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A. Illustration of Suboptimality via a Special Case: MAB

We consider the MAB, a special case of the MDP, where S is a singleton, A is discrete, and H = 1. To simplify the
subsequent discussion, we assume without loss of generality

r(a) = µ(a) + ✏, where ✏ ⇠ N(0, 1).

Here µ(a) is the expected reward of each action a 2 A and ✏ is independently drawn. For notational simplicity, we omit
the dependency on h 2 [H] and x 2 S, as H = 1 and S is a singleton. Based on the dataset D = {(a⌧ , r⌧ )}K

⌧=1, where
r
⌧ = r(a⌧ ), we consider the sample average estimator

bµ(a) = 1

N(a)

KX

⌧=1

r
⌧
· 1 {a

⌧ = a}, where N(a) =
KX

⌧=1

1 {a⌧ = a}.

Note that bµ serves as the estimated Q-function. Under Assumption 2.2, we have

bµ(a) ⇠ N
�
µ(a), 1/N(a)

�
. (A.1)

In particular, {bµ(a)}a2A are independent across each action a 2 A conditioning on {a
⌧
}
K

⌧=1. We consider the policy

b⇡(·) = argmax
⇡

hbµ(·),⇡(·)iA, (A.2)

which is greedy with respect to bµ, as it takes the action argmax
a2A bµ(a) with probability one.

By Equation (3.1), Lemma 3.1, and Equation (A.2), we have

SubOpt(b⇡;x)  �Eb⇡
⇥
◆(a)

⇤
| {z }

(i)

+E⇡⇤
⇥
◆(a)

⇤
| {z }

(ii)

, where ◆(a) = µ(a)� bµ(a).

Note that ◆(a) is mean zero with respect to PD for each action a 2 A. Therefore, assuming hypothetically b⇡ and ◆ are
independent, term (i) is mean zero with respect to PD. Meanwhile, as ⇡⇤ and ◆ are independent, term (ii) is also mean zero
with respect to PD. However, as b⇡ and ◆ are spuriously correlated due to their dependency on D, term (i) can be rather large
in expectation. See Figure 1 for an illustration. Specifically, we have

�Eb⇡
⇥
◆(a)

⇤
= hbµ(·)� µ(·), b⇡(·)iA
=
⌦
bµ(·)� µ(·), argmax

⇡

hbµ(·),⇡(·)iA
↵
A. (A.3)

For example, assuming µ(a) = 0 for each action a 2 A, term (i) is the maximum of |A| Gaussians {N(0, 1/N(a))}a2A,
which can be rather large in expectation, especially when N(a]) is relatively small for a certain action a

]
2 A, e.g.,

N(a]) = 1. More generally, it is quite possible that b⇡ takes a certain action a
\
2 A with probability one only because

N(a\) is relatively small, which allows bµ(a\) to be rather large, even when µ(a\) is relatively small. Due to such a spurious
correlation, hbµ(·) � µ(·), b⇡(·)iA = bµ(a\) � µ(a\) in Equation (A.3) can be rather large in expectation, which incurs a
significant suboptimality. More importantly, such an undesired situation can be quite common in practice, as D does not
necessarily have a “uniform coverage” over each action a 2 A. In other words, N(a]) is often relatively small for at least a
certain action a

]
2 A.

Going beyond the MAB, that is, H � 1, such a spurious correlation is further exacerbated, as it is more challenging to
ensure each state x 2 S and each action a 2 A are visited sufficiently many times in D. To this end, existing literature
(Antos et al., 2007; 2008; Munos and Szepesvári, 2008; Farahmand et al., 2010; 2016; Scherrer et al., 2015; Liu et al.,
2018; Nachum et al., 2019a;b; Chen and Jiang, 2019; Tang et al., 2019; Kallus and Uehara, 2019; 2020; Fan et al., 2020;
Xie and Jiang, 2020a;b; Jiang and Huang, 2020; Uehara et al., 2020; Duan et al., 2020; Yin et al., 2020; Qu and Wierman,
2020; Li et al., 2020; Liao et al., 2020; Nachum and Dai, 2020; Yang et al., 2020a; Zhang et al., 2020a;b) relies on various
assumptions on the “uniform coverage” of D, e.g., finite concentrability coefficients and uniformly lower bounded densities
of visitation measures, which however often fail to hold in practice.

