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Abstract
Thompson sampling is one of the most widely
used algorithms for many online decision prob-
lems, due to its simplicity in implementation and
superior empirical performance over other state-
of-the-art methods. Despite its popularity and em-
pirical success, it has remained an open problem
whether Thompson sampling can match the min-
imax lower bound Ω(

√
KT ) for K-armed ban-

dit problems, where T is the total time horizon.
In this paper, we solve this long open problem
by proposing a variant of Thompson sampling
called MOTS that adaptively clips the sampling
instance of the chosen arm at each time step. We
prove that this simple variant of Thompson sam-
pling achieves the minimax optimal regret bound
O(
√
KT ) for finite time horizon T , as well as the

asymptotic optimal regret bound for Gaussian re-
wards when T approaches infinity. To our knowl-
edge, MOTS is the first Thompson sampling type
algorithm that achieves the minimax optimality
for multi-armed bandit problems.

1. Introduction
The Multi-Armed Bandit (MAB) problem is a sequential
decision process which is typically described as a game
between the agent and the environment with K arms. The
game proceeds in T time steps. In each time step t =
1, . . . , T , the agent plays an arm At ∈ {1, 2, · · · ,K} based
on the observation of the previous t− 1 time steps, and then
observes a reward rt that is independently generated from
a 1-subGaussian distribution with mean value µAt , where
µ1, µ2, · · · , µK ∈ R are unknown. The goal of the agent
is to maximize the cumulative reward over T time steps.
The performance of a strategy for MAB is measured by the
expected cumulative difference over T time steps between
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playing the best arm and playing the arm according to the
strategy, which is also called the regret of a bandit strategy.
Formally, the regret Rµ(T ) is defined as follows

Rµ(T ) = T · max
i∈{1,2,··· ,K}

µi − Eµ

[
T∑
t=1

rt

]
. (1)

For a fixed time horizon T , the problem-independent lower
bound (Auer et al., 2002b) states that any strategy has at
least a regret in the order of Ω(

√
KT ), which is called the

minimax optimal regret. On the other hand, for a fixed model
(i.e., µ1, . . . , µK are fixed), Lai & Robbins (1985) proved
that any strategy must have at least C(µ) log(T )(1− o(1))
regret when the horizon T approaches infinity, where C(µ)
is a constant depending on the model. Therefore, a strategy
with a regret upper-bounded by C(µ) log(T )(1 − o(1)) is
asymptotically optimal.

This paper studies the earliest bandit strategy, Thompson
sampling (TS) (Thompson, 1933). It has been observed in
practice that TS often achieves a smaller regret than many
upper confidence bound (UCB)-based algorithms (Chapelle
& Li, 2011; Wang & Chen, 2018). In addition, TS is simple
and easy to implement. Despite these advantages, the theo-
retical analysis of TS algorithms has not been established
until the past decade. In particular, in the seminal work
by Agrawal & Goyal (2012), they provided the first finite-
time analysis of TS. Kaufmann et al. (2012) and Agrawal &
Goyal (2013) showed that the regret bound of TS is asymp-
totically optimal when using Beta priors. Subsequently,
Agrawal & Goyal (2017) showed that TS with Beta priors
achieves an O(

√
KT log T ) problem-independent regret

bound while maintaining the asymptotic optimality. In addi-
tion, they proved that TS with Gaussian priors can achieve
an improved regret bound O(

√
KT logK). Agrawal &

Goyal (2017) also established the following regret lower
bound for TS: the TS strategy with Gaussian priors has a
worst-case regret Ω(

√
KT logK).

Main Contributions. It remains an open problem (Li &
Chapelle, 2012) whether TS type algorithms can achieve
the minimax optimal regret bound O(

√
KT ) for MAB

problems. In this paper, we solve this open problem by
proposing a variant of Thompson sampling, referred to as
Minimax Optimal Thompson Sampling (MOTS), which
clips the sampling instances for each arm based on the his-
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Table 1. Comparisons of different TS type algorithms. The minimax ratio is the ratio (up to constant factors) between the problem-
independent regret bound of the algorithm and the minimax optimal regretO(

√
KT ). For instance, when the ration equals 1, it is minimax

optimal; otherwise, it is minimax suboptimal. The results in Kaufmann et al. (2012); Agrawal & Goyal (2013; 2017) are obtained for
rewards bounded in [0, 1], but the techniques in their papers also work for Gaussian rewards (See Korda et al. (2013) for details).

REWARD TYPE MINIMAX RATIO ASYM. OPTIMAL REFERENCE

TS
BERNOULLI – YES KAUFMANN ET AL. (2012)
BERNOULLI

√
log T YES AGRAWAL & GOYAL (2013)

BERNOULLI
√

logK * – AGRAWAL & GOYAL (2017)

MOTS SUBGAUSSIAN 1 NO** . THEOREMS 1, 2
SUBGAUSSIAN ilog(m−1)(T ) *** YES . THEOREM 3

MOTS-J GAUSSIAN 1 YES . THEOREM 4
* It has been proved by Agrawal & Goyal (2017) that the

√
logK term in the problem-independent regret is unimprov-

able for Thompson sampling using Gaussian priors.
** As is shown in Theorem 2, MOTS is asymptotically optimal up to a multiplicative factor 1/ρ, where ρ ∈ (1/2, 1) is

a fixed constant.
*** ilog(r)(·) is the iterated logarithm of order r, and m ≥ 2 is an arbitrary integer independent of T .

tory of pulls. We prove that MOTS achieves O(
√
KT )

problem-independent regret, which is minimax optimal and
improves the existing best result, i.e., O(

√
KT logK). Fur-

thermore, we show that when the reward distributions are
Gaussian, a variant of MOTS with clipped Rayleigh dis-
tributions, namely MOTS-J , can simultaneously achieve
asymptotic and minimax optimal regret bounds. Our result
also conveys the important message that the lower bound
for TS with Gaussian priors in Agrawal & Goyal (2017)
may not always hold in the more general cases when non-
Gaussian priors are used. Our experiments demonstrate the
superiority of MOTS over the state-of-the-art bandit algo-
rithms such as UCB (Auer et al., 2002a), MOSS (Audibert
& Bubeck, 2009), and TS (Thompson, 1933) with Gaussian
priors. We provide a detailed comparison on the minimax
optimality and asymptotic optimality of TS type algorithms
in Table 1.

Notations. A random variable X is said to follow a 1-
subGaussian distribution, if it holds that EX [exp(λX −
λEX [X])] ≤ exp(λ2/2) for all λ ∈ R. We denote
log+(x) = max{0, log x}. We let T be the total num-
ber of time steps, K be the number of arms, and [K] =
{1, 2, · · · ,K}. Without loss of generality, we assume that
µ1 = maxi∈[K] µi throughout this paper. We use ∆i to de-
note the gap between arm 1 and arm i, i.e., ∆i := µ1 − µi,
i ∈ [K] \ {1}. We denote Ti(t) :=

∑t
j=1 1{Aj = i} as

the number of times that arm i has been played at time step
t, and µ̂i(t) :=

∑t
j=1 1 {Aj = i} · rj/Ti(t) as the average

reward for pulling arm i up to time t, where rj is the reward
received by the algorithm at time j.

2. Related Work
Existing works on regret minimization for stochastic bandit
problems mainly consider two notions of optimality: asymp-
totic optimality and minimax optimality. UCB (Garivier &
Cappé, 2011; Maillard et al., 2011), Bayes UCB (Kaufmann,
2016), and Thompson sampling (Kaufmann et al., 2012;
Agrawal & Goyal, 2017; Korda et al., 2013) are all shown to
be asymptotically optimal. Meanwhile, MOSS (Audibert &
Bubeck, 2009) is the first method proved to be minimax opti-
mal. Subsequently, two UCB-based methods, AdaUCB (Lat-
timore, 2018) and KL-UCB++ (Ménard & Garivier, 2017),
are also shown to achieve minimax optimality. In addition,
AdaUCB is proved to be almost instance-dependent opti-
mal for Gaussian multi-armed bandit problems (Lattimore,
2018).

