
Emphatic Algorithms for Deep Reinforcement Learning

Ray Jiang 1 Tom Zahavy 1 Zhongwen Xu 1 Adam White 1 2

Matteo Hessel 1 Charles Blundell 1 Hado van Hasselt 1

Abstract

Off-policy learning allows us to learn about pos-
sible policies of behavior from experience gen-
erated by a different behavior policy. Temporal
difference (TD) learning algorithms can become
unstable when combined with function approxi-
mation and off-policy sampling—this is known as
the “deadly triad”. Emphatic temporal difference
(ETD(λ)) algorithm ensures convergence in the
linear case by appropriately weighting the TD(λ)
updates. In this paper, we extend the use of em-
phatic methods to deep reinforcement learning
agents. We show that naively adapting ETD(λ) to
popular deep reinforcement learning algorithms,
which use forward view multi-step returns, results
in poor performance. We then derive new em-
phatic algorithms for use in the context of such
algorithms, and we demonstrate that they provide
noticeable benefits in small problems designed
to highlight the instability of TD methods. Fi-
nally, we observed improved performance when
applying these algorithms at scale on classic Atari
games from the Arcade Learning Environment.

Off-policy learning, whereby an agent learns from behavior
that differs from its current policy, affords an agent oppor-
tunities to accumulate rich knowledge (Degris & Modayil,
2012) by learning about the effect of different policies of
behaviors. This can also be extended to learn about different
goals, e.g., by learning general value functions (Sutton et al.,
2011) for cumulants that differ from the main task reward.
Unfortunately, it is well known that reinforcement learning
algorithms (Sutton & Barto, 2018) can become unstable
when combining function approximation, off-policy learn-
ing, and bootstrapping (Tsitsiklis & Van Roy, 1997)—for
this reason such combination is referred to as the deadly
triad (Sutton & Barto, 2018; van Hasselt et al., 2018).

1DeepMind, London, UK. 2Amii, Department of Computing
Science, University of Alberta. Correspondence to: Ray Jiang
<rayjiang@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Many reinforcement learning (RL) agents learn off-policy
to some extent, to learn about the greedy policy while ex-
ploring (Watkins, 1989), to make predictions about policies
simultaneously (Sutton et al., 2011; Zahavy et al., 2020;
Jaderberg et al., 2017), to improve sample complexity via
experience replay (Lin, 1992; Mnih et al., 2015), or even just
to correct for the latency introduced by distributed compu-
tation (Espeholt et al., 2018). Since these algorithms make
use of bootstrapping and function approximation, they may
suffer from deadly triad symptoms of “soft divergence” and
slow convergence (van Hasselt et al., 2018).

The ETD(λ) algorithm (Sutton et al., 2016) ensures con-
vergence with linear function approximation (Yu, 2015) by
weighting the updates of TD(λ) (in the backward view, with
eligibility traces). However, combining eligibility traces and
deep neural networks can be challenging (Sutton, 1987)1,
and thus widely used deep RL systems instead typically use
n-step forward view methods. Overall, none of the exist-
ing solutions to the deadly triad (Sutton et al., 2009; 2016)
have become standard practice in deep RL. In this paper, we
extend the emphatic method to multi-step deep RL learn-
ing targets, including an off-policy value-learning method
known as ‘V-trace’ (Espeholt et al., 2018) that is often used
in actor-critic systems.

The structure of this paper is the following. Sec. 1 ex-
plains the background on forward view learning targets and
ETD(λ). Next we adapt ETD(λ) to the forward view in
Sec. 2.1, and derive a new multi-step emphatic trace for
n-step TD in Sec. 2.2. We discuss further algorithmic con-
siderations in Sec. 2.3, including extensions for variance
reduction, for the V-trace value learning target and for the
actor critic learning algorithms. Empirically, we provide an
in-depth comparison of their qualitative properties on small
diagnostic MDPs in Sec. 3. Finally, we demonstrate that
combining emphatic trace with deep neural networks can
improve performance on classic Atari video games in Sec. 4,
reporting the highest score to date for an RL agent without
experience replay in the 200M frames data regime: 497%
median human normalized score across 57 games, improved
from the baseline performance of 403%.

1See van Hasselt et al. (2021) for recent developments.

Emphatic Algorithms for Deep Reinforcement Learning

1. Background
A Markov decision process (MDP; Bellman, 1957) consists
of finite sets of states S and actions A, a reward function
r : S × A 7→ R, a transition distribution P (s′|s, a) s, s′ ∈
S, a ∈ A, and a discount factor γ. A policy is a distribution
over actions conditioned on the state: π(a|s). The goal of
RL is to find a policy π that maximizes the expected dis-
counted return vπ(s)

.
= Eπ

[∑
t≥0(

∏t
i=1 γt)Rt+1

]
where,

at time t, γt denotes the scalar discount, St ∈ S the state
variable, At ∈ A the action taken and Rt+1

.
= r(St, At)

the reward.2

1.1. TD(λ)

Policy evaluation is the problem of learning to predict the
value Vθ(s) ≈ vπ(s), for all states s, under an arbitrary
(fixed) policy π and parametrized by θ. When using func-
tion approximation, each state St is associated with a feature
vector φt, and the agent’s value estimates Vθ(s) are a para-
metric function of these features. TD(λ) (Sutton, 1988) is a
widely used algorithm for policy evaluation where, on each
step t, the parameters of Vθ are updated according to

θt+1
.
= θt + αtδtet ,

where et = γtλet−1 +∇θVθ(St) is an eligibility trace of
value gradients, δt = Rt+1+γvθ(St+1)−Vθ(St) is the tem-
poral difference (TD) error, and αt ∈ [0, 1] is the step-size.
With linear function approximation Vθ(t) = θ>φt, the gra-
dient ∇θVθ(St) is the state features φt. TD(λ) uses boot-
strapping, where the agent’s own value estimates Vθ(St)
are used to update the values online, on each step, without
waiting for the episodes to fully resolve. TD algorithms
can also be used to learn policies (i.e. for control), by us-
ing similar updates to learn action values, or by combining
value learning with policy gradients in actor-critic systems
(Sutton et al., 2000).