B. Well-Explored Dataset

Corollary B.1 (Well-Explored Dataset). Suppose D consists of K trajectories {(x⌧

h
, a

⌧

h
, r

⌧

h
)}K,H

⌧,h=1 independently and
identically induced by a fixed behavior policy ⇡̄ in the linear MDP. Meanwhile, suppose there exists an absolute constant
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c > 0 such that

�min(⌃h) � c, where ⌃h = E⇡̄

⇥
�(sh, ah)�(sh, ah)

>⇤

at each step h 2 [H]. Here E⇡̄ is taken with respect to the trajectory induced by ⇡̄ in the underlying MDP. In Algorithm 2,
we set

� = 1, � = c · dH

p
⇣, where ⇣ = log(4dHK/⇠).

Here c > 0 is an absolute constant and ⇠ 2 (0, 1) is the confidence parameter. Suppose we have K � C · log(4dH/⇠),
where C > 0 is a sufficiently large absolute constant that depends on c. For Pess(D) in Algorithm 2, the event

E
⇤ =

n
SubOpt

�
Pess(D);x

�
 c

0
· dH

2
K

�1/2
p
⇣ for all x 2 S

o
(B.1)

satisfies PD(E⇤) � 1� ⇠. Here c
0
> 0 is an absolute constant that only depends on c and c.

Proof of Corollary B.1. See Appendix E.4 for a detailed proof.

C. Proof Sketch

In this section, we sketch the proofs of the main results in Section 4. In Section C.1, we sketch the proof of Theorem 4.2,
which handles any general MDP. In Section C.2, we specialize it to the linear MDP, which is handled by Theorem 4.4. In
Section C.3, we sketch the proof of Theorem 4.6, which establishes the information-theoretic lower bound.

C.1. Suboptimality of PEVI: General MDP

Recall that we define the model evaluation errors {◆h}Hh=1 in Equation (3.1), which are based on the (action- and state-
)value functions {( bQh,

bVh)}Hh=1 constructed by PEVI. Also, recall that we define the ⇠-uncertainty quantifiers {�h}
H

h=1

in Definition 4.1. The key to the proof of Theorem 4.2 is to show that for all h 2 [H], the constructed Q-function bQh in
Algorithm 1 is a pessimistic estimator of the optimal Q-function Q

⇤
h

. To this end, in the following lemma, we prove that
under the event E defined in Equation (4.1), ◆h lies within [0, 2�h] in a pointwise manner for all h 2 [H]. Recall that PD is
the joint distribution of the data collecting process.

Lemma C.1 (Pessimism for General MDP). Suppose that {�h}
H

h=1 in Algorithm 1 are ⇠-uncertainty quantifiers. Under E
defined in Equation (4.1), which satisfies PD(E) � 1� ⇠, we have

0  ◆h(x, a)  2�h(x, a), for all (x, a) 2 S ⇥A, h 2 [H]. (C.1)

Proof of Lemma C.1. See Appendix E.1 for a detailed proof.

In Equation (C.1), the nonnegativity of {◆h}Hh=1 implies the pessimism of { bQh}
H

h=1, that is, bQh  Q
⇤
h

in a pointwise
manner for all h 2 [H]. To see this, note that the definition of {◆h}Hh=1 in Equation (3.1) gives

Q
⇤
h
(x, a)� bQh(x, a) � (BhV

⇤
h+1)(x, a)� (Bh

bVh+1)(x, a) = (PhV
⇤
h+1)(x, a)� (Ph

bVh+1)(x, a), (C.2)

which together with Equations (2.3) and (2.5) further implies

Q
⇤
h
(x, a)� bQh(x, a) � E

⇥
max
a02A

Q
⇤
h+1(sh+1, a

0)� h bQh+1(sh+1, ·), b⇡h+1(· | sh+1)iA
�� sh = x, ah = a

⇤

� E
⇥
hQ

⇤
h+1(sh+1, ·)� bQh+1(sh+1, ·), b⇡h+1(· | sh+1)iA

�� sh = x, ah = a
⇤

(C.3)

for all (x, a) 2 S ⇥A and h 2 [H]. Also, note that bVH+1 = V
⇤
H+1 = 0. Therefore, Equation (C.2) implies Q⇤

