
Single Pass Entrywise-Transformed Low Rank Approximation

A. Omitted Proofs of Useful Inequalities
A.1. Proof of Proposition 2

Proof. Let h(x) = (1 + 2x) ln(1 + x)− x. Since h(0) = 0, it suffices to show that h′(x) > 0. We calculate that

h′(x) =
x

1 + x
+ 2 ln(1 + x).

Since h′(0) = 0, it suffices to show that h′′(x) > 0. This can be readily verified by calculating that

h′′(x) =
3 + 2x

(1 + x)2
> 0.

A.2. Proof of Proposition 4

Proof. Let f(x, y) = ln2(1 + x) + ln2(1 + y)− ln2(1 +
√
x2 + y2). It suffices to show that f(x, y) ≥ 0. The inequality

is clearly true when x = 0 or y = 0. Note that

∂f

∂x
= 2

(
log(1 + x)

1 + x
− x ln(1 +

√
x2 + y2)

x2 + y2 +
√
x2 + y2

)
∂f

∂y
= 2

(
log(1 + y)

1 + y
− y ln(1 +

√
x2 + y2)

x2 + y2 +
√
x2 + y2

)

Assuming x, y > 0, ∂f/∂x = ∂f/∂y = 0 implies that

log(1 + x)

x(1 + x)
=

log(1 + x)

y(1 + y)
.

It is easy to verify that log(1 + x))/(x(1 + x)) is decreasing w.r.t. x (checking the derivative and using Proposition 4), so
we must have x = y. Now, let

h(x) =
∂f

∂x
(x, x) =

2 ln(1 + x)

1 + x
−
√

2 ln(1 +
√

2x)

1 +
√

2x
.

We shall show that h(x) > 0 for all x > 0. This will imply that f(x, y) has no local minimum or maximum when x, y > 0
and so it is easy to see that f(x, y) attains the minimum at its boundary x = 0 or y = 0, yielding that f(x, y) ≥ 0 for all
x, y ≥ 0.

To see that h(x) > 0, let

g(a) =
ln(1 + ax)

a(1 + ax)
.

We calculate

g′(a) =
ax− (1 + 2ax) ln(1 + ax)

a2(1 + ax)2
.

It follows from Proposition 2 that g′(a) < 0. Hence g(a) is decreasing w.r.t. a and g(
√

2) < g(1), which is exactly
1√
2
h(x) > 0.

A.3. Proof of Lemma 5

Proof. It is clear that the base of the logarithm does not matter and we assume that the base is e. Let Z =
∑
i εiai and

σ2 =
∑
a2i . Then EZ2 = σ2 and E |Z| ≤ (E |Z|2)1/2 = σ. Let g(x) = ln(1 + x) and

Z1 =

{
|Z|, |Z| ≥ e− 1;

0, otherwise,
Z2 =

{
0, |Z| ≥ e− 1;

|Z|, otherwise.
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Then |Z| = Z1 + Z2 and

E g(|Z|)2 = E(g(Z1 + Z2))2 ≤ E(g(Z1) + g(Z2))2 ≤ E 2(g(Z1)2 + g(Z2)2),

where the first inequality follows from Proposition 3. For the first term, we define h(x) = g(x) · 1{x≥e−1}. Then h(x)2 is
concave on [0,∞). Hence

E g(Z1)2 = Eh(Z1)2 = Eh(|Z|)2 ≤ h(E |Z|)2 ≤ h(σ)2 ≤ g(σ)2.

Next we upper bound the second term. The first case is σ ≤ e − 1. Since EZ4 ≤ 3σ4, it holds that Pr{Z2 ≥ tσ} ≤
Pr{|Z| ≥ tσ} ≤ 3/t4. Then

E g(Z2)2 ≤ E g(e− 1)g(Z2)

= E g(Z2)

=

∫ e−1

0

g(x) Pr{Z2 ≥ x}dx

= σ

∫ (e−1)/σ

0

g(tσ) Pr{Z2 ≥ tσ}dt

= σ2

∫ (e−1)/σ

0

g(t) Pr{Z2 ≥ tσ}dt (by Proposition 3)

≤ σ2

(∫ 1

0

g(t)dt+ 3

∫ (e−1)/σ

1

g(t)

t4
dt

)
≤ C1σ

2

≤ C1(e− 1)2g(σ)2,

where C1 > 0 is an absolute constant and the last inequality follows from the fact that g(x) ≥ x/(e− 1) on [0, e− 1]. The
second case is σ > e− 1. In this case,

E g(Z2)2 ≤ 1 ≤ g(σ)2.