There are many other methods on regret minimization for
stochastic bandits, including explore-then-commit (Auer &
Ortner, 2010; Perchet et al., 2016), ε-Greedy (Auer et al.,
2002a), and RandUCB (Vaswani et al., 2019). However,
these methods are proved to be suboptimal (Auer et al.,
2002a; Garivier et al., 2016; Vaswani et al., 2019). One ex-
ception is the recent proposed double explore-then-commit
algorithm (Jin et al., 2020), which achieves asymptotic opti-
mality. Another line of works study different variants of the
problem setting, such as the batched bandit problem (Gao
et al., 2019), and bandit with delayed feedback (Pike-Burke
et al., 2018). We refer interested readers to Lattimore &
Szepesvári (2020) for a more comprehensive overview of
bandit algorithms.

For Thompson sampling, Russo & Van Roy (2014) studied
the Bayesian regret and Bubeck & Liu (2013) improved
it to O(

√
KT ) using the confidence bound analysis of

MOSS (Audibert & Bubeck, 2009). However, it should
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be noted that the Bayesian regret is known to be less in-
formative than the frequentist regret Rµ(T ) studied in this
paper. In fact, one can show that our minimax optimal regret
Rµ(T ) = O(

√
KT ) immediately implies that the Bayesian

regret is also in the order of O(
√
KT ), but the reverse is not

true (Lattimore & Szepesvári, 2020). We refer interested
readers to Russo et al. (2018) for a thorough introduction of
Thompson sampling and its various applications.

3. Minimax Optimal Thompson Sampling
Algorithm

3.1. General Thompson sampling strategy

We first describe the general Thompson sampling (TS)
strategy. In the first K time steps, TS plays each arm
i ∈ [K] once, and updates the average reward estimation
µ̂i(K + 1) for each arm i. (This is a standard warm-start
in the bandit literature.) Subsequently, the algorithm main-
tains a distribution Di(t) for each arm i ∈ [K] at time
step t = K + 1, . . . , T , whose update rule will be elabo-
rated shortly. At step t, the algorithm samples instances
θi(t) independently from distribution Di(t), for all i ∈ [K].
Then, the algorithm plays the arm that maximizes θi(t):
At = argmaxi∈[K] θi(t), and receives a reward rt. The
average reward µ̂i(t) and the number of pulls Ti(t) for arm
i ∈ [K] are then updated accordingly.

We refer to algorithms that follow the general TS strategy de-
scribed above (e.g., those in Chapelle & Li (2011); Agrawal
& Goyal (2017)) as TS type algorithms. Following the above
definition, our MOTS method is a TS type algorithm, but
it differs from other algorithms of this type in the choice
of distribution Di(t): existing algorithms (e.g., Agrawal &
Goyal (2017)) typically use Gaussian or Beta distributions
as the posterior distribution, whereas MOTS uses a clipped
Gaussian distribution, which we detail in Section 3.2. Nev-
ertheless, we should note that MOTS fits exactly into the
description of Thompson sampling in Li & Chapelle (2012);
Chapelle & Li (2011).

3.2. Thompson sampling using clipped Gaussian
distributions

Algorithm 1 shows the pseudo-code of MOTS, with Di(t)
formulated as follows. First, at time step t, for all arm
i ∈ [K], we define a confidence range (−∞, τi(t)), where

τi(t) = µ̂i(t) +

√
α

Ti(t)
log+

(
T

KTi(t)

)
, (2)

log+(x) = max{0, log x}, and α > 0 is a constant. Given
τi(t), we first sample an instance θ̃i(t) from Gaussian distri-
butionN (µ̂i(t), 1/(ρTi(t))), where ρ ∈ (1/2, 1) is a tuning
parameter (The intuition could be found at Lemma 5). Then,

Algorithm 1 Minimax Optimal Thompson Sampling with
Clipping (MOTS)

1: Input: Arm set [K].
2: Initialization: Play arm once and set Ti(K + 1) = 1;

let µ̂i(K + 1) be the observed reward of playing arm i
3: for t = K + 1,K + 2, · · · , T do
4: For all i ∈ [K], sample θi(t) independently from

Di(t), which is defined in Section 3.2
5: Play arm At = arg maxi∈[K] θi(t) and observe the

reward rt
6: For all i ∈ [K]

µ̂i(t+ 1) =
Ti(t) · µ̂i(t) + rt 1{i = At}

Ti(t) + 1{i = At}

7: For all i ∈ [K]: Ti(t+ 1) = Ti(t) + 1{i = At}
8: end for

we set θi(t) in Line 4 of Algorithm 1 as follows:

θi(t) = min
{
θ̃i(t), τi(t)

}
. (3)

In other words, θi(t) follows a clipped Gaussian distribution
with the following PDF:

f(x) =

{
ϕt(x) + (1− Φt(x))δ(x− τi(t)), if x ≤ τi(t);
0, otherwise,

(4)

where ϕt(x) and Φt(x) denote the PDF and CDF of the
Gaussian distribution N (µ̂i(t),

1
ρTi(t)

), respectively, and
δ(·) is the Dirac delta function.

Remark 1. (2) dependents on the horizon T , which some-
times be unknown. By using the anytime MOSS, i.e., replace
T by t in (2) (see Degenne & Perchet (2016) for details),
one can make MOTS anytime.

3.3. Overestimation and underestimation in Thompson
sampling

Compared with vanilla TS (see Agrawal & Goyal (2017) for
example), MOTS is different in the following two aspects:
(1) θi(t) in (3) is sampled from a clipped Gaussian distri-
bution instead of the common Gaussian distribution; (2)
before the clipping step, θ̃i(t) is sampled from a Gaussian
distribution whose variance is inflated by a factor 1/ρ. Both
the clipping step and the inflation are crucial for improv-
ing the regret bound of vanilla TS to be minimax optimal,
which address the overestimation of suboptimal arms and
the underestimation of the optimal arm in vanilla TS.

Overestimation of suboptimal arms: at any time step t,
vanilla TS needs to ensure the posterior sample of the op-
timal arm θ1(t) is larger than that of all K − 1 suboptimal
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arms. If the sample from each suboptimal arm has a proba-
bility p to exceed θ1(t), then by the union bound, the total
probability of identifying the wrong arm will be (K − 1)p,
which leads to a

√
logK factor in the regret bound. MOTS

clips the posterior samples by a carefully chosen threshold
for each arm, which avoids the case that suboptimal arms
are overestimated to a large extent.

Underestimation of the optimal arm: with the clipping step,
vanilla TS will still fail to find the optimal arm if its pos-
terior sample θ1(t) is too small. In this case, the clipping
threshold of arm 1 will become smaller in the next step,
and then it will be further underestimated. This means the
underestimation of the optimal arm will cause severe conse-
quence: it will hardly be picked again once underestimated.
We refer readers to Lemma 5 and its discussion for more
details. In contrast, MOTS enlarges the variance of the pos-
terior by a factor of

√
1/ρ, where ρ ∈ (0, 1). This increases

the probability that the posterior sample of arm 1 before
clipping is larger or equals to the threshold, i.e., P(θ̃1 ≥ τ1)
will become larger.

In Section 4, we will show that with the help of clipping and
the inflation, MOTS achieves the minimax optimality.

4. Theoretical Analysis of MOTS
4.1. Regret of MOTS for subGaussian rewards

We first show that MOTS is minimax optimal.

Theorem 1 (Minimax Optimality of MOTS). Assume that
the reward of arm i ∈ [K] is 1-subGaussian with mean
µi. For any fixed ρ ∈ (1/2, 1) and α ≥ 4, the regret of
Algorithm 1 satisfies

Rµ(T ) = O

(√
KT +

K∑
i=2

∆i

)
. (5)

The second term on the right hand side of (5) is due to the
fact that we need to pull each arm at least once in Algorithm
1. Following the convention in the literature (Audibert &
Bubeck, 2009; Agrawal & Goyal, 2017), we only need to
consider the case when

∑K
i=2 ∆i is dominated by

√
KT .

Remark 2. Compared with the results in Agrawal & Goyal
(2017), the regret bound of MOTS improves that of TS with
Beta priors by a factor of O(

√
log T ), and that of TS with

Gaussian priors by a factor of O(
√

logK). To the best of
our knowledge, MOTS is the first TS type algorithm that
achieves the minimax optimal regret Ω(

√
KT ) for MAB

problems (Auer et al., 2002a).

The next theorem presents the asymptotic regret bound of
MOTS for subGaussian rewards.