H
� bQH in

a pointwise manner. Moreover, by recursively applying Equation (C.3), we have Q
⇤
h
� bQh in a pointwise manner for all

h 2 [H]. In other words, Lemma C.1 implies that the pessimism of { bQh}
H

h=1 holds with probability at least 1� ⇠ as long as
{�h}

H

h=1 in Algorithm 1 are ⇠-uncertainty quantifiers, which serves as a sufficient condition that can be verified. Meanwhile,
the upper bound of {◆h}Hh=1 in Equation (C.1) controls the underestimation bias of { bQh}

H

h=1, which arises from pessimism.

Based on Lemma C.1, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We upper bound the three terms on the right-hand side of Equation (3.2) respectively. Specifically,
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we apply Lemma 3.1 by setting b⇡ = {b⇡h}Hh=1 as the output of Algorithm 1, that is, b⇡ = Pess(D). As b⇡h is greedy with
respect to bQh for all h 2 [H], term (iii) in Equation (3.2) is nonpositive. Therefore, we have

SubOpt
�
Pess(D);x

�
 �

HX

h=1

Eb⇡
⇥
◆h(sh, ah)

�� s1 = x
⇤

| {z }
(i)

+
HX

h=1

E⇡⇤
⇥
◆h(sh, ah)

�� s1 = x
⇤

| {z }
(ii)

(C.4)

for all x 2 S , where terms (i) and (ii) characterize the spurious correlation and intrinsic uncertainty, respectively. To upper
bound such two terms, we invoke Lemma C.1, which implies

(i)  0, (ii)  2
HX

h=1

E⇡⇤
⇥
�h(sh, ah)

�� s1 = x
⇤

(C.5)

for all x 2 S . Combining Equations (C.4) and (C.5), we obtain Equation (4.2) under E defined in Equation (4.1). Meanwhile,
by Definition 4.1, we have PD(E) � 1� ⇠. Therefore, we conclude the proof of Theorem 4.2.

C.2. Suboptimality of PEVI: Linear MDP

Based on Theorem 4.2, we are ready to prove Theorem 4.4, which is specialized to the linear MDP defined in Definition 4.3.

Proof of Theorem 4.4. It suffices to show that {�h}
H

h=1 specified in Equation (4.7) are ⇠-uncertainty quantifiers, which are
defined in Definition 4.1. In the following lemma, we prove that such a statement holds when the regularization parameter
� > 0 and scaling parameter � > 0 in Algorithm 2 are properly chosen.

Lemma C.2 (⇠-Uncertainty Quantifier for Linear MDP). Suppose that Assumption 2.2 holds and the underlying MDP is a
linear MDP. In Algorithm 2, we set

� = 1, � = c · dH

p
⇣, where ⇣ = log(2dHK/⇠).

Here c > 0 is an absolute constant and ⇠ 2 (0, 1) is the confidence parameter. It holds that {�h}
H

h=1 specified in Equation
(4.7) are ⇠-uncertainty quantifiers, where {bVh+1}

H

h=1 used in Equation (4.1) are obtained by Algorithm 2.

Proof of Lemma C.2. See Appendix E.2 for a detailed proof.

As Lemma C.2 proves that {�h}
H

h=1 specified in Equation (4.7) are ⇠-uncertainty quantifiers, E defined in Equation (4.1)
satisfies PD(E) � 1� ⇠. Recall that PD is the joint distribution of the data collecting process. By specializing Theorem 4.2
to the linear MDP, we have

SubOpt
�
Pess(D);x

�
 2

HX

h=1

E⇡⇤
⇥
�h(sh, ah)

�� s1 = x
⇤

= 2�
HX

h=1

E⇡⇤

h�
�(sh, ah)

>⇤�1
h
�(sh, ah)

�1/2 ��� s1 = x

i

for all x 2 S under E defined in Equation (4.1). Here the last equality follows from Equation (4.7). Therefore, we conclude
the proof of Theorem 4.4.