Therefore, we conclude that

E g(|Z|)2 ≤ 2(1 + C1(e− 1)2)g(σ)2 = C2g

√∑
i

a2i

2

≤ C2

∑
i

g(|ai|)2,

where the last inequality follows from Proposition 4.

A.4. Proof of Lemma 6

Proof. We first prove the upper bound.

‖f(y + z)‖22 =
∑
i

f(yi + zi)
2

≤
∑
i

[f(yi) + f(zi)]
2

(Proposition 3)

=
∑
i

f(yi)
2 +

∑
i

f(zi)
2 +

∑
i

2f(yi)f(zi)

≤
∑
i

f(yi)
2 + ξ2

∑
i

f(yi)
2 + 2

√∑
i

f(yi)2
√∑

i

f(zi)2 (Cauchy-Schwarz)

≤
(
ξ2 + 2ξ + 1

)
‖f(y)‖22

≤ (1 + 3ξ) ‖f(y)‖22 . (since ξ < 1)
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Next we prove the lower bound. Let I = {i : yizi ≤ 0}, J1 = {i ∈ I : |yi| ≤ |zi|} and J2 = {i ∈ I : |zi| < |yi| ≤
ζ−1|zi|} for some ζ < 1 to be determined. Then

‖f(y + z)‖22 =
∑
i∈J1

f(yi + zi)
2 +

∑
i∈J2

f(yi + zi)
2 +

∑
i∈I\(J1∪J2)

f(yi + zi)
2 +

∑
i 6∈I

f(yi + zi)
2

≥
∑

i∈I\(J1∪J2)

f(yi + zi)
2 +

∑
i 6∈I

f(yi)
2.

When i ∈ I \ (J1 ∪ J2), we have |zi| ≤ ζ|yi|. It then follows that

log(|yi + zi|+ 1) ≥ log((1− ζ)|yi|+ 1) ≥ (1− ζ) log(|yi|+ 1),

where, for the last inequality, one can easily verify that hε(x) = log(1+(1−ε)x)
log(1+x) is increasing on [0,∞) and limx→0+ hε(x) =

1− ε. Hence ∑
i

f(yi + zi)
2 ≥ (1− ζ)2

∑
i∈I\(J1∪J2)

f(yi)
2 +

∑
i 6∈I

f(yi)
2 ≥ (1− ζ)2

∑
i6∈J1∪J2

f(yi)
2.

Now, note that ∑
i∈J1

f(yi)
2 ≤

∑
i∈J1

f(zi)
2 ≤ ‖f(z)‖22 ≤ ξ2 ‖f(y)‖22

and (using Proposition 3) ∑
i∈J2

f(yi)
2 ≤ ζ−2

∑
i∈J1

f(zi)
2 ≤ ζ−2‖f(z)‖22 ≤ (ζ−1ξ)2 ‖f(y)‖22 .

It follows that ∑
i

f(yi + zi)
2 ≥ (1− ζ)2

(
‖f(y)‖22 − ξ

2 ‖f(y)‖22 − (ζ−1ξ)2 ‖f(y)‖22
)

= (1− ζ)2(1− ξ2 − (ζ−1ξ)2) ‖f(y)‖22 .

Choosing ζ = (ξ2/(1− ξ2))1/3 maximizes the right-hand side, yielding

‖f(y + z)‖22 ≥ (1− 3ξ2/3) ‖f(y)‖22 .

B. Omitted Proofs from Section 3.1
B.1. Proof of Lemma 7

Proof. Note that |Iαφ| ≤ 1/(αφ). Thus, there exists a collision with probability at most

1

w

(
1/(αφ)

2

)
≤ 1

2wα2φ2
≤ 0.1,

provided that w ≥ 1/(0.2 · α2φ2) = 5/(α2φ2).