Temporal difference algorithms can be extended to policy
evaluation (or control) in off-policy settings, where the agent
learns predictions about a target policy π, from trajectories
(Si, Ai, Ri+1)t+ni=t sampled under a different behavior pol-
icy µ. However, when combining function approximation
with bootstrapping and off-policy learning, the parameters
may diverge (Baird, 1995; Tsitsiklis & Van Roy, 1997), a
phenomenon referred to as the deadly triad.

1.2. Emphatic TD(λ)

Emphatic TD(λ) (Sutton et al., 2016) resolves the instabil-
ity due to the deadly triad by adjusting the magnitude of
updates on each time-step. The idea is to re-weight the dis-
tribution of TD(λ) updates to account for the likelihood of

2We use the notation “ .=” to indicate an equality by definition
rather than by derivation.

the trajectory leading to the updated state, under the target
policy. Each update is emphasized or de-emphasized by a
scalar follow-on trace3:

Ft
.
= γ(St)ρt−1Ft−1 + 1. (1)

The Emphatic TD(λ) algorithm (Sutton et al., 2016),
ETD(λ) for short, incorporates Ft into the conventional
eligibility trace update of TD(λ) by emphasizing states

et
.
= ρt

(
γ(St)λ(St)et−1 +Mtφt

)
.

where ρt
.
= π(At|St)

µ(At|St) is the importance sampling (IS) ratio
for the target policy π and the behavior policy µ. The
emphatic trace Mt encodes how much the current state
is bootstrapped by other states based on the follow-on trace:

Mt = λ(St) + (1− λ(St))Ft . (2)

Prior work on off-policy TD(λ) corrected the state-
distribution using the stationary distribution induced by the
target policy (Precup et al., 2001), unlike ETD(λ) which
uses the distribution of states produced by starting the target
policy in the stationary distribution of the behavior policy.

Extensions to ETD(λ) include the ETD(λ, β) algorithm,
which uses an additional hyper-parameter β in place of the
discount γ to control variance by setting β < γ (Hallak
et al., 2016), and the ACE algorithm that applies emphatic
weightings to policy gradient updates (Imani et al., 2018).

ETD(λ) is convergent with linear function approximation
(Yu, 2015), but its performance when combined with non-
linear function approximation has not yet been extensively
evaluated.

1.3. n-step TD

In this paper, we generalize the emphatic approach to widely
used deep RL systems, and in particular actor-critic systems.
Contrasting with the backward view TD(λ) learning target
for which ETD(λ) was developed, deep RL algorithms are
often based on a forward view of temporal difference learn-
ing, where updates are computed on trajectories of fixed
length, without making use of eligibility traces.

If we use a linear value function parametrized by θ, then
the n-step TD update for parameters θ in the first state is

θt+1
.
= θt + α

t+n−1∑
i=t

(

i−1∏
j=t

ρjγj+1) ρiδi(θt)φt, (3)

where

δi(θt) = Ri+1 + γi+1Vθt(Si+1)− Vθt(Si) . (4)

3The original formula F et
.
= γ(St)ρt−1F

e
t−1 + it has an addi-

tional scalar it, indicating “interest” in state St. We let it
.
= 1.

Emphatic Algorithms for Deep Reinforcement Learning

n-step TD can be implemented in a computationally effi-
cient way where multiple states in a trajectory are updated
at once. This can be done in two ways. In a fixed update
scheme all states are updated with n step TD target for a
fixed constant n. In a mixed update scheme, the k-th sample
in the trajectory uses an (n − k)-step TD target—this is
convenient when we used a small batch of temporal data,
and all returns bootstrap on the last available state at the end
of this window.

1.4. V-trace

Given a trajectory of data, sampled from behavior policy µ,
the n-step V-trace estimator can be used as target to learn
the value of state St under the target policy π. Let Gt be the
V-trace target:

Gt
.
= Vθt(St) +

t+n−1∑
i=t

(

i−1∏
j=t

c̄jγj+1) ρ̄iδi(θt), (5)

where ρ̄i
.
= min(ρ̄, π(Ai|Si)

µ(Ai|Si)), c̄j
.
= min(c̄,

π(Aj |Sj)
µ(Aj |Sj)). The

clipping hyper-parameters ρ̄ and c̄were introduced to reduce
variance of the n-step off-policy TD target. In practice, the
clipping thresholds c̄ and ρ̄ are often equal, so that c̄t = ρ̄t.

Modifying c̄ does not change the fixed point of the (tabular)
V-trace update (see the proof of the V-trace fixed point in
Appendix A of Espeholt et al. (2018), and see also Mahmood
et al. (2017)). Modifying ρ̄ does change the fixed point,
which corresponds to the value of the following policy πρ̄:

πρ̄(a|s)
.
=

min(ρ̄µ(a|s), π(a|s))∑
a′∈Amin(ρ̄µ(a′|s), π(a′|s))

. (6)

With linear functions the V-trace update closely matches (3),
except in clipping all IS weights.

1.5. Actor-critics

The V-trace update is most often used in actor-critic systems.
Here, in addition to using it for learning values (the critic)
we can use the V-trace target also in the policy update.