C.3. Minimax Optimality of PEVI

In this section, we sketch the proof of Theorem 4.6, which establishes the minimax optimality of Theorem 4.4 for the linear
MDP. Specifically, in Section C.3.1, we construct a class M of linear MDPs and a worst-case dataset D, while in Section
C.3.2, we prove Theorem 4.6 via the information-theoretic lower bound.

C.3.1. CONSTRUCTION OF A HARD INSTANCE

In the sequel, we construct a class M of linear MDPs and a worst-case dataset D, which is compliant with the underlying
MDP as defined in Definition 2.1.
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Linear MDP: We define the following class of linear MDPs

M =
�
M(p1, p2, p3) : p1, p2, p3 2 [1/4, 3/4] with p3 = min{p1, p2}

 
, (C.6)

where M(p1, p2, p3) is an episodic MDP with the horizon H � 2, state space S = {x0, x1, x2}, and action space
A = {bj}

A

j=1 with |A| = A � 3. In particular, we fix the initial state as s1 = x0. For the transition kernel, at the first step
h = 1, we set

P1(x1 |x0, b1) = p1, P1(x2 |x0, b1) = 1� p1,

P1(x1 |x0, b2) = p2, P1(x2 |x0, b2) = 1� p2,

P1(x1 |x0, bj) = p3, P1(x2 |x0, bj) = 1� p3, for all j 2 {3, . . . , A}. (C.7)

Meanwhile, at any subsequent step h 2 {2, . . . , H}, we set

Ph(x1 |x1, a) = Ph(x2 |x2, a) = 1, for all a 2 A.

In other words, x1, x2 2 S are the absorbing states. Here P1(x1 |x0, b1) abbreviates P1(s2 = x1 | s1 = x0, a1 = b1). For
the reward function, we set

r1(x0, a) = 0, for all a 2 A,

rh(x1, a) = 1, rh(x2, a) = 0, for all a 2 A, h 2 {2, . . . , H}. (C.8)

See Figure 3 for an illustration. Note that M(p1, p2, p3) is a linear MDP, which is defined in Definition 4.3 with the
dimension d = A+ 2. To see this, we set the corresponding feature map � : S ⇥A ! Rd as

�(x0, bj) = (ej , 0, 0) 2 RA+2
, for all j 2 [A],

�(x1, a) = (0A, 1, 0) 2 RA+2
, for all a 2 A,

�(x2, a) = (0A, 0, 1) 2 RA+2
, for all a 2 A, (C.9)

where {ej}Aj=1 and 0A are the canonical basis and zero vector in RA, respectively.

x0

x1

x2

P1(x1 |x0, bj) = pj

P1(x2 |x0, bj) = 1� pj

h � 2

h � 2

Figure 3. An illustration of the episodic MDP M = M(p1, p2, p3) 2 M with the state space S = {x0, x1, x2} and action space
A = {bj}Aj=1. Here we fix the initial state as s1 = x0, where the agent takes the action a 2 A and transits into the second state
s2 2 {x1, x2}. At the first step h = 1, the transition probability satisfies P1(x1 |x0, bj) = pj and P1(x2 |x0, bj) = 1 � pj for all
j 2 [A], where for notational simplicity, we define pj = p3 for all j 2 {3, . . . , A}. Also, x1, x2 2 S are the absorbing states. Meanwhile,
the reward function satisfies rh(x0, a) = 0, rh(x1, a) = 1, and rh(x2, a) = 0 for all a 2 A and h 2 [H].

As x1, x2 2 S are the absorbing states, the optimal policy ⇡⇤
1 at the first step h = 1 is a deterministic policy, which by

Equation (C.8) selects the action a 2 A that induces the largest transition probability into the desired state x1. In other
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words, at the first step h = 1, we have

⇡
⇤
1(bj⇤ |x0) = 1, where j

⇤ = argmax
j2{1,2}

pj . (C.10)

Here we assume without loss of generality p1 6= p2 in Equation (C.7). Meanwhile, at any subsequent step h 2 {2, . . . , H},
an arbitrary policy ⇡h is optimal, as the action a 2 A selected by ⇡h does not affect the transition probability. Therefore, for
any policy ⇡ = {⇡h}

H

h=1, the suboptimality of ⇡ for the linear MDP M = M(p1, p2, p3) takes the form

SubOpt(M,⇡;x0) = pj⇤ · (H � 1)�
AX

j=1

pj · ⇡1(bj |x0) · (H � 1), (C.11)

where for notational simplicity, we define pj = p3 for all j 2 {3, . . . , A}. Here with an abuse of notation, we incorporate
the explicit dependency on the underlying MDP M 2 M into the suboptimality SubOpt(⇡;x0).