Theorem 2. Under the same conditions in Theorem 1, the

regret Rµ(T ) of Algorithm 1 satisfies

lim
T→∞

Rµ(T )

log(T )
=

∑
i:∆i>0

2

ρ∆i
. (6)

Lai & Robbins (1985) proved that for Gaussian rewards,
the asymptotic regret rate limT→∞Rµ/ log T is at least∑
i:∆i>0 2/∆i. Therefore, Theorem 2 indicates that the

asymptotic regret rate of MOTS matches the aforementioned
lower bound up to a multiplicative factor 1/ρ, where ρ ∈
(1/2, 1) is arbitrarily fixed.

In the following theorem, by setting ρ to be time-varying,
we show that MOTS is able to exactly match the asymptotic
lower bound.
Theorem 3. Assume the reward of each arm i is 1-
subGaussian with mean µi, i ∈ [K]. In Algorithm 1, if
we choose α ≥ 4 and ρ = 1− (ilog(m)(T )/40)−1/2, then
the regret of MOTS satisfies

Rµ(T ) = O

(√
KT ilog(m−1)(T ) +

K∑
i=2

∆i

)
,

lim
T→∞

Rµ(T )

log(T )
=

∑
i:∆i>0

2

∆i
, (7)

where m ∈ OT (1) is an arbitrary integer independent of
T and ilog(m)(T ) is the result of iteratively applying the
logarithm function on T for m times, i.e., ilog(m)(x) =

max
{

log
(

ilog(m−1)(x)
)
, e
}

and ilog(0)(a) = a.

Theorem 3 indicates that MOTS can exactly match the
asymptotic lower bound in Lai & Robbins (1985), at
the cost of forgoing minimax optimality by up to a fac-
tor of O(ilog(m−1)(T )). For instance, if we choose
m = 4, then MOTS is minimax optimal up to a factor
of O(log log log T ). Although this problem-independent
bound is slightly worse than that in Theorem 1, it is still
a significant improvement over the best known problem-
independent bound O(

√
KT log T ) for asymptotically opti-

mal TS type algorithms (Agrawal & Goyal, 2017).

Finally, it should be noted that the lower bound of the asymp-
totic regret rate limT→∞Rµ/ log T ≥

∑
i:∆i>0 2/∆i in

Lai & Robbins (1985) was established for Gaussian rewards.
Since Gaussian is a special case of subGaussian, the lower
bound for the Gaussian case is also a valid lower bound for
general subGaussian cases. Therefore, MOTS is asymptoti-
cally optimal. Similar arguments are widely adopted in the
literature (Lattimore & Szepesvári, 2020).

4.2. Regret of MOTS for Gaussian rewards

In this subsection, we present a variant of MOTS, called
MOTS-J , which simultaneously achieves the minimax and
asymptotic optimality for Gaussian reward distributions.
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Algorithm 2 MOTS-J
1: Input: Arm set [K].
2: Initialization: Play arm once and set Ti(K + 1) = 1;

let µ̂i(K + 1) be the observed reward of playing arm i
3: for t = K + 1,K + 2, · · · , T do
4: For all i ∈ [K], sample θi(t) independently

from Di(t) as follows: sample θ̃i(t) from
J (µ̂i(t), 1/Ti(t)); set θi(t) = min{θ̃i(t), τi(t)},
where τi(t) is defined in (2)

5: Play arm At = arg maxi∈[K] θi(t) and observe the
reward rt

6: For all i ∈ [K]

µ̂i(t+ 1) =
Ti(t) · µ̂i(t) + rt 1{i = At}

Ti(t) + 1{i = At}

7: For all i ∈ [K]: Ti(t+ 1) = Ti(t) + 1{i = At}
8: end for

Algorithm 2 shows the pseudo-code of MOTS-J . Ob-
serve that MOTS-J is identical to MOTS, except that in
Line 4 of MOTS-J , it samples θ̃i(t) from a distribution
J (µ̂i(t), 1/Ti(t)) instead of the Gaussian distribution used
in Section 3.2 for MOTS. The distribution J (µ, σ2) has the
following PDF:

φJ (x) =
1

2σ2
· |x− µ| · exp

[
−1

2

(
x− µ
σ

)2]
. (8)

Note that J is a Rayleigh distribution if it is restricted to
x ≥ 0.

The following theorem shows the minimax and asymptotic
optimality of MOTS-J for Gaussian rewards.

Theorem 4. Assume that the reward of each arm i follows
a Gaussian distribution N (µi, 1), and that α ≥ 2 in (2).
The regret of MOTS-J satisfies

Rµ(T ) = O

(√
KT +

K∑
i=2

∆i

)
,

lim
T→∞

Rµ(T )

log(T )
=

∑
i:∆i>0

2

∆i
. (9)

Remark 3. To our knowledge, MOTS-J is the first TS type
algorithm that simultaneously achieves the minimax and
asymptotic optimality. Though the clipping threshold of
MOTS-J in (2) looks like the MOSS index in Audibert &
Bubeck (2009), there are some key differences in the choice
of α, the theoretical analysis and the result. Specifically,
Audibert & Bubeck (2009) proved that MOSS with the explo-
ration index α = 4 achieves minimax optimality for MAB.
It remained an open problem how to improve MOSS to be
both minimax and asymptotically optimal until Ménard &

Garivier (2017) proposed the KL-UCB++ algorithm for ex-
ponential families of distributions which implies that MOSS
with exploration index α = 2 could lead to the asymptotic
optimal regret for Gaussian rewards. For more details on
the choice of α in MOSS, we refer interested readers to the
discussion in Chapter 9.3 of Lattimore & Szepesvári (2020).

Compared with MOSS index based UCB algorithms, our
proposed MOTS-J is both minimax and asymptotically op-
timal as long as α ≥ 2. This flexibility is due to the fact that
our theoretical analysis (asymptotic optimal part) based
on Thompson sampling is quite different from those based
on UCB in Audibert & Bubeck (2009); Ménard & Gariv-
ier (2017). Not confined by the choice of the exploration
index α, it will be more suitable to design better algorithms
based on MOTS-J , e.g., achieving instance-dependent opti-
mality (see Lattimore (2015) for details) while keeping the
asymptotic optimality.

5. Proof of the Minimax Optimality of MOTS
In what follows, we prove our main result in Theorem 1,
and we defer the proofs of all other results to the appendix.
We first present several useful lemmas. Lemmas 1 and 2
characterise the concentration properties of subGaussian
random variables.
Lemma 1 (Lemma 9.3 in Lattimore & Szepesvári (2020)).
Let X1, X2, · · · be independent and 1-subGaussian random
variables with zero means. Denote µ̂t = 1/t

∑t
s=1Xs.

Then, for α ≥ 4 and any ∆ > 0,

P

(
∃ s ∈ [T ] : µ̂s+

√
α

s
log+

(
T

sK

)
+ ∆ ≤ 0

)
≤ 15K

T∆2
.

(10)

Lemma 2. Let ω > 0 be a constant and X1, X2, . . . , Xn

be independent and 1-subGaussian random variables with
zero means. Denote µ̂n = 1/n

∑n
s=1Xs. Then, for α > 0

and any N ≤ T ,

T∑
n=1

P
(
µ̂n +

√
α

n
log+

(
N

n

)
≥ ω

)

≤ 1 +
α log+(Nω2)

ω2
+

3

ω2
+

√
2απlog+(Nω2)

ω2
. (11)

Next, we introduce a few notations for ease of exposition.
Recall that we have defined µ̂i(t) to be the average reward
for arm i up to a time t. Now, let µ̂is be the average reward
for arm i up to when it is played the s-th time. In addition,
similar to the definitions of Di(t) and θi(t), we define Dis

as the distribution of arm i when it is played the s-th time,
and θis as a sample from distribution Dis.

The following lemma upper bounds the expected total num-
ber of pulls of each arm. We note that it is first proved



MOTS: Minimax Optimal Thompson Sampling

by Agrawal & Goyal (2017); here, we use an improved
version presented in Lattimore & Szepesvári (2020)1.
Lemma 3 (Theorem 36.2 in Lattimore & Szepesvári
(2020)). Let ε ∈ R+. Then, the expected number of times
that Algorithm 1 plays arm i is bounded by

E[Ti(T )]

= E
[ T∑

t=1

1{At = i, Ei(t)}
]

+ E
[ T∑

t=1

1{At = i, Ec
i (t)}

]

≤ 1 + E
[ T−1∑

s=1

(
1

G1s(ε)
− 1

)]
+ E

[ T−1∑
t=K+1

1{At = i, Ec
i (t)}

]
(12)

≤ 2 + E
[ T−1∑

s=1

(
1

G1s(ε)
− 1

)]
+ E

[ T−1∑
s=1

1{Gis(ε) > 1/T}
]
,

(13)

where Gis(ε) = 1 − Fis(µ1 − ε), Fis is the CDF of Dis,
and Ei(t) = {θi(t) ≤ µ1 − ε}.