Consider a current policy πw. Following the derivation of
policy gradient in Espeholt et al. (2018), we may update
policy parameters w in the direction of the policy gradient

ρ̄t(Rt+1 + γt+1Gt+1 − Vθ(St))∇w log πw(At|St) , (7)

where Gt+1 is the V-trace value target from time step t+ 1
onward. This has been very successful (e.g., Espeholt et al.,
2018; Hessel et al., 2019) in setting where the off-policyness
is mild.

2. Proposed Emphatic Methods
Similar to TD(λ), off-policy n-step TD can suffer from un-
stable learning due to the deadly triad. In the appendix,

we analyze the update and derive conditions that guaran-
tee stable learning when the behavior policy is sufficiently
close to the target policy. However, these conditions are
often violated in practice when the policies are too different.
Then emphatic methods could help stabilize learning by
mitigating the mismatch in steady-state distributions under
the target and behavior policies. Therefore, we now first
adapt ETD(λ) to make use of n-step targets and analyze its
properties, and then introduce new updates that combine
emphatic methods with off-policy targets based on V-trace.

2.1. Windowed ETD(λ) — WETD

As described in Sec. 1.2, ETD(λ) uses TD(λ) as its learning
target. To extend this idea, we adapt ETD(λ) to use update
windows of length n. Each state in the window is updated
with a variable bootstrap length, all bootstrapping on the
last state in the window — this is the mixed update scheme.
We formulate the learning target TD(λ) as a mixed n-step
target by setting λt to 0 every n steps:

λt
.
=

{
0, if t mod n = 0.

1, otherwise.
(8)

The bootstrapping step of the update is at the nearest future
time step that is a multiple of the window size n. We set λ to
0 at the end of every update window canceling all future TD
errors from that point onward. More details are provided
in the appendix. ETD(λ), as in (2), was originally derived
for state-dependent λ(St). To apply the same derivation to
a time-dependent λt, we note that under mild assumptions
(that state visits are non-periodic), the value of λt in (8)
is statistically independent of the state. This means the
expected updates are asymptotically equivalent to using a
uniform λ = Edµ [λt] = 1− 1/n.

The windowed ETD(λ) (WETD) algorithm is then defined
by using λt from (8) in the ETD(λ) update in (2), so that

Mw
t
.
= λt + (1− λt)Ft , (9)

with (1) and (8). The WETD-corrected n-step TD target is
obtained by multiplying Mw

t to weight each update:

θt+1
.
= θt + αMw

t

t+n−1∑
i=t

(

i−1∏
j=t

γj+1ρj) ρiδi(θt)φt . (10)

The algorithm is shown below in Algo. 1.

2.2. Emphatic TD(n) — NETD

We also investigate the use of off-policy n-step TD target
and derive from scratch a new emphatic trace called Em-
phatic TD(n), abbreviated as NETD. Similar to ETD(λ),
NETD guarantees asymptotic stability in off-policy learning
with linear value function approximation by ensuring that

Emphatic Algorithms for Deep Reinforcement Learning

Algorithm 1 WETD weighted n-step TD.
Input: Target policy π, behavior policy µ, bootstrap-
ping length n, gradient step size α, discounts γt, state
features φt.
Initialize model parameters θ0.
Initialize F0 = 1.
for t ∈ [0, n, 2n, . . . , Ln] do

Sample trajectory (Si, Ai, Ri+1)t+ni=t ∼ µ.
Set ρi = π(Ai|Si)/µ(Ai|Si), for i = t, . . . , t+ n.
for k ∈ [0, . . . , n− 1] do

Compute Ft+k+1 = γt+k+1ρt+kFt+k + 1.
if k = 0 then Mw

t+k = Ft+k else Mw
t+k = 1 end

Update model parameters:
θt+k+1 = θt+k+
αMw

t+k

∑t+n−1
i=t+k (

∏i−1
j=t+k γj+1ρj) ρiδi(θt+k)φt+k .

end
end
Return: θLn.

the asymptotic update matrix is positive definite (see the
appendix for its derivation and stability analysis).

Consider an n-step TD update (in the fixed update scheme).
We define the NETD trace as

F
(n)
t =

n∏
i=1

(γt−i+1ρt−i)F
(n)
t−n + 1, (11)

where F (n)
0 , F

(n)
1 , . . . , F

(n)
n−1 = 1. We can apply this new

trace to weight each n-step TD update to θ, i.e.

θt+1 = θt + αF
(n)
t

t+n−1∑
i=t

(

i−1∏
j=t

γj+1ρj) ρiδi(θt)φt .

(12)

NETD accumulates every n steps, making it a tamer trace
than the WETD follow-on trace Ft (see Prop. 1). For a
concrete example, consider γ ≡ 0.99 and in the on-policy
case, ρ ≡ 1. For WETD, the fixed point of Ft is 100,
whereas the fixed point of F (n)

t is 1/(1 − 0.99n), which
is 10.46 for n = 10, 3.84 for n = 30, and only 1.58 for
n = 100. As a result, NETD can be more stable than WETD
when large bootstrap lengths are used, which is common in
practice.

Proposition 1. Assume ρt > 0 and γt > 0 for any time
step t. Then we have Ft > F

(n)
t for any t > 0.

Proof. We prove this result by induction for every n time
steps. At the start, for t = 0, we have F0 = F

(n)
0 = 1. For

0 < t ≤ n, since ρt > 0, γt > 0 and F0 = 1, we know
Ft = γtρt−1Ft−1 + 1 is always a positive number. Thus
Ft = γtρt−1Ft−1 + 1 > 1 = F

(n)
t since γtρt−1Ft−1 > 0.