B.2. Proof of Lemma 8

Proof. Let v = h(u). Since h is pairwise independent, Pr{h(i) = v} = 1/w for all i 6= w. Let

Zv =
∑

i6∈(Iαφ∪{u})

1{h(i)=v}‖f(Ai)‖22.

then
EZv ≤

∑
i 6∈Iαφ

E1{h(i)=v} ‖f(Ai)‖22 ≤
M

w
.
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It follows from Lemma 5 that

E
{εi},h

∥∥∥∥∥∥f
∑
i 6∈Iαφ

1{h(i)=v}εiAi

∥∥∥∥∥∥
2

2

≤ E
h
C
∑
i 6∈Iαφ

∥∥f (1{h(i)=v}Ai)∥∥22
= C E

h
Zv

≤ CM
w
,

where we used the fact that f(0) = 0 and 1{h(i)=v} ∈ {0, 1} in the second step (the equality). The result follows from
Markov’s inequality.

B.3. Obtaining an Overestimate M̂

In this subsection we verify that g(x) = ln2(1 + ηx) is slow-jumping, slow-dropping, and predictable, where the three
properties are defined in (Braverman et al., 2016).

To show that g is slow-jumping, we shall verify that for any α > 0, g(y) ≤ b yxc
2+αxαg(x) for all x < y, whenever y

is sufficiently large. (i) When x ≥ y/2, it suffices to show that g(y) ≤ xαg(x). Since g(x) is increasing, it reduces to
showing g(y) ≤ (y/2)αg(y/2). This clearly holds for all large y because one can easily check that ln(1+y) ≤ 2 ln(1+ y

2 )

when y > 0. (ii) When x < y/2, we shall show that g(y) ≤ ( yx − 1)2+αxαg(x), i.e., g(y) ≤ (y−xx )2(y − x)αg(x). Since
x < y/2, we have y − x ≥ y/2 and thus it suffices to show that g(y) ≤ 1

4 ( yx )2(y2 )αg(x), and for large y that g(y)y2 ≤
g(x)
x2 ,

which can be easily verified. This concludes the proof that g is slow-jumping.

To show that g is slow-dropping, we shall verify that for any α > 0 it holds that g(y) ≥ g(x)/xα for all x < y whenever y
is sufficiently large. This holds obviously because g(x) is increasing.

To show that g is predictable, we shall verify that for any γ ∈ (0, 1) and subpolynomial ε(x), it holds that g(y) ≥ x−γg(x)
for all sufficiently large x and all y ∈ [1, x1−γ ] such that g(x + y) > (1 + ε(x))g(x). This holds automatically because
g(2x)/g(x) → 1 as x → ∞ and thus for any given ε(x),when x is sufficiently large, it would not hold that g(x + y) >
(1 + ε(x))g(x) for y ∈ [1, x].

C. Omitted Proofs from Section 3.2
C.1. Proof of Theorem 12

Proof. For notational convenience, let G = f(A). Let S be a random sample of s rows chosen from a distribution that
satisfies (1). We can write the i-th sample as Gi +Ei for some error vector Ei. Consider the singular value decomposition
of G =

∑
t σtutv

>
t .

For each t, we define a random vector

wt =
1

s

∑
i∈S

(ut)i
pi

(Gi + Ei).

Note that S in general consists of sampled columns of f(A) with noise. The vectorswt are clearly in the subspace generated
by S. We first compute Ewt. We can view wt as the average of s i.i.d. random variables X1, . . . , Xs, where each Xj has
the following distribution:

Xj =
(ut)i
pi

(Gi + Ei) with probability pi, i = 1, 2, . . . n.

Taking expectations,

EXj =

n∑
i=1

(ut)i
pi

(Gi + Ei)pi = u>t (G+ E) = σtv
>
t + u>t E

Hence
Ewt = EXj = σtv

>
t + u>t E



Single Pass Entrywise-Transformed Low Rank Approximation

and
‖EXj‖22 = σ2

t + 2〈σtv>t , u>t E〉+
∥∥u>t E∥∥22 ≤ σ2

t + 2〈σtv>t , u>t E〉+ ‖E‖22 .

We also calculate that

E ‖Xj‖22 =
∑
i

(ut)
2
i

p2i
‖Gi + Ei‖22 · pi

≤
∑
i

(ut)
2
i

pi
(‖Gi‖2 + ‖Ei‖2)2

≤
∑
i

(ut)
2
i

‖G‖2F
c ‖Gi‖22

(1 + γ)2 ‖Gi‖22

=
(1 + γ)2

c
‖G‖2F ,

where we used the assumption (1) in the third line and the fact that ‖ut‖2 = 1 in the last line. It follows that