Based on the decomposition of (12), one can easily prove the
problem-independent regret bound of Thompson Sampling
by setting ε = ∆i/2 and summing up over i = 1, . . . ,K
(Agrawal & Goyal, 2017). Similar techniques are also used
in proving the regret bound of UCB algorithms (Lattimore
& Szepesvári, 2020).

Note that by the definition of Dis, Gis(ε) is a random
variable depending on µ̂is. For brevity, however, we do
not explicitly indicate this dependency by writing Gis(ε)
as Gis(ε, µ̂is); such shortened notations are also used in
Agrawal & Goyal (2017); Lattimore & Szepesvári (2020).

Though Gis(ε) is defined based on the clipped Gaussian
distribution Dis, the right-hand side of (12) and (13) can
be bounded in the same way for Gaussian distributions like
in Agrawal & Goyal (2017). We need some notations. Let
F ′is be the CDF of Gaussian distributionN (µ̂is, 1/(ρs)) for
any s ≥ 1. Let G′is(ε) = 1 − F ′is(µ1 − ε). We have the
following lemma.

Lemma 4. Let ρ ∈ (1/2, 1) be a constant. Under the
conditions in Theorem 1, for any ε > 0, there exists a
universal constant c > 0 such that:

E
[ T−1∑
s=1

(
1

G′1s(ε)
− 1

)]
≤ c

ε2
. (14)

Similar quantities are also bounded in Agrawal & Goyal
(2017); Lattimore & Szepesvári (2020), which are essential
for proving the near optimal problem-independent regret
bound for Thompson sampling. However, the upper bound
in Lemma 4 is sharper than that in previous papers due to

1Since MOTS plays every arm once at the beginning, (12) starts
with t = K + 1 and s = 1.

the scaling parameter ρ we choose in our MOTS algorithm.
In fact, the requirement ρ ∈ (1/2, 1) is necessary to obtain
such an improved upper bound. In the next lemma, we will
show that if we choose ρ = 1 as is done in existing work,
the second term in the right-hand side of (12) will have a
nontrivial lower bound.

Lemma 5. Assume K log T ≤
√
T . If we set ρ = 1, then

there exists a bandit instance with ∆i = 2
√
K log T/T for

all i ∈ {2, · · · ,K} such that

E
[

1

G′1s(ε)
− 1

]
≥ e−

sε2

2

sε2
,∀ε > 0, (15)

and the decomposition in (12) will lead to

K∆i · E
[ T−1∑
s=1

(
1

G′1s(∆i/2)
− 1

)]
= Ω(

√
KT log T ).

The above lemma shows that if we set ρ = 1, the decom-
position in (12) will lead to an unavoidable Ω(

√
KT log T )

problem-independent regret. Combined with Lemma 4, it
indicates that our choice of ρ ∈ (1/2, 1) in MOTS is cru-
cial to improve the previous analysis and obtain a better
regret bound. When the reward distribution is Bernoulli,
it is worth noting that Agrawal & Goyal (2017) achieved
an improved regret O(

√
KT logK) by using Gaussian pri-

ors. Meanwhile, they also proved that this regret bound
is unimprovable for Thompson sampling using Gaussian
priors, which leaves a gap in achieving the minimax opti-
mal regret O(

√
KT ). In the following proof of Theorem

1, we will show that the clipped Gaussian distribution suf-
fices to close this gap and achieve the O(

√
KT ) minimax

regret. Moreover, in Theorem 4, we will further show that
MOTS-J can achieve the minimax optimal regret by using
the Rayleigh distribution and does not need the requirement
on the scaling parameter ρ, which is crucial in proving the
asymptotic optimality simultaneously.

Now, we prove the minimax optimality of MOTS.

Proof of Theorem 1. Recall that µ̂is is the average reward
of arm i when it has been played s times. We define ∆ as
follows:

∆ = µ1 − min
1≤s≤T

{
µ̂1s +

√
α

s
log+

(
T

sK

)}
. (16)

The regret of Algorithm 1 can be decomposed as follows.

Rµ(T ) =
∑

i:∆i>0

∆iE[Ti(T )]

≤ E[2T∆] + E
[ ∑
i:∆i>2∆

∆iTi(T )

]
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≤ E[2T∆] + 8
√
KT + E

[∑
i∈S

∆iTi(T )

]
, (17)

where S = {i : ∆i > max{2∆, 8
√
K/T}} is an index

set. The first term in (17) can be bounded as:

E[2T∆] = 2T

∫ ∞
0

P(∆ ≥ x)dx

≤ 2T

∫ ∞
0

min

{
1,

15K

Tx2

}
dx = 4

√
15KT, (18)

where the inequality comes from Lemma 1 since

P

(
µ1 − min

1≤s≤T

{
µ̂1s +

√
α

s
log+

(
T

sK

)}
≥ x

)

=P

(
∃1 ≤ s ≤ T : µ1 − µ̂1s −

√
α

s
log+

(
T

sK

)
− x ≥ 0

)
.

Now we focus on term
∑
i∈S ∆iTi(T ). Note that the update

rules of Algorithm 1 ensure Di(t+ 1) = Di(t) (t ≥ K+ 1)
whenever At 6= i. We define

τis = µ̂is +

√
α

s
log+

(
T

sK

)
. (19)

By the definition in (2), we have τis = τi(t) when Ti(t) = s.
From the definition of ∆ in (16), for i ∈ S, we have

τ1s = µ̂1s +

√
α

s
log+

(
T

sK

)
≥ µ1 −∆ ≥ µ1 −

∆i

2
. (20)

Recall the definition of D1s. Let θ1s be a sample from
the clipped distribution D1s. As mentioned in Section 3.2,
we obtain θ1s with the following procedure. We first sam-
ple θ̃1s from distribution N (µ̂1s, 1/(ρs)). If θ̃1s < τ1s,
we set θ1s = θ̃1s; otherwise, we set θ1s = τ1s. (20)
implies that µ1 − ∆i/2 ≤ τ1s, where τ1s is the bound-
ary for clipping. Therefore, P(θ̃1s ≥ µ1 − ∆i/2) =
P(θ1s ≥ µ1 − ∆i/2). By definition, F ′is is the CDF of
N (µ̂is, 1/(ρs)) and G′is(ε) = 1− F ′is(µ1 − ε). Therefore,
for any i ∈ S, G1s(∆i/2) = P(θ1s ≥ µ1 − ∆i/2) =

P(θ̃1s ≥ µ1 −∆i/2) = G′1s(∆i/2).

Using (12) of Lemma 3 and setting ε = ∆i/2, for any i ∈ S,

we have

∆iE[Ti(T )] ≤ ∆i + ∆i · E
[ T−1∑
t=K+1

1{At = i, Eci (t)}
]

+ ∆i · E
[ T−1∑
s=1

(
1

G1s(∆i/2)
− 1

)]

= ∆i + ∆i · E
[ T−1∑
t=K+1

1{At = i, Eci (t)}
]

︸ ︷︷ ︸
I1

+ ∆i · E
[ T−1∑
s=1

(
1

G′1s(∆i/2)
− 1

)]
︸ ︷︷ ︸

I2

.

Bounding term I1: Note that

Ec
i (t) =

{
θi(t) > µ1 −

∆i

2

}

⊆

{
µ̂i(t) +

√
α

Ti(t)
log+

(
T

KTi(t)

)
> µ1 −

∆i

2

}
.