Algorithm 2 NETD weighted n-step TD.
Input: Target policy π, behavior policy µ, bootstrap-
ping length n, gradient step size α, discounts γt, state
features φt.
Initialize model parameters θ0.
Initialize F (n)

0 , . . . , F
(n)
n−1 = 1.

Sample trajectory (Si, Ai, Ri+1)n−1
i=0 ∼ µ.

Set ρi = π(Ai|Si)/µ(Ai|Si), for i = 1, . . . , n− 1.
for t ∈ [0, . . . , T] do

Sample St+n, At+n, Rt+n+1 ∼ µ
Set ρt+n = π(At+n|St+n)/µ(At+n|St+n).
if t ≥ n then
Compute F (n)

t =
∏n
i=1(γt−i+1ρt−i)F

(n)
t−n + 1.

end
Update model parameters:
θt+1 = θt+αF

(n)
t

∑t+n−1
i=t (

∏i−1
j=t γj+1ρj) ρiδi(θt)φt .

end
Return: θT .

Now assume that Ft−n > F
(n)
t−n, we derive that Ft > F

(n)
t

as follows. Substituting Eq. (1) n times, we have

Ft =

n∏
i=1

(γt−i+1ρt−i)Ft−n (13)

+

n−1∑
k=1

k∏
j=1

(γt+1−jρt−j) + 1 (14)

≥ F (n)
t +

n−1∑
k=1

k∏
j=1

(γt+1−jρt−j) > F
(n)
t . (15)

Since Ft > F
(n)
t for t = 0, 1, . . . , n, this is also true for

t = n+ 1, . . . , 2n+ 1 and so on for every time step t.

Therefore Ft used in WETD is a strict upper bound for
F

(n)
t in NETD. Moreover the difference between them∑n−1
k=1

∏k
j=1(γt+1−jρt−j) grows with n. Algo. 2 shows

the pseudo-code of NETD weighted TD learning.

2.3. Emphatic Variants

In this section we derive novel emphatic updates based on
on either the WETD or the NETD trace.

Clipped Emphases To further reduce variance of the em-
phatic algorithms, we clip the IS weights used in computing
WETD and NETD in Eq. 9 & 11, and keep the IS weights
used in computing the learning update unchanged. We call
this new emphatic trace Clip-WETD in the case of WETD,

F̄t = ρ̄t−1γtF̄t−1 + 1, (16)

Emphatic Algorithms for Deep Reinforcement Learning

Emphatic Trace Computation Learning Target Computation
Algorithm transform ρ trace type learning target update scheme clip c clip ρ

n-step TD1 N/A x π∗ either x x
NETD x NETD π∗ fixed x x
WETD x WETD π∗ mixed x x
Clip-NETD min(ρ̄, ρ) NETD unknown fixed x x
Clip-WETD min(ρ̄, ρ) WETD unknown mixed x x
V-trace1 N/A x πρ̄ either X X
NEVtrace ρv

.
= πρ̄/µ NETD πρ̄ fixed X X

WEVtrace ρv
.
= πρ̄/µ WETD πρ̄ mixed X X

Table 1. Look-up table for our emphatic algorithms and the two baseline algorithms without emphatic traces. π∗ is the optimal policy for
n-step TD learning. πρ̄ is the fixed point target policy of V-trace (Eq. 6). When applied to Surreal (explained in Sec. 4) for large scale
experiments, we always clip IS weights in computing emphatic traces to reduce variance except for NEVtrace and WEVtrace.

and Clip-NETD in the case of NETD,

F̄
(n)
t =

n∏
i=1

(γt−i+1ρ̄t−i)F̄
(n)
t−n + 1. (17)

Note that clipping reduces the growth of emphatic traces, but
may introduce bias in the emphatic trace weighted learning
updates.

Emphatic V-trace We can also use the emphatic traces
WETD and NETD in combination with V-trace value target.
In the case of WETD, we first adapt TD(λ) to the mixed
V-trace learning target with windows of length n by defining
the new λvt as

λvt
.
=

{
0, if t mod n = 0.

ρ̄t/ρt, otherwise.
(18)

where ρ̄t = min(ρ̄, ρt) and ρ̄ is the clipping threshold on
IS weights of the learning target. Similar to the adaption to
off-policy n-step TD target, this way the future TD errors
not only stop affecting the update if they lie beyond the
current window (due to λv set to 0), but also the relevant TD
errors are weighted according to the clipped IS weights as
in the V-trace value target. The appendix contains a detailed
analysis on why this recovers the mixed V-trace learning
target. We then adapt WETD to the V-trace learning target
by adopting its target policy (πρ̄ in Eq. 6) as the target policy
of the emphatic trace. The IS ratios in computing F vt are
between the V-trace target policy πρ̄ and the behavior policy
µ, i.e. ρvt = πρ̄(At|St)/µ(At|St), and

F vt = ρvt−1γtF
v
t−1 + 1. (19)

We call this new emphatic trace the Windowed Emphatic
Vtrace, abbreviated as WEVtrace.

In the case of NETD, we similarly extend it to the fixed
V-trace target by replacing the IS weights in Eq 11 by ρvt .

We call it the N -step Emphatic V-trace, NEVtrace.

F
(n),v
t =

n∏
i=1

(γt−i+1ρ
v
t−i)F

(n),v
t−n + 1. (20)

See the appendix for derivation details. Notice that NEV-
trace and WEVtrace are likely to have higher variances than
Clip-NETD and Clip-WETD (see the inequality below for
any time step t > 0). Though they are the correct emphatic
traces w.r.t. to the V-trace target, in practice they often per-
form worse than the clipped emphatic traces when applied
to the V-trace target.