E ‖wt‖22 = E

∥∥∥∥∥∥1

s

∑
j

Xj

∥∥∥∥∥∥
2

2

=
1

s

∑
j

E ‖Xj‖22 +
1

s2

∑
j 6=`

〈EXj ,EX`〉

≤ (1 + γ)2

sc
‖G‖2F +

s(s− 1)

s2

(
σ2
t + 2〈σtv>t , u>t E〉+ ‖E‖22

)
,

and thus

E
∥∥wt − σtv>t ∥∥22 = E ‖wt‖22 − 2〈Ewt, σtv>t 〉+ σ2

t

≤ (1 + γ)2

sc
‖G‖2F + σ2

t + 2〈σtv>t , u>t E〉+ ‖E‖22 − 2σ2
t − 2〈uTt E, σtv>t 〉+ σ2

t

=
(1 + γ)2

sc
‖G‖2F .

(2)

If wt were exactly equal to σtv>t (instead of just in expectation), we would have

G

k∑
t=1

vtv
>
t = G

k∑
t=1

w>t wt,

which would be sufficient to prove the theorem. We wish to carry this out approximately. To this end, define ŷt = 1
σt
w>t

for t = 1, 2, . . . , s and let V1 = span(ŷ1, ŷ2, . . . , ŷs) ⊆ V . Let y1, y2, . . . , yn be an orthonormal basis of Rn with
V1 = span(y1, y2, . . . , yl), where l = dim(V1). Let

B =

l∑
t=1

Gyty
>
t and B̂ =

k∑
t=1

Gvtŷ
>
t .

The matrix B will be our candidate approximation to G in the span of S. We shall bound its error using B̂. Note that for
any i ≤ k and j > l, we have (ŷi)

>yj = 0. Thus,

‖G−B‖2F =

n∑
i=1

∥∥∥(G−B)y(i)
∥∥∥2
2

=

n∑
i=l+1

∥∥∥Gy(i)∥∥∥2
2

=

n∑
i=l+1

∥∥∥(G− B̂)y(i)
∥∥∥2
2
≤
∥∥∥G− B̂∥∥∥2

F
. (3)

Also,

‖G− B̂‖2F =

n∑
i=1

∥∥∥u>i (G− B̂)
∥∥∥2
2

=

k∑
i=1

∥∥σiv>i − wi∥∥22 +

n∑
i=k+1

σ2
i
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Taking expectations and using (2), we obtain that

E
∥∥∥G− B̂∥∥∥2

F
≤

n∑
i=k+1

σ2
i +

k(1 + γ)2

sc
‖G‖2F . (4)

Note that B̂ is of rank at most k and Dk is the best rank-k approximation to G. We have∥∥∥G− B̂∥∥∥2
F
≥ ‖G−Dk‖2F =

n∑
i=k+1

σ2
i

Thus ‖G− B̂‖2F − ‖G−Dk‖2F is a non-negative random variable. It follows from (4) that

Pr

{∥∥∥G− B̂∥∥∥2
F
− ‖G−Dk‖2F ≥

10k(1 + γ)2

sc
‖G‖2F

}
≤ 1

10
.

The result follows from (3) and the fact that ‖E‖2F ≤ γ ‖G‖
2
F .

C.2. Proof of Corollary 13

Proof. First, it follows from a Chernoff bound and a union bound that we can guarantee with probability at least 0.9 that all
samples have the form f(Ai) + Ei with small ‖Ei‖2. Then, it follows from another Chernoff bound that with probability
at least 0.9, it holds that there are s/2 samples from A′. We apply Theorem 12 to A′ and s/2 and obtain that∥∥∥∥∥∥f(A′)− f(A′)

∑
j

yjy
>
j

∥∥∥∥∥∥
2

F

≤ min
D:rank(D)≤k

‖f(A′)−D‖2F +
30k

sc
‖f(A′)‖2F .

Suppose that A′′ is the submatrix of A which consists of the rows of A that are not in A′. Then f(A) is the (interlacing)
concatenation of f(A′) and f(A′′). Since ‖f(A′′)‖2F ≤ ε‖f(A)‖2F and y1, . . . , yk remains valid if we add more samples,∥∥∥∥∥∥f(A)− f(A)

∑
j

yjy
>
j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥f(A′)− f(A′)
∑
j

yjy
>
j

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥f(A′′)− f(A′′)
∑
j

yjy
>
j

∥∥∥∥∥∥
2

F

≤ min
D:rank(D)≤k

‖f(A′)−D‖2F +
30k

sc
‖f(A)‖2F + ‖f(A′′)‖2F

≤ min
D:rank(D)≤k

‖f(A)−D‖2F +

(
30k

sc
+ ε

)
‖f(A)‖2F .