We define the following notation:

κi =

T∑
s=1

1

{
µ̂is +

√
α

s
log+

(
T

sK

)
> µ1 −

∆i

2

}
, (21)

which immediately implies that

I1 = ∆i · E
[ T−1∑

t=K+1

1{At = i, Ec
i (t)}

]
≤ ∆iE[κi]. (22)

To further bound (22), we have

∆iE[κi]

= ∆iE

[
T∑

s=1

1

{
µ̂is +

√
α

s
log+

(
T

sK

)
> µ1 −

∆i

2

}]

≤ ∆i

T∑
s=1

P

{
µ̂is − µi +

√
α

s
log+

(
T

sK

)
>

∆i

2

}

≤ ∆i +
12

∆i
+

4α

∆i

(
log+

(
T∆2

i

4K

)
+

√
2απ log+

(
T∆2

i

4K

))
,

(23)

where the first inequality is due to the fact that µ1−µi = ∆i

and the second one is by Lemma 2. For a > 0, it can be ver-
ified that h(x) = x−1 log+(ax2) is monotonically decreas-
ing for x ≥ e/

√
a. Since ∆i ≥ 8

√
K/T > e/

√
T/(4K),

we have log(T∆2
i /(4K))/∆i ≤

√
T/K. Plugging this

into (23), we have E[∆iκi] = O(
√
T/K + ∆i).

Bounding term I2: applying Lemma 4, we immediately
obtain

I2 = ∆iE
[ T−1∑
s=1

(
1

G′1s(∆i/2)
− 1

)]
= O

(√
T

K

)
.

(24)
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(a) K = 50, ε = 0.2
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(b) K = 50, ε = 0.1
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(c) K = 50, ε = 0.05

Figure 1. The regret for different algorithms in Setting (1): K = 50 and ε ∈ {0.2, 0.1, 0.05}. The experiments are averaged over 6000
repetitions.
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(a) K = 100, ε = 0.2
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(b) K = 100, ε = 0.1
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(c) K = 100, ε = 0.05

Figure 2. The regret for different algorithms in Setting (2): K = 100 and ε ∈ {0.2, 0.1, 0.05}. The experiments are averaged over 6000
repetitions.

Substituting (18), (21), (23), and (24) into (17), we complete
the proof of Theorem 1.

6. Experiments
In this section, we experimentally compare our proposed
algorithms MOTS and MOTS-J with existing algorithms
for multi-armed bandit problems with Gaussian rewards.
Baseline algorithms include MOSS (Audibert & Bubeck,
2009), UCB (Katehakis & Robbins, 1995), and Thomp-
son sampling with Gaussian priors (TS for short) (Agrawal
& Goyal, 2017). Throughout the experiment, we assume
the reward follows an independent Gaussian distribution
N (µ, 1) with unit variance and mean µ which is to be
specified in different settings. Specifically, we consider
three settings with different number of arms K and dif-
ferent mean rewards {µi}Ki=1: (1) K = 50, µ1 = 1, and
µ2 = . . . = µ50 = 1 − ε, where ε varies in the range
{0.2, 0.1, 0.05} for different experiments; (2) K = 100,
µ1 = 1, and µ2 = . . . = µ100 = 1 − ε, where ε varies
in the range {0.2, 0.1, 0.05} for different experiments; (3)
K = 50, µ1 = 1, µ5i+j = 1 − 0.1i, for i = 1, . . . , 9 and
j = −3,−2,−1, 0, 1, and µ47 = µ48 = µ49 = µ50 = 0. It
is worth noting that Setting (1) and Setting (2) only differs

in the number of suboptimal arms, where all the subopti-
mal arms have the same mean value that is distinct from
the mean value of the best arm. In contrast, Setting (3) is
a more challenging bandit instance where the suboptimal
arms are from a rather diverse set.

In all the experiments, the total number of time steps T is
set to 107. The parameter ρ for MOTS defined in Section
3.2 is set to 0.9999. Since we focus on Gaussian rewards,
we set α = 2 in (2) for both MOTS and MOTS-J .

Furthermore, for MOTS-J , we need to sample instances
from distribution J (µ, σ2), of which the PDF is defined in
(8). To this end, we use the well known inverse transform
sampling technique by first computing the corresponding
inverse CDF, and then uniformly choosing a random number
in [0, 1], which is then used to calculate the random number
sampled from J (µ, σ2).

For Setting (1), Figures 1(a), 1(b), and 1(c) report the regrets
of all algorithms when ε is 0.2, 0.1, 0.05 respectively. For
all ε values, MOTS consistently outperforms the baselines
for all time step t, and MOTS-J outperforms the baselines
especially when t is large. For instance, in Figure 1(c), when
time step t is T = 107, the regret of MOTS and MOTS-J
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are 9615 and 9245 respectively, while the regrets of TS,
MOSS, and UCB are 14058, 14721, and 37781 respectively.
The pink solid line represents the asymptotic lower bound,
i.e., Rµ(T ) = log(T )×

∑
i:∆i>0 2/∆i. All the experimen-

tal results indicate that our algorithms are asymptotically
optimal.

For Setting (2), Figures 2(a), 2(b), and 2(c) report the re-
grets of MOTS, MOTS-J , MOSS, TS, and UCB when ε
is 0.2, 0.1, 0.05 respectively. Again, for all ε values, when
varying the time step t, MOTS consistently has the smallest
regret, outperforming all baselines, and MOTS-J outper-
forms all baselines especially when t is large.
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Figure 3. The regret for different algorithms in Setting (3): K =
50 and the mean values of arms are from a diverse set. The experi-
ments are averaged over 6000 repetitions.

The experimental results for Setting (3) are reported in Fig-
ure 3, which again are consistent with the theoretical find-
ings that MOTS and MOTS-J outperform baseline algo-
rithms, though the suboptimal arms are extremely diverse
and thus the bandit instance is relatively hard. In addition,
our algorithms are still asymptotically optimal.

In summary, our algorithms consistently outperform TS,
MOSS, and UCB in various settings.

7. Conclusion and Future Work
We solved the open problem on the minimax optimality for
Thompson sampling (Li & Chapelle, 2012). We proposed
the MOTS algorithm and proved that it achieves the mini-
max optimal regret O(

√
KT ) when rewards are generated

from subGaussian distributions. In addition, we propose
a variant of MOTS called MOTS-J that simultaneously
achieves the minimax and asymptotically optimal regret for
K-armed bandit problems when rewards are generated from
Gaussian distributions. Our experiments demonstrate the
superior performances of MOTS and MOTS-J compared
with the state-of-the-art bandit algorithms.

Interestingly, our experimental results show that the per-
formance of MOTS is never worse than that of MOTS-
J . Therefore, it would be an interesting future direction
to investigate whether the proposed MOTS with clipped
Gaussian distributions can also achieve both minimax and
asymptotic optimality for multi-armed bandits.
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A. Proofs of Theorems
In this section, we provide the proofs of Theorems 2, 3 and 4.

A.1. Proof of Theorem 2

To prove Theorem 2, we need the following technical lemma.
Lemma 6. For any εT > 0, ε > 0 that satisfies ε+ εT < ∆i, it holds that

E
[ T−1∑
s=1

1{G′is(ε) > 1/T}
]
≤ 1 +

2

ε2T
+

2 log T

ρ(∆i − ε− εT )2
.

Proof of Theorem 2. Let Z(ε) be the following event

Z(ε) =

{
∀s ∈ [T ] : µ̂1s +

√
α

s
log+

( T

sK

)
≥ µ1 − ε

}
. (25)

For any arm i ∈ [K], we have

E[Ti(T )] ≤ E[Ti(T ) | Z(ε)]P(Z(ε)) + T (1− P[Z(ε)])

≤ 2 + E
[ T−1∑
s=1

(
1

G1s(ε)
− 1

) ∣∣∣∣Z(ε)

]
+ T (1− P[Z(ε)]) + E

[ T−1∑
s=1

1{Gis(ε) > 1/T}
]

≤ 2 + E
[ T−1∑
s=1

(
1

G′1s(ε)
− 1

)]
+ T (1− P[Z(ε)]) + E

[ T−1∑
s=1

1{Gis(ε) > 1/T}
]

≤ 2 + E
[ T−1∑
s=1

(
1

G′1s(ε)
− 1

)]
+ T (1− P[Z(ε)]) + E

[ T−1∑
s=1

1{G′is(ε) > 1/T}
]
, (26)

where the second inequality is due to (13) in Lemma 3, the third inequality is due to the fact that conditional on event Z(ε)
defined in (25) we have G1s(ε) = G′1s(ε), and the last inequality is due to the fact that Gis(ε) = G′is(ε) for

µ̂is +

√
α

s
log+

( T

sK

)
≥ µ1 − ε, (27)

and Gis(ε) = 0 ≤ G′is(ε) for

µ̂is +

√
α

s
log+

( T

sK

)
< µ1 − ε. (28)

Let ε = εT = 1/ log log T . Applying Lemma 1, we have

T (1− P[Z(ε)]) ≤ T · 15K

Tε2
≤ 15K(log log T )2. (29)

Using Lemma 4, we have

E
[ T−1∑
s=1

(
1

G′1s(ε)
− 1

)]
≤ O((log log T )2). (30)

Furthermore using Lemma 6, we obtain

E
[ T−1∑
s=1

1{G′is(ε) > 1/T}
]
≤ 1 + 2(log log T )2 +

2 log T

ρ(∆i − 2/ log log T )2
. (31)

Combine (26), (29), (30) and (31) together, we finally obtain

lim
T→∞

E[∆iTi(T )]

log T
=

2

ρ∆i
. (32)

This completes the proof for the asymptotic regret.
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A.2. Proof of Theorem 3

In the proof of Theorem 1 (minimax optimality), we need to bound I2 as in (24), which calls the conclusion of Lemma 4.
However, the value of ρ is a fixed constant in Lemma 4, which thus is absorbed into the constant c. In order to show the
dependence of the regret on ρ chosen as in Theorem 3, we need to replace Lemma 4 with the following variant.