ρvt = πρ̄(At|St)/µ(At|St) (21)

=
min(ρ̄, π(At|St)/µ(At|St))∑
a′∈Amin(ρ̄µ(a′|At), π(a′|St))

(22)

=
ρ̄t∑

a′∈Amin(ρ̄µ(a′|St), π(a′|St))
≥ ρ̄t. (23)

Table 1 lists all the emphatic algorithms and the three base-
line learning algorithms with their respective variations in
learning updates and emphatic trace computation.

Emphatic Actor-critics Actor critic agents reportedly
can suffer more from off-policy learning than value-based
agents, which is one of the main reasons we choose to focus
on V-trace in this paper. We can combine the emphatic
traces derived above with the off-policy n-step TD or the V-
trace value targets, and apply these to actor critic by simply
applying emphatic traces to both the value estimate gradient
and the policy gradient in for example, the V-trace learning
update, following existing work on ACE (Imani et al., 2018).
We name these new emphatic algorithms after the emphatic
trace used, which can be any of, e.g. NETD, WETD, Clip-
WETD, Clip-NETD, NEVtrace, WEVtrace. We add an
‘-ACE’ suffix to indicate when the same emphatic trace is
applied not just to the value update, but also to the policy
gradient update.

Emphatic Algorithms for Deep Reinforcement Learning

θ 2θ

Figure 1. A simple two State MDP. The solid lines depict the (de-
terministic) target policy π(right|·) = 1. Dashed lines denote the
(more exploratory) behavior policy µ. The behavior policy selects
any of the actions with equal probability µ(right|·) = µ(left|·) =
0.5, in all states. The rewards are zero everywhere.

S1 S2 S3 S4

S5S6S7S8S9

Start Area

Figure 2. Collision Problem. Solid lines depict target policy
π(forward|·) = 1. Dashed lines indicate the behavior policy
µ(forward|x ∈ Sstart ∪ S9) = 1, µ(forward|x ∈ Snext) = 0.5,
where Sstart = {S1, S2, S3, S4} and Snext = {S5, S6, S7, S8}. On
a retreat action, the agent goes back to a random state in Sstart.

3. Diagnostic Experiments
We empirically analyze the properties of these new emphatic
algorithms to observe how qualitative properties such as con-
vergence, learning speed and variance manifest in practice.
We examine these in the context of two small scale diagnos-
tic off-policy policy evaluation problems: (1) a two-state
MDP, shown in Figure 1, commonly used to highlight the
instability of off-policy TD with function approximation,
and (2) the Collision Problem, shown in Figure 2, used in
prior work to highlight the advantages of ETD compared
with gradient TD methods such as TDC (Ghiassian et al.,
2018). In both cases we use linear function approximation,
with a feature representation that includes significant gener-
alization. In the appendix we also report experiments with
Baird’s counterexample (Baird, 1995).

The results that follow are produced by extensive sweeps
over the key hyper-parameters: we tested all combinations
of the learning rate α ∈ {2i | i ∈ −14,−13, ...,−2} and
bootstrap length n ∈ {1, 2..., 5}; we selected the best hyper-
parameters for each method by computing the RMSE over
all time steps, and averaging results over many independent
replications of the experiment—50 runs for the two-state
MDP and 200 for the Collision problem. We then report
both learning curves—plotting the RMSE over time for the
best hyper-parameter setting from the sweep, and param-
eter studies—showing the average total RMSE for each
algorithm, and for each combination of n, and α.

n = 2

n-step TD

Figure 3. Hyper-parameter sensitivity comparison on the Collision
problem. Each data point in the plot shows the mean RMSE
averaged over 200 runs for different values of learning rate α. The
emphatic algorithms achieve best performance in this task, and do
so with smaller step-sizes than V-trace and n-step TD; consistent
with previous results on this task (Ghiassian et al., 2018)

3.1. Two-state MDP

This two-state MDP, illustrated in Fig 1, is classical off-
policy policy evaluation problem. Training data is generated
by a random walk behavior policy. The task is to evaluate
the target policy that always goes right, and ends up stuck
in the second state forever. The values for the two states are
approximated as θ and 2θ with state features being scalars 1
and 2. The discount γ is 0.9. Rewards are zero everywhere.

First we examine the convergence properties of various
methods using the 1-step TD, a.k.a. TD(0) learning target.
Empirically and theoretically, smaller bootstrap lengths n
are more likely to induce divergence in learning (further
analysis and empirical evidence is in the appendix). Notice
that the emphatic traces NETD and WETD are equivalent
when applied to TD(0) (compare the formula of NETD in
Eq. 11 with that of WETD in Eq. 9 when n = 1).

Figure 4(a) presents Root Mean Squared Error (RMSE) over
training time for NETD (WETD) and Clip-NETD (Clip-
WETD), with the baseline learner TD(0) in the bottom panel.
TD(0) diverged faster as training goes on. NETD converged
slowly and exhibited significant instability: occasionally
runs diverged even late into training. Clip-NETD by com-
parison learned quickly and exhibited low variance with no
instability after some initial fluctuations. Since this small di-
agnostic MDP was designed to induce instability in learning,
the initial fluctuations are expected due to the adversarial
initialization of the value function parameters. Note we plot

Emphatic Algorithms for Deep Reinforcement Learning

NETD/WETD Clip-NETD/Clip-WETD n-step TD(n=1)

(a) n-step TD target

(b) V-trace target

Figure 4. Stability and learning speed in the two-state problem
(with n = 1 and 50 runs). Each plot reports the Root Mean
Squared Error for all random seeds, using the best learning rate
α for each method. (a) TD(0) slowly diverged; NETD learned
slowly and exhibited significant instability, even late in learning.
Clip-NETD learned quickly and exhibits no instability beyond a
few initial fluctuations. (b) All runs of V-trace diverged, regardless
of α; NEVtrace did converge, but exhibited instability in some
runs. Note the log scale on x-axis.

the error in the value estimates, but the algorithms are not
directly optimizing value error. This is similar to previous
results of Sutton & Barto (2018); Sutton et al. (2016), and
like previous works, we plot all individual runs in order to
highlight any instability in training. Overall, clipping IS
weights proved to be an effective way of variance reduction
at any bootstrap length n. Figure 5 shows an example of the
variance reduction effect for both n = 1 (left column) and
n = 5 (right column). In both cases, Clip-NETD learned
faster with no instability issues.