Dataset: We specify the worst-case data collecting process PD as follows. Given a linear MDP M 2 M, the dataset
D = {(x⌧

h
, a

⌧

h
, r

⌧

h
)}K,H

⌧,h=1 consists of K trajectories starting from the same initial state x0, that is, x⌧

1 = x0 for all ⌧ 2 [K].
The initial actions {a⌧1}⌧2[K] are predetermined. The subsequent states {x⌧

h
}⌧2[K],h�2 are sampled from the underlying

MDP M = M(p1, p2, p3), while the subsequent actions {a⌧
h
}⌧2[K],h�2 are arbitrarily chosen, as they do not affect the

state transitions. The state transitions in the different trajectories are independent. The immediate reward r
⌧

h
satisfies

r
⌧

h
= rh(x⌧

h
, a

⌧

h
). Note that such a dataset D satisfies Assumption 2.2, that is, D is compliant with the linear MDP M 2 M.

We define

nj =
KX

⌧=1

1{a⌧1 = bj}, {
i

j
}
nj

i=1 =
�
r
⌧

2 : a
⌧

1 = bj with ⌧ 2 [K]
 
, for all j 2 [A]. (C.12)

In other words, assuming that 1  ⌧1 < ⌧2 < · · · < ⌧nj
 K are the episode indices such that a⌧i1 = bj for all i 2 [nj ], we

define i
j
= r

⌧i

2 for all j 2 [A]. By such a construction, {i
j
}
nj ,A

i,j=1 are the realizations of K independent Bernoulli random
variables, which satisfy

ED[
i

j
] = pj , for all i 2 [nj ], j 2 [A]. (C.13)

Note that knowing the value of the immediate reward r
⌧

2 is sufficient for determining the value of the second state x
⌧

2 .
Meanwhile, recall that x1, x2 2 S are the absorbing states. Therefore, for learning the optimal policy ⇡⇤, the original dataset
D contains the same information as the reduced dataset D1 = {(x⌧

1 , a
⌧

1 , x
⌧

2 , r
⌧

2 )}
K

⌧=1, where the randomness only comes
from the state transition at the first step h = 1 of each trajectory ⌧ 2 [K]. Correspondingly, the probability of observing the
dataset D1 takes the form

PD⇠M(D1) =
KY

⌧=1

PM
�
r2(s2, a2) = r

⌧

2

�� s1 = x
⌧

1 , a1 = a
⌧

1

�

=
AY

j=1

⇣ njY

i=1

p

i

j

j
· (1� pj)

1�
i

j

⌘
=

AY

j=1

⇣
p

Pnj

i=1 
i

j

j
· (1� pj)

nj�
Pnj

i=1 
i

j

⌘
. (C.14)

Here PD⇠M denotes the randomness of the dataset D, which is compliant with the underlying MDP M = M(p1, p2, p3),
while PM denotes the randomness of the immediate rewards and state transitions. In the second equality, we apply the
definition of {i

j
}
nj

i=1 in Equation (C.12). By such a definition, PD⇠M(D1) in Equation (C.14) is the likelihood of the linear
MDP M 2 M given the reduced dataset D1 (or equivalently, the original dataset D, assuming that the subsequent actions
{a

⌧

h
}⌧2[K],h�2 are predetermined).