The overall failure probability combines that of Theorem 10, Theorem 12 and the events at the beginning of this proof.

For the second result, take s = O(k/ε) and rescale ε.

D. Proof of Theorem 16
By Theorem 10, for every i ∈ [s], there exists j(i) such that hi = (f(A)j(i), bj(i)) + Fj(i), where Fi = Ei√

spi
. We define

a new matrix S such that in the i-th row of S, Si,j(i) = 1√
spj(i)

and the other entries are zero. By Theorem 15, we have
that the row-sampling probability we use is a (1 ± O(ε)) approximation to the true sampling probability. Therefore, we
define matrix Ŝ such that in the i-th row of Ŝ, Ŝi,j(i) = 1√

sp̂j(i)
and the other entries are zero, and matrix F̂ is such that

F̂i = Ei√
sp̂i

. Then, we find that Ŝ
(
f(A) b

)
+ F̂ = T .
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Proof. For notational convenience, we let G = f(A) with singular value decomposition G = UΣV >. We shall show that∥∥∥Id − (ŜU)>(ŜU)
∥∥∥
2

is small, for which we first show
∥∥Id − (SU)>(SU)

∥∥
2

is small.

Let Xi = Id − Y Ti Yi and Yi =
Uj(i)√
pj(i)

, where Ut is the t-th row of U , which means that the j(i)-th row of M is chosen in
the i-th trial. Since

E(Xi) = Id − E(Y Ti Yi) = Id −
n∑
t=1

pt
UTt√
pt

Ut√
pt

= Id −
n∑
t=1

UTt Ut = 0,

we can apply Lemma 1 to X1, . . . , Xs, for which we need to upper bound ‖Xi‖2 and ‖E(X2
i )‖2.

We first bound ‖Xi‖2.

‖Xi‖2 =
∥∥Id − Y >i Yi∥∥2 ≤ 1 +

∥∥U>i Ui∥∥2
pi

≤ 1 +
‖Ui‖22
c ‖Gi‖22

‖G‖2F ≤ 1 +
σ2
1 + · · ·+ σ2

d

cσ2
d

≤ 1 +
dκ2

c
,

where σ1 ≥ · · · ≥ σd are the singular values of G, and in the penultimate inequality we use the fact that ‖Gi‖2 =∥∥UiΣV T∥∥2 = ‖UiΣ‖2 ≥ σd ‖Ui‖2.

Next, we bound
∥∥E(X2

i )
∥∥
2
. Observe that

E(X2
i + Id) = Id + E(Id − Y >i Yi)(Id − Y >i Yi) = Id + E(Id − 2Y >i Yi + Y >i YiY

>
i Yi)

= 2Id − E(Y >i Yi) + E(Y >i Yi ‖Yi‖
2
2) = E

(∥∥Uj(i)∥∥22
pj(i)

Y >i Yi

)
,

and thus

∥∥E(X2
i + Id)

∥∥
2

=

∥∥∥∥∥E
(∥∥Uj(i)∥∥22

pj(i)
Y >i Yi

)∥∥∥∥∥
2

≤

∥∥∥∥∥E
(
‖Ui‖22
c ‖Gi‖22

‖G‖2F Y
>
i Yi

)∥∥∥∥∥
2

≤
∥∥∥∥E(dκ2c Y >i Yi

)∥∥∥∥
2

=
dκ2

c
.

It follows immediately from the triangle inequality that∥∥EX2
i

∥∥
2
≤
∥∥E(X2

i + Id)
∥∥
2

+ ‖Id‖2 ≤
dκ2

c
+ 1.

Invoking Lemma 1, for

W =
1

s

s∑
i=1

Xi = Id −
1

s

s∑
i=1

Y >i Yi = Id − (SU)>(SU),

and ρ = σ2 = 1 + dκ2/c, we have that

Pr
{∥∥Id − (SU)>(SU)

∥∥
2
> ε
}
≤ 2d exp

(
− ε2s

σ2 + ρε/3

)
≤ 2d exp

(
− ε2s

2dκ2/c

)
≤ δ

by our choice of s. Equivalently, with probability at least 1− δ, it holds that
∥∥Id − (SU)>(SU)

∥∥
2
≤ ε, which implies that

‖SGx‖2 = (1± ε) ‖Gx‖2 for all x ∈ Rd. We condition on this event in the rest of the proof.