Figure 4(b) compares NEVtrace (or WEVtrace) to the cor-
responding V-trace baseline at n = 1, that is equivalently,
TD(0) with clipped IS weights. While V-trace diverged,
NEVtrace converged slowly, although with instability issues
and occasional spikes in error late in training in a subset of
the runs.

The full set of experiment results on the two-state MDP for
all algorithms listed in Table 1 are included in the appendix,
as well as results on the Baird’s MDP with n = 1 and n = 5,
which yield similar conclusions.

NETD / WETD NETD

Clip-NETD / Clip-WETD Clip-NETD

n=0 n=4n=1 n=5

Figure 5. Variance reduction due to clipping the IS weights in
emphatic trace computation. Left column: n = 1, right column:
n = 5, both with 50 runs. Clip-NETD (Eq. 17) and Clip-WETD
(Eq. 16) exhibit faster learning with no instability issues compared
with the non-clipped version NETD / WETD. As n gets larger,
NETD becomes more stable but still exhibits spikes late in learning,
whereas Clip-NETD remains stable and improves in initial learning.
Note the log scale on x-axis.

3.2. Collision Problem

In the Collision Problem (illustrated in Fig. 2), states are
aligned in a hallway and the agent can move forward or
retreat. Episodes begin in one of the first four states, and
terminates after 100 time steps. The reward is zero on ev-
ery transition, except on the transition into the last state S9.
The behavior policy always moves forward in the starting
states, and outside of this area, either moves forward or
retreats to the starting states with equal probability, except
in the last trapping state S9. The target policy moves for-
ward in every state. We examine the emphatic algorithms
in this environment through a hyper-parameter sensitivity
study on the learning rate α and bootstrap length n. Fig-
ure 3 presents the mean RMSE averaged across 200 runs
of the emphatic algorithms and baselines n-step TD and
V-trace at n = 2, varying the learning rate α. Emphatic
algorithms achieved best performance—with best perfor-
mance using smaller learning rates compared to the two
baselines—consistent with previous results on ETD(λ) in
this task (Ghiassian et al., 2018). Additional training curves
and hyper-parameter study plots for n = 1, 2, 3, 5 are in the
appendix, supporting the same conclusion.

Emphatic Algorithms for Deep Reinforcement Learning

Deep Residual Block

observation

MLP MLP MLP

π, v π1, v1 π2, v2

L(h; γ) L(h; γ1) L(h; γ2)Losses

auxiliary heads

Figure 6. Block diagram of Surreal, with one main head and two
auxiliary heads. IMPALA loss on each head uses different dis-
counts γ, γ1, γ2. Let h denote the neural network model. The
behavior policy is fixed to be π.

4. Experiments at Scale
Our ultimate goal is to design emphatic algorithms that
improve off-policy learning at scale, especially on actor-
critic agents. Thus we evaluated the emphatic algorithms
on Atari games from the Arcade Learning Environment
(Bellemare et al., 2013), a widely used deep RL benchmark.

Data We use the raw pixel observations in RGB as they
are provided by the environment, without down sampling
or gray scaling them. We also use an action repeat of 4,
with max pooling over the last two frames and the life ter-
mination signal. This setup is similar to IMPALA (Espeholt
et al., 2018) with the only difference being using the raw
frames instead of down and gray scaled ones. In order to
compare with closely related previous works, we adopted
the conventional 200M frames training regime using online
updates without experience replay.

Agent StacX (Zahavy et al., 2020) and UNREAL (Jader-
berg et al., 2017) are both IMPALA-based agents that learn
auxiliary tasks from experience generated by the main pol-
icy, in order to improve the shared representation. Inspired
by their results, we investigated whether emphatic algo-
rithms can help learn the auxiliary tasks better since they
are learned off-policy, and in turn improve the agent per-
formance. In particular, we used an IMPALA-based agent
with two auxiliary heads, each head learning a different
target policy for its own discount γ, γ1, γ2 (see Fig. 6 and
the appendix for details on its network structures and hyper-
parameters). We call this agent Surreal as it fantasizes
(learns off-policy) about two additional policies π1, π2 that
discount the future rewards differently, without ever exe-
cuting actions from them. We apply emphatic traces to the
IMPALA learning updates on the two auxiliary heads. In
order to reduce variance, we always clip the IS weights at 1
both in computing emphatic traces and in the V-trace target.

Algorithm 3 NETD-ACE Surreal.
Input: Bootstrapping length n, discounts γ, γ1, γ2, num-
ber of actors M .
Initialize Surreal neural network function h0,
Output initial policy for the main head π0 from h0.
for actor m ∈ [1, . . . ,M] do

Sample trajectory (Smi , A
m
i , R

m
i+1)n−1

i=0 ∼ π0.
for auxiliary head u = 1, 2 do

Initialize F (n),m,u
0 , . . . , F

(n),m,u
n−1 = 1.

for i = 0, . . . , n− 1 do
Set ρ̄m,ui = min(1,

πu0 (Ami |S
m
i)

π0(Ami |Smi)).

end
end

end
for timestep t ∈ [0, . . . , T] do

Output main head policy πt from neural network ht.
for actor m ∈ [1, . . . ,M] do

Sample Smt+n, A
m
t+n, R

m
t+n+1 ∼ πt.

