$$

By our assumption, $c=1-O(\epsilon)$ and $\gamma=O(\epsilon)$. Rescaling ϵ gives the claimed bound, completing the proof of Theorem 16.