Lemma 7. Let ρ = 1−
√

40/ ilog(m)(T ). Under the conditions in Theorem 3, there exists a universal constant c > 0 such
that

E
[ T−1∑
s=1

(
1

G′1s(ε)− 1

)]
≤ c ilog(m−1)(T )

ε2
. (33)

Proof of Theorem 3. From Lemma 7, we immediately obtain

I2 = ∆iE
[ T−1∑
s=1

(
1

G′1s(∆i/2)
− 1

)]
≤ O

(
ilog(m−1)(T )

√
T

K
+ ∆i

)
, (34)

where I2 is defined the same as in (24). Note that the above inequality only changes the result in (24) and the rest of the
proof of Theorem 1 remains the same. Therefore, substituting (18), (21), (23) and (34) back into (17), we have

Rµ(T ) ≤ O
(√

KT ilog(m−1)(T ) +

K∑
i=2

∆i

)
. (35)

For the asymptotic regret bound, the proof is the same as that of Theorem 2 presented in Section A.1 since we have explicitly

kept the dependence of ρ during the proof. Note that ρ = 1−
√

40/ ilog(m)(T )→ 1 when T →∞. Combining this with
(32), we have proved the asymptotic regret bound in Theorem 3.

A.3. Proof of Theorem 4

Proof. For the ease of exposition, we follow the same notations used in Theorem 1 and 2, except that we redefine two
notations: let F ′is be the CDF of J (µ̂is, 1/s) for any s ≥ 1 and G′is(ε) = 1− F ′is(µ1 − ε), since Theorem 4 uses clipped J
distribution.

In Theorem 4, the proof of the minimax optimality is similar to that of Theorem 1 and the proof of asymptotic optimality is
similar to that of Theorem 2. We first focus on the minimax optimality. Note that in Theorem 4, we assume α ≥ 2 while we
have α ≥ 4 in Theorem 1. Therefore, we need to replace the concentration property in Lemma 1 by the following lemma
which gives a sharper bound.

Lemma 8. Let X1, X2, · · · be independent Gaussian random variables with zero mean and variance 1. Denote β̂t =
1/t
∑t
s=1Xs. Then for α ≥ 2 and any ∆ > 0,

P

(
∃ s ≥ 1 : β̂s+

√
α

s
log+

(
T

sK

)
+ ∆ ≤ 0

)
≤ 4K

T∆2
. (36)

In the proof of Theorem 1 (minimax optimality), we need to bound I2 as in (24), which calls the conclusion of Lemma 4,
whose proof depends on the fact that ρ < 1. In contrast, in Theorem 4, we do not have the parameter ρ. Therefore, we need
to replace Lemma 4 with the following variant.

Lemma 9. Under the conditions in Theorem 4, there exists a universal constant c > 0 such that:

E
[ T−1∑

s=1

(
1

G′1s(ε)
− 1

)]
≤ c

ε2
. (37)
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From Lemma 9, we immediately obtain

I2 = ∆iE
[ T−1∑
s=1

(
1

G′1s(∆i/2)
− 1

)]
≤ O

(√
T

K
+ ∆i

)
. (38)

The rest of the proof for minimax optimality remains the same as that in Theorem 1. Substituting (18), (21), (23) and (38)
back into (17), we have

Rµ(T ) ≤ O
(√

KT +

K∑
i=2

∆i

)
. (39)

For the asymptotic regret bound, we will follow the proof of Theorem 2. Note that Theorem 2 calls the conclusions of
Lemmas 1, 4 and 6. To prove the asymptotic regret bound of Theorem 4, we replace Lemmas 1 and 4 by Lemmas 8 and 9
respectively, and further replace Lemma 6 by the following lemma.

Lemma 10. Under the conditions in Theorem 4, for any εT > 0, ε > 0 that satisfies ε+ εT < ∆i, it holds that

E
[ T−1∑
s=1

1{G′is(ε) > 1/T}
]
≤ 1 +

2

ε2T
+

2 log T

(∆i − ε− εT )2
.

The rest of the proof is the same as that of Theorem 2, and thus we omit it for simplicity. Note that in Theorem 4, it does not
have parameter ρ. Thus we have

lim
T→∞

Rµ(T )

log(T )
=

∑
i:∆i>0

2

∆i
, (40)

which completes the proof.

B. Proof of Supporting Lemmas
In this section, we prove the lemmas used in proving the main theories.

B.1. Proof of Lemma 1

Proof. From Lemma 9.3 of Lattimore & Szepesvári (2020), we obtain

P
(
∃s ∈ [T ] : µ̂s +

√
4

s
log+

(
T

sK

)
+ ∆ ≤ 0

)
≤ 15K

T∆2
. (41)

Observing that for α ≥ 4 √
4

s
log+

(
T

sK

)
≤

√
α

s
log+

(
T

sK

)
, (42)

Lemma 1 follows immediately.

B.2. Proof of Lemma 2

We will need the following property of subGaussian random variables.

Lemma 11 (Lattimore & Szepesvári (2020)). Assume that X1, . . . , Xn are independent, σ-subGaussian random variables
centered around µ. Then for any ε > 0

P(µ̂ ≥ µ+ ε) ≤ exp

(
− nε2

2σ2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
− nε2

2σ2

)
, (43)

where µ̂ = 1/n
∑n
t=1Xt.
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Proof of Lemma 2. Let γ = α log+(Nω2)/ω2. Note that for n ≥ 1/w2, it holds that

ω

√
γ

n
=

√
α

n
log+(Nω2) ≥

√
α

n
log+

(N
n

)
. (44)

Let γ′ = max{γ, 1/w2}. Therefore, we have

T∑
n=1

P
(
µ̂n +

√
α

n
log+

(N
n

)
≥ ω

)
≤ γ′ +

T∑
n=dγe

P
(
µ̂n ≥ ω

(
1−

√
γ

n

))

≤ γ′ +
∞∑

n=dγe

exp

(
−
ω2(
√
n−√γ)2

2

)
(45)

≤ γ′ + 1 +

∫ ∞
γ

exp

(
−
ω2(
√
x−√γ)2

2

)
dx

≤ γ′ + 1 +
2

ω

∫ ∞
0

( y
ω

+
√
γ
)

exp(−y2/2)dy

≤ γ′ + 1 +
2

ω2
+

√
2πγ

ω
, (46)

where (45) is the result of Lemma 11 and (46) is due to the fact that
∫∞

0
y exp(−y2/2)dy = 1 and

∫∞
0

exp(−y2/2)dy =√
2π/2. (46) immediately implies the claim of Lemma 2:

T∑
n=1

P
(
µ̂n +

√
α

n
log+

(N
n

)
≥ ω

)
≤γ′ +

T∑
n=dγe

P
(
µ̂n ≥ ω

(
1−

√
γ

n

))

≤γ′ + 1 +
2

ω2
+

√
2πγ

ω
. (47)

Plugging γ′ ≤ α log+(Nω2)/ω2 + 1/w2 into the above inequality, we obtain

T∑
n=1

P
(
µ̂n +

√
α

n
log+

(
N

n

)
≥ ω

)
≤ 1 +

α log+(Nω2)

ω2
+

3

ω2
+

√
2απlog+(Nω2)

ω2
, (48)

which completes the proof.

B.3. Proof of Lemma 4

We will need the following property of Gaussian distributions.