Compute the main head IMPALA loss Lmt (h; γ).
for auxiliary head u = 1, 2 do

Set ρ̄m,ut+n = min(1,
πut (Amt+n|S

m
t+n)

πt(Amt+n|Smt+n)).
if t ≥ n then
F

(n),m,u
t =

∏n
i=1(γut−i+1ρ̄

m,u
t−i)F

(n),m,u
t−n + 1,

end
Weight the sum of IMPALA value and policy
losses, plus IMPALA entropy loss:
Em,ut = F

(n),m,u
t Lm,ut (h; γu) +Hm,ut .

end
end
Update neural network ht+1 using an average loss:
Lt = 1

3M

∑
m(Lmt + Em,1t + Em,2t).

end
Return: hT .

In a distributed system, we keep track of an emphatic trace
for each actor’s trajectories and aggregate the updates in
a batch average at every time step. Algo. 3 outlines the
pseudo-code for NETD-ACE Surreal as an example. For the
implementation of Surreal, we used Jax libraries (Budden
et al., 2020; Hennigan et al., 2020; Hessel et al., 2020) on a
TPU Pod infrastructure called Sebulba (Hessel et al., 2021).

Evaluation We compute the median human normalized
scores across 57 games, averaged over seeds and an evalu-
ation phase without learning. To compare any two agents,
we view their scores on 57 games as 57 independent pairs
of samples, similar to how one would test significance of a
medical treatment on a population of different people, rather
than testing same treatment on the same person multiple
times. The p-value is the probability of the null hypothesis

Emphatic Algorithms for Deep Reinforcement Learning

0 0.5e8 1e8 1.5e8 2e8
Learning frames

0

100

200

300

400

500

M
ed

ia
n

hu
m

an
 n

or
m

al
ize

d
sc

or
es

IMPALA(2018)

Meta-Gradient
(2018)

StacX(2020)

UNREAL(2016)

VMPO(2019)

A3C(2016)

NETD-ACE on Surreal
NEVtrace on Surreal
NETD on Surreal
Surreal
WETD on Surreal

Figure 7. Learning curves of baseline Surreal and the emphatic
traces (NETD, NETD-ACE, NEVtrace, WETD) applied to Surreal,
in the fixed update scheme with n = 10, IS weights clipped to 1.
Median human normalized scores are averaged across 3 random
seeds with shaded areas denoting standard derivations.

that the algorithm performs equally using the sign test (Ar-
buthnot, 1712). Results might be thought of as statistically
significant when p < 0.05.

Baselines Prior to applying emphatic traces, we found the
best hyper-parameters for Surreal in the mixed and the fixed
update schemes separately as our baselines. In the mixed up-
date scheme, n = 40, α = 6 · 10−4,max gradient norm =
0.3 yielded the best results. In the fixed update scheme,
the best hyper-parameters for Surreal were n = 10, α =
2 · 10−4,max gradient norm = 1.

Emphatic Results Since the emphatic traces are derived
using the steady state distributions following fixed policies,
we expect that they would impact the results more towards
the end of learning, as the agent stabilizes its learned pol-
icy with learning rate decay. Empirically we observed the
differences between algorithms start to show around 130M
frames or 65% of learning frames.

In the mixed update scheme, we tested emphatic trace fam-
ily WETD and its variants WETD-ACE, WEVtrace applied
to the Surreal baseline. In order to reduce instability, we
experimented with several variance reduction techniques,
including: 1) ETD(λ, β), 2) interpolation, and 3) clipping.
First, previous work on ETD(λ, β)(Hallak et al., 2016) sug-

Statistics NETD-ACE NETD NEVtrace Surreal

Median 497.21 427.69 317.50 403.47
Mean 1793.47 1507.85 1502.84 1565.42
40th percentile 300.26 268.43 186.95 258.35
30th percentile 162.91 169.42 118.27 163.90
20th percentile 74.47 70.74 28.28 65.60
10th percentile 4.88 4.3 4.91 4.25
games >human 45/57 45/57 43/57 43/57

Table 2. Performance statistics for baseline Surreal and emphatic
traces applied to Surreal in the fixed update scheme with n = 10,
on 57 Atari games. Scores are human normalized, averaged across
3 random seeds and across the evaluation phase.

gested using a hyper-parameter β to replace the discount
variable γt in the follow-on trace, which we applied to
WETD. Second, we introduced a constant hyper-parameter
η ∈ (0, 1) such that Mw

t = 1−η(1−λt)+η(1−λt)Ft, al-
lowing us to modify the interpolation between a potentially
large Ft and 1 to restrain the blow-up. Third, we clipped
the values of ρt−1 and/or directly clipped the values of Ft.
However, despite of these efforts, WETD still diverged with
exploding gradients (see WETD in Fig. 7).

Next, we evaluated emphatic trace family NETD (dashed
orange) and its variants NETD-ACE (solid red), NEVtrace
(dashed blue), applied to Surreal, along with the baseline
Surreal agent (solid green) using a fixed update scheme. The
best Surreal baseline from our sweeps already surpassed the
StacX scores (Zahavy et al., 2020). The results are aver-
aged over 3 random seeds, and Fig. 7 depicts the learning
curves and Table 2 summarizes all performance statistics. In
particular, the best performing emphatic actor-critic agent
NETD-ACE improved the median human normalized score
from the baseline performance of 403% to 497%, the high-
est score for an RL agent without experience replay in the
200M frames data regime. It improved performance on 100
out of 57× 3 Atari games compared to the baseline, with a
p-value of 0.016, achieving 95% statistical significance.