Second, we show that the error between
∥∥Id − (SU)>(SU)

∥∥
2

and
∥∥∥Id − (ŜU)>(ŜU)

∥∥∥
2

is small.∥∥∥Id − (ŜU)>(ŜU)
∥∥∥
2
≤
∥∥Id − (SU)>(SU)

∥∥
2

+
∥∥∥(ŜU)>(ŜU)− (SU)>(SU)

∥∥∥
2

≤ ε+
∥∥∥(ŜU)>(ŜU)− (SU)>(SU)

∥∥∥
2
.

Observe that (ŜU)>(ŜU) =
∑s
i=1

U>j(i)Uj(i)
sp̂j(i)

=
∑s
i=1

U>j(i)Uj(i)
(1±O(ε))spj(i)

= (SU)>(SU)
1±O(ε) and thus∥∥∥(ŜU)>(ŜU)− (SU)>(SU)

∥∥∥
2

= O(ε)
∥∥(SU)>(SU)

∥∥
2
.
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We have proved that
∥∥Id − (SU)>(SU)

∥∥
2
≤ ε, so we have

∥∥∥Id − (ŜU)>(ŜU)
∥∥∥
2
≤ ε+O(ε)(1+ε) = O(ε). By rescaling

ε′, we can assume that
∥∥∥Id − (ŜU)>(ŜU)

∥∥∥
2
≤ ε.

Now consider the subspace spanned by the columns of M together with b. For any vector y = Gx − b,
∥∥∥Ŝy∥∥∥

2
=

(1 ± ε) ‖y‖2. Recall that we have defined F̂i = Ei√
sp̂i

, where F̂i and Ei are the corresponding i-th row of F and E. Let

F̂ (1) be the first d columns of F̂ and F̂ (2) be the last column of F̂ . Hence, the original linear regression problem can be
written as min

∥∥∥(ŜG+ F̂ (1))x− (Ŝb+ F̂ (2))
∥∥∥
2
.

Note that x̃ = arg minx

∥∥∥(ŜG+ F̂ (1))x− (Ŝb+ F̂ (2))
∥∥∥
2

satisfies

min
x̃

∥∥∥(ŜG+ F̂ (1))x̃− (Ŝb+ F̂ (2))
∥∥∥
2
≤
∥∥∥(ŜG+ F̂ (1))x∗ − (Ŝb+ F̂ (2))

∥∥∥
2

≤
∥∥∥Ŝ(Gx∗ − b)

∥∥∥
2

+
∥∥∥F̂ (1)x∗ − F̂ (2)

∥∥∥
2

≤ (1 + ε) ‖Gx∗ − b‖2 +
∥∥∥F̂∥∥∥

2

√
‖x∗‖22 + 1,

where the third inequality holds because Ŝ is a subspace embedding for the column space of G together with b and
x∗ = arg minx∈Rd ‖Gx− b‖2.

Now, consider the upper bound on
∥∥∥F̂∥∥∥

2
. Since

∥∥∥F̂i∥∥∥2
2

=
‖Ei‖22
sp̂i

≤ γ2
‖Gi‖22 + |bi|2

sc(‖Gi‖22 + |bi|2)
(‖G‖2F + ‖b‖22) ≤ γ2

sc
(‖G‖2F + ‖b‖22)

and

‖x∗‖2 =
∥∥G†b∥∥

2
≤
‖b‖2

σmin(G)
,

we have that

min
x̃

∥∥∥(ŜG+ F̂ (1))x̃− (Ŝb+ F̂ (2))
∥∥∥
2
≤ (1 + ε) ‖Gx∗ − b‖2 +

∥∥∥F̂∥∥∥
2

√
‖x∗‖22 + 1

≤ (1 + ε) ‖Gx∗ − b‖2 +
γ√
c

√
‖G‖2F + ‖b‖22 ·

√
‖b‖22

σ2
min(G)

+ 1

≤ (1 + ε) ‖Gx∗ − b‖2 +
γ√
c

(√
‖G‖2F + ‖b‖22 +

√
d+

‖b‖22
‖G‖22

κ ‖b‖2

)
.

By our assumption, c = 1−O(ε) and γ = O(ε). Rescaling ε gives the claimed bound, completing the proof of Theorem 16.