Lemma 12 (Abramowitz & Stegun (1965)). For a Gaussian distributed random variable Z with mean µ and variance σ2,
for z > 0,

P(Z > µ+ zσ) ≤ 1

2
exp

(
−z

2

2

)
and P(Z < µ− zσ) ≤ 1

2
exp

(
−z

2

2

)
(49)

Proof of Lemma 4. We decompose the proof of Lemma 4 into the proof of the following two statements: (i) there exists a
universal constant c′ such that

E
[

1

G′1s(ε)
− 1

]
≤ c′, ∀s, (50)

and (ii) for L = d32/ε2e, it holds that

E
[ T∑
s=L

(
1

G′1s(ε)
− 1

)]
≤ 4

e2

(
1 +

16

ε2

)
. (51)
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Let Θs = N (µ̂1s, 1/(ρs)) and Ys be the random variable denoting the number of consecutive independent trials until a
sample of Θs becomes greater than µ1 − ε. Note that G′is(ε) = P(θ ≥ µ1 − ε), where θ is sampled from Θs. Hence we
have

E
[

1

G′1s(ε)
− 1

]
= E[Ys]. (52)

Consider an integer r ≥ 1. Let z =
√

2ρ′ log r, where ρ′ ∈ (ρ, 1) and will be determined later. Let random variable Mr be
the maximum of r independent samples from Θs. Define Fs to be the filtration consisting the history of plays of Algorithm
1 up to the s-th pull of arm 1. Then it holds

P(Ys < r) ≥ P(Mr > µ1 − ε)

≥ E
[
E
[(
Mr > µ̂1s +

z
√
ρs
, µ̂1s +

z
√
ρs
≥ µ1 − ε

)∣∣∣∣Fs]]
= E

[
1

{
µ̂1s +

z
√
ρs
≥ µ1 − ε

}
· P
(
Mr > µ̂1s +

z
√
ρs

∣∣∣∣Fs)]. (53)

For a random variable Z ∼ N (µ, σ2), from Abramowitz & Stegun (1965), we have

e−x
2/2

x ·
√

2π
≥ P(Z > µ+ xσ) ≥ 1√

2π

x

x2 + 1
e−

x2

2 . (54)

Therefore, if r > e2, it holds that

P
(
Mr > µ̂1s +

z
√
ρs

∣∣∣∣Fs) ≥ 1−
(

1− 1√
2π

z

z2 + 1
e−z

2/2

)r
= 1−

(
1− r−ρ

′

√
2π

√
2ρ′ log r

2ρ′ log r + 1

)r
≥ 1− exp

(
− r1−ρ′

√
8π log r

)
, (55)

where the last inequality is due to (1− x)r ≤ e−rx, 2ρ′ log r + 1 ≤ 2
√

2ρ′ log r (since r > e2 and ρ′ > 1/2) and ρ′ < 1.
Let x = log r, then

exp

(
− r1−ρ′

√
8π log r

)
≤ 1

r2
⇔ exp((1− ρ′)x) ≥ 2

√
8πx

3
2 .

It is easy to verify that for x ≥ 10/(1 − ρ′)2, exp((1 − ρ′)x) ≥ 2
√

8πx
3
2 . Hence, if r ≥ exp(10/(1 − ρ′)2), we have

exp(−r1−ρ′/(
√

8π log r)) ≤ 1/r2.
For r ≥ exp(10/(1− ρ′)2), we have

P
(
Mr > µ̂1s +

z
√
ρs

∣∣∣∣Fs) ≥ 1− 1

r2
. (56)

For any ε > 0, it holds that

P
(
µ̂1s +

z
√
ρs
≥ µ1 − ε

)
≥ P

(
µ̂1s +

z
√
ρs
≥ µ1

)
≥ 1− exp(−z2/(2ρ))

= 1− exp(−ρ′/ρ log r)

= 1− r−ρ
′/ρ. (57)

where the second equality is due to Lemma 11. Therefore, for r ≥ exp[10/(1− ρ′)2], substituting (56) and (57) into (53)
yields

P(Ys < r) ≥ 1− r−2 − r−
ρ′
ρ . (58)
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For any ρ′ > ρ, this gives rise to

E[Ys] =

∞∑
r=0

P(Ys ≥ r)

≤ exp

[
10

(1− ρ′)2

]
+
∑
r≥1

1

r2
+
∑
r≥1

r−
ρ′
ρ

≤ exp

[
10

(1− ρ′)2

]
+ 2 + 1 +

∫ ∞
x=1

x−
ρ′
ρ dx

≤ 2 exp

[
10

(1− ρ′)2

]
+

1

(1− ρ)− (1− ρ′)
,

Let 1− ρ′ = (1− ρ)/2. We further obtain

E
[

1

G′1s(ε)
− 1

]
≤ 2 exp

[
40

(1− ρ)2

]
+

2

1− ρ
. (59)

Since ρ ∈ (1/2, 1) is fixed, then there exists a universal constant c′ > 0 such that

E
[

1

G′1s(ε)
− 1

]
≤ c′. (60)

Now, we turn to prove (51). Let Es be the event that µ̂1s ≥ µ1 − ε/2. Let X1s is N (µ̂1s, 1/(ρs)) distributed random
variable. Using the upper bound of Lemma 12 with z = ε/(2

√
1/(ρs)), we obtain

P(X1s > µ1 − ε | Es) ≥ P(X1s > µ̂1s − ε/2 | Es) ≥ 1− 1/2 exp(−sρε2/8). (61)

Then, we have

E
[

1

G′1s(ε)
− 1

]
= Eµ̂1s∼Θs

[
1

P(X1s > µ1 − ε)
− 1

∣∣∣∣µ̂1s

]
≤ E

[
1

P(X1s > µ1 − ε | Es) · P(Es)
− 1

]
≤ E

[
1

(1− 1/2 exp(−sρε2/8))P(Es)
− 1

]
.

(62)

Recall L = d32/ε2e. Applying Lemma 11, we have

P(Es) = P
(
µ̂1s ≥ µ1 −

ε

2

)
≥ 1− exp

(
− sε2

8

)
≥ 1− exp(−sρε2/8). (63)

Substituting the above inequality into (62) yields

E
[ T∑
s=L

(
1

G′1s(ε)
− 1

)]
≤

T∑
s=L

[
1

(1− exp(−sρε2/8))2
− 1

]

≤
T∑
s=L

4 exp

(
−sε

2

16

)
≤ 4

∫ ∞
L

exp

(
− sε2

16

)
ds+

4

e2

≤ 4

e2

(
1 +

16

ε2

)
.

The second inequality follows since 1/(1− x)2 − 1 ≤ 4x, for x ≤ 1−
√

2/2 and exp(−Lρε2/8) ≤ 1/e2. We complete
the proof of Lemma 4 by combining (50) and (51).
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B.4. Proof of Lemma 5

Proof. Recall that ρ = 1. Let µ̂1s = µ1 − ε + y. Let Z be a sample from N (µ̂1s, 1/s). For y < 0, applying (54) with
x = −

√
sy > 0 yields

G′1s(ε) = P(Z > µ̂1s + x/
√
s) = P(Z > µ1 − ε) ≤ e−sy

2

/(−
√

2πsy). (64)

Since µ̂1s ∼ N (µ1, 1/s), y ∼ N (ε, 1/s). Let g(y) be the PDF of Gaussian distribution N (ε, 1/s). We have

E
[

1

G′1s(ε)
− 1

]
=

∫ ∞
−∞

g(y)

[
1

G′1s(ε)
− 1

]
dy

≥
∫ 0

−∞
g(y)

[
1

G′1s(ε)
− 1

]
dy

≥ −
√
s
√

2π

∫ 0

−∞

[
g(y)y exp

(
sy2

2

)]
dy − 1

=

∫ 0

−∞

[
− sye−

s(y−ε)2
2 e

sy2

2

]
dy − 1

= se−
sε2

2

∫ ∞
0

ye−syεdy − 1

= se−
sε2

2

(
−ye−syε

sε
+
−e−syε

s2ε2

)∣∣∣∣∞
0

− 1 =
e−sε

2/2

sε2
− 1,

where the second inequality is from (64). Let ε = ∆i/2 =
√
K log T/T for i ∈ {2, 3, · · · ,K}. Since 2K log T ≤

√
T ,

we have

K∆i · E
[ T−1∑
s=1

(
1

G′1s(ε)
− 1

)]
≥ K∆i ·

√
T∑

s=1

(
e−sε

2/2

sε2
− 1

)
(65)

= Ω

(
K∆i ·

∫ √T
s=1

(
1

sε2
− 1

)
ds
)

= Ω

(
K∆i ·

∫ √T
s=1

1

sε2
ds
)

= Ω(
√
KT log T ), (66)

which completes the proof.