5. Discussion
New emphatic algorithm families of WETD and NETD
variants showed nice qualitative properties on off-policy
diagnostic MDPs. For both families, clipping IS weights in
computing emphatic traces turns out to be an effective way
to reduce variance, so we applied this learning at scale. On
Atari, we proposed a baseline agent Surreal that achieved
a strong median human normalized score 403%, and is
suitable for testing off-policy learning on auxiliary con-
trols. The WETD family were unstable at scale, whereas
the NETD family performed well, particularly the emphatic
actor-critic agent NETD-ACE. For future work, we would
like to investigate applying emphatic traces to a variety of
off-policy learning targets and settings at scale.

Emphatic Algorithms for Deep Reinforcement Learning

References
Arbuthnot, J. II. An argument for divine providence, taken

from the constant regularity observ’d in the births of both
sexes. By Dr. John Arbuthnott, Physitian in Ordinary to
Her Majesty, and Fellow of the College of Physitians
and the Royal Society. Philosophical Transactions of the
Royal Society of London, 27(328):186–190, 1712.

Baird, L. Residual algorithms: Reinforcement learning
with function approximation. Proceedings of the Twelfth
International Conference on Machine Learning, pp. 30–
37, 1995.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253279, 2013.

Bellman, R. A markovian decision process. Journal of
Mathematics and Mechanics, 1957.

Budden, D., Hessel, M., Quan, J., Kapturowski, S., Baumli,
K., Bhupatiraju, S., Guy, A., and King, M. RLax:
Reinforcement Learning in JAX, 2020. URL http:
//github.com/deepmind/rlax.

Degris, T. and Modayil, J. Scaling-up knowledge for a
cognizant robot. AAAI Spring Symposium: Designing
Intelligent Robots, 2012.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. CoRR, 2018.

Ghiassian, S., Patterson, A., White, M., Sutton, R. S., and
White, A. Online off-policy prediction. arXiv preprint
arXiv:1811.02597, 2018.

Hallak, A., Tamar, A., Munos, R., and Mannor, S. Gen-
eralized emphatic temporal difference learning: Bias-
variance analysis. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16), 2016.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URL http://github.com/
deepmind/dm-haiku.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt,
S., and van Hasselt, H. Multi-task deep reinforcement
learning with popart. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):3796–3803, 2019.

Hessel, M., Budden, D., Viola, F., Rosca, M., Sezener,
E., and Hennigan, T. Optax: composable gradient
transformation and optimisation, in JAX!, 2020. URL
http://github.com/deepmind/optax.

Hessel, M., Kroiss, M., Clark, A., Kemaev, I., Quan, J.,
Keck, T., Viola, F., and van Hasselt, H. Podracer archi-
tectures for scalable reinforcement learning. 2021. URL
https://arxiv.org/pdf/2104.06272.pdf.

Imani, E., Graves, E., and White, M. An off-policy pol-
icy gradient theorem using emphatic weightings. Pro-
ceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS 2018), 2018.

Jaderberg, M., Mnih, V., Czarnecki, W., Schaul, T., Leibo, J.,
Silver, D., and Kavukcuoglu, K. Reinforcement learning
with unsupervised auxiliary tasks. ICLR, 2017.

Lin, L. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3):293–321, 1992.

Mahmood, A. R., Yu, H., and Sutton, R. S. Multi-step
off-policy learning without importance sampling ratios.
arXiv preprint arXiv:1702.03006, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 2015.

Precup, D., Sutton, R. S., and Dasgupta, S. Off-policy
temporal-difference learning with function approxima-
tion. ICML, pp. 417–424, 2001.

Sutton, R. S. Implementation details of the td(λ) procedure
for the case of vector predictions and backpropagation.
GTE Laboratories Technical Note TN87-509.1, 1987.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, MA, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in Neural Information
Processing Systems 13, 12:1057–1063, 2000.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesvári, C., and Wiewiora, E. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. pp. 993–1000. ACM, 2009.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., and Precup, D. Horde: A scalable
real-time architecture for learning knowledge from un-
supervised sensorimotor interaction. The 10th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pp. 761–768, 2011.

Emphatic Algorithms for Deep Reinforcement Learning

Sutton, R. S., Mahmood, A. R., and White, M. An emphatic
approach to the problem of off-policy temporal-difference
learning. The Journal of Machine Learning Research, 17
(1):2603–2631, 2016.

Tsitsiklis, J. N. and Van Roy, B. An analysis of temporal-
difference learning with function approximation. IEEE
Transactions on Automatic Control, 42(5):674–690, 1997.

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and
the deadly triad. CoRR, abs/1812.02648, 2018. URL
http://arxiv.org/abs/1812.02648.

van Hasselt, H., Madjiheurem, S., Hessel, M., Silver, D.,
Barreto, A., and Borsa, D. Expected eligibility traces.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(11):9997–10005, May 2021.

Watkins, C. J. C. H. Learning from delayed rewards. 1989.

Yu, H. On convergence of emphatic temporal-difference
learning. JMLR: Workshop and Conference Proceedings,
40:128, 2015.

Zahavy, T., Xu, Z., Veeriah, V., Hessel, M., Oh, J., van
Hasselt, H., Silver, D., and Singh, S. A self-tuning actor-
critic algorithm. 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), 2020.