B.5. Proof of Lemma 6

Proof. Since εT + ε < ∆i, we have µi + εT ≤ µ1 − ε. Applying Lemma 11, we have P(µ̂is > µi + εT ) ≤ exp(−sε2T /2).
Furthermore,

∞∑
s=1

exp

(
− sε2T

2

)
≤ 1

exp(ε2T /2)− 1
≤ 2

ε2T
. (67)

where the last inequality is due to the fact 1 + x ≤ ex for all x. Define Li = 2 log T/(ρ(∆i − ε− εT )2). For s ≥ Li and
Xis sampled from N (µ̂is, 1/(ρs)), if µ̂is ≤ µi + εT , then using Gaussian tail bound in Lemma 12, we obtain

P(Xis ≥ µ1 − ε) ≤
1

2
exp

(
− ρs(µ̂is − µ1 + ε)2

2

)
≤ 1

2
exp

(
− ρs(µ1 − ε− µi − εT )2

2

)
=

1

2
exp

(
− ρs(∆i − ε− εT )2

2

)
≤ 1

T
. (68)
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Let Yis be the event that µ̂is ≤ µi + εT holds. We further obtain

E
[ T−1∑
s=1

1{G′is(ε) > 1/T}
]
≤E
[ T−1∑
s=1

[1{G′is(ε) > 1/T} | Yis]
]

+

T−1∑
s=1

(1− P[Yis])

≤
T∑

s=dLie

E
[
[1{P(Xis > µ1 − ε) > 1/T}|Yis]

]
+ dLie+

T−1∑
s=1

(1− P[Yis])

≤dLie+

T−1∑
s=1

(1− P[Yis]) ≤ 1 +
2

ε2T
+

2 log T

ρ(∆i − ε− εT )2
. (69)

where the first inequality is due to the factor P(A) ≤ P(A|B) + 1 − P(B), the third inequality is from (68) and the last
inequality is from (67).

B.6. Proof of Lemma 7

Proof. The proof of Lemma 7 is the same as that of Lemma 4, except that the upper bound in (60) will depend on ρ instead

of an absolute constant c′. In particular, plugging ρ = 1−
√

40/ ilog(m)(T ) back into (59) immediately yields

E
[

1

G′1s(ε)
− 1

]
≤ 2 exp

[
40

(1− ρ)2

]
+

2

1− ρ
≤ 2 ilog(m−1)(T ) + 2 ilog(m)(T ). (70)

Therefore, there exists a constant c′ such that

E
[

1

G′1s(ε)
− 1

]
≤ c′ ilog(m−1)(T ). (71)

Thus, combining (71) and (51), we obtain that

T−1∑
s=1

E
[

1

G′1s(ε)
− 1

]
≤ O

(
ilog(m−1)(T )

ε2

)
,

which completes the proof.

B.7. Proof of Lemma 8

We will need the following property of Gaussian distributions.

Lemma 13 (Lemma 12 of Lattimore (2018)). Let Z1, Z2, · · · be an infinite sequence of independent standard Gaussian ran-
dom variables and Sn =

∑n
s=1 Zs. Let d ∈ {1, 2, · · · } and ∆ > 0, γ > 0, λ ∈ [0,∞]d and hλ(s) =

∑d
i=1 min{s,

√
sλi},

then

P
(
∃ s ≥ 0 : Ss ≤ −

√
2s log+

(
γ

hλ(s)

)
− t∆

)
≤ 4hλ(1/∆2)

γ
. (72)

Proof of Lemma 8. Using Lemma 13 with γ = T/K, d = 1 and λ1 =∞, we have

P
(
∃s ≥ 1 : β̂s +

√
2

s
log+

(
T

sK

)
+ ∆ ≤ 0

)
≤ 4K

T∆2
. (73)

Note that for α ≥ 2 √
2

s
log+

(
T

sK

)
≤

√
α

s
log+

(
T

sK

)
, (74)

Lemma follows.
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B.8. Proof of Lemma 9

Similar to the proof of Lemma B.3 , where we used the tail bound property of Gaussian distributions in Lemma 12, we need
the following lemma for the tail bound of J distribution.
Lemma 14. For a random variable Z ∼ J (µ, σ2), for any z > 0,

P(Z > µ+ zσ) =
1

2
exp

(
−z

2

2

)
and P(Z < µ− zσ) =

1

2
exp

(
−z

2

2

)
. (75)

Proof of Lemma 9. Let L = d32/ε2e. We decompose the proof of Lemma 9 into the proof of the following two statements:
(i) there exists a universal constant c′ such that

L∑
s=1

E
[

1

G′1s(ε)
− 1

]
≤ c′

ε2
, ∀s, (76)

and (ii) it holds that

E
[ T∑
s=L

(
1

G′1s(ε)
− 1

)]
≤ 4

e2

(
1 +

16

ε2

)
. (77)

Replacing Lemma 12 by Lemma 14, the rest of the proof for Statement (ii) is the same as that of (51) in the proof of
Lemma 4 presented in Section (B.3). Hence, we only prove Statement (i) here.

Let µ̂1s = µ1 + x. Let Z be a sample from J (µ̂1s, 1/s). For x < −ε, applying Lemma 14 with z = −
√
s(ε + x) > 0

yields

G′1s(ε) = P(Z > µ1 − ε) =
1

2
exp

(
− s(ε+ x)2

2

)
. (78)

Since µ̂1s ∼ N (µ1, 1/s), x ∼ N (0, 1/s). Let f(x) be the PDF of N (0, 1/s). Note that G′1s(ε) is a random variable with
respect to µ̂1s and µ̂1s = µ1 + x, we have

Ex∼N (0,1/s)

[(
1

G′1s(ε)
− 1

)]
=

∫ −ε
−∞

f(x)

(
1

G′1s(ε)
− 1

)
dx+

∫ ∞
−ε

f(x)

(
1

G′1s(ε)
− 1

)
dx

≤
∫ −ε
−∞

f(x)

(
2 exp(

s(ε+ x)2

2
)− 1

)
dx

+

∫ ∞
−ε

f(x)

(
1

G′1s(ε)
− 1

)
dx

≤
∫ −ε
−∞

f(x)

(
2 exp(

s(ε+ x)2

2
)− 1

)
dx+

∫ ∞
−ε

f(x)dx

≤
∫ −ε
−∞

(√
2s

π
exp(

−sx2

2
) exp(

s(ε+ x)2

2
)

)
dx+ 1

≤
√

2s

π
exp

(
sε2

2

)∫ −ε
−∞

exp(sεx)dx+ 1

≤e
−sε2/2
√
sε

+ 1, (79)

where the first inequality is due to (78), the second inequality follows since µ̂1s = µ1 + x ≥ µ1 − ε and then G′1s(ε) =
P(Z > µ1 − ε) ≥ 1/2.

Note that for s ≤ L, e−sε
2/2 = O(1). From (79), we immediately obtain that for L = d 32

ε2 e, we have

L∑
s=1

E
[(

1

G′1s(ε)
− 1

)]
= O

( L∑
s=1

1√
sε

)
= O

(∫ 1/ε2

s=1

1√
sε

ds
)

= O

(
1

ε2

)
, (80)

which completes the proof.
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B.9. Proof of Lemma 10

Proof. Replacing Lemma 12 by Lemma 14, the rest of the proof for Lemma 10 is the same as the proof of Lemma 6
presented in Section B.5. Thus we omit it for simplicity.

C. Tail Bounds for J Distribution
In this section, we provide the proof of the tail bounds of J distribution.

Proof of Lemma 14. According to the PDF of J defined in (8), for any z > 0, we immediately have

P(Z − µ > zσ) =

∫ ∞
zσ

1

2σ2
x exp

[
−1

2

(
x

σ

)2]
dx

=
−σ2

2σ2
exp

[
− x2

2σ2

]∣∣∣∣∞
zσ

=
1

2
exp

(
− z2

2

)
. (81)

Similarly, for any z > 0, it holds that

P(Z < µ− zσ) =
1

2
exp

(
−z

2

2

)
, (82)

which completes the proof.