C.3.2. INFORMATION-THEORETIC LOWER BOUND

The proof of Theorem 4.6 is based on the Le Cam method (Le Cam, 2012; Yu, 1997). Specifically, we construct two linear
MDPs M1,M2 2 M, where the class M of linear MDPs is defined in Equation (C.6). Such a construction ensures that (i)
the distribution of the dataset D, which is compliant with the underlying MDP, is similar across M1,M2 2 M, and (ii) the
suboptimality of any policy ⇡, which is constructed based on the dataset, is different across M1,M2 2 M. In other words,
it is hard to distinguish M1,M2 2 M based on D, while ⇡ obtained from D can not achieve a desired suboptimality for
M1,M2 2 M simultaneously. Such a construction captures the fundamental hardness of offline RL for the linear MDP.
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For any p, p
⇤
2 [1/4, 3/4], where p < p

⇤, we set

M1 = M(p⇤, p, p), M2 = M(p, p⇤, p). (C.15)

Based on D, whose likelihood is specified in Equation (C.14), we aim to test whether the underlying MDP is M1 or M2.
The following lemma establishes a reduction from learning the optimal policy ⇡⇤ to testing the underlying MDP M 2 M.
Recall that for any ` 2 {1, 2}, n` is defined in Equation (C.12).

Lemma C.3. For the dataset D specified in Section C.3.1, the output Algo(D) of any algorithm satisfies

max
`2{1,2}

p
n` · ED⇠M`

h
SubOpt

�
M`,Algo(D);x0

�i

�

p
n1n2

p
n1 +

p
n2

· (p⇤ � p) · (H � 1) ·
⇣
ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
⇡1(b1 |x0)

⇤⌘
,

where ⇡ = {⇡h}
H

h=1 = Algo(D). For any ` 2 {1, 2}, ED⇠M`
is taken with respect to the randomness of D, which is

compliant with the underlying MDP M`.

Proof of Lemma C.3. See Appendix F.1 for a detailed proof.

As specified in Equation (C.10), for the underlying MDP M1, the optimal policy ⇡⇤
1 takes the initial action b1 with

probability one at the initial state x0, while for M2, ⇡⇤
1 takes b2 with probability one at x0. We consider the following

hypothesis testing problem

H0 : M = M1 versus H1 : M = M2 (C.16)

based on the dataset D. For such a problem, any test function  is a binary map such that  (D) = 0 means the null
hypothesis H0 is accepted, while  (D) = 1 means H0 is rejected. For the output ⇡ = {⇡h}

H

h=1 = Algo(D) of any
algorithm, we define

 Algo(D) = 1{a 6= b1}, where a ⇠ ⇡1(· |x0). (C.17)

Correspondingly, the risk of the (randomized) test function  Algo takes the form

Risk( Algo) = ED⇠M1

⇥
1{ Algo(D) = 1}

⇤
+ ED⇠M2

⇥
1{ Algo(D) = 0}

⇤

= ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
⇡1(b1 |x0)

⇤
. (C.18)

Therefore, Lemma C.3 lower bounds the suboptimality of any policy ⇡ = {⇡h}
H

h=1 = Algo(D) by the risk of a
(randomized) test function, which is induced by ⇡, for the corresponding hypothesis testing problem defined in Equation
(C.16). Such an approach mirrors the Le Cam method (Le Cam, 2012; Yu, 1997) for establishing the minimax optimality in
statistical estimation. In particular, a careful choice of p, p⇤ 2 [1/4, 3/4] leads to the information-theoretic lower bound
established in Theorem 4.6. See Appendix F.3 for a detailed proof.

D. Proofs of Suboptimality Decomposition

Proof of Lemma 3.1. By the definition in Equation (2.6), the suboptimality of the policy b⇡ given any initial state x 2 S can
be decomposed as

SubOpt(b⇡;x) =
�
V

⇡
⇤

1 (x)� bV1(x)
�

| {z }
(i)

+
�bV1(x)� V

b⇡
1 (x)

�
| {z }

(ii)

, (D.1)

where {bVh}
H

h=1 are the estimated value functions constructed by the meta-algorithm. Term (i) in Equation (D.1) is the
difference between the estimated value function bV1 and the optimal value function V

⇡
⇤

1 , while term (ii) is the difference
between bV1 and the value function V

b⇡
1 of b⇡. To further decompose terms (i) and (ii), we utilize the following lemma, which

is obtained from (Cai et al., 2020), to characterize the difference between an estimated value function and the value function
of a policy.

Lemma D.1 (Extended Value Difference (Cai et al., 2020)). Let ⇡ = {⇡h}
H

h=1 and ⇡0 = {⇡
0
h
}
H

h=1 be any two policies and
let { bQh}

H

h=1 be any estimated Q-functions. For all h 2 [H], we define the estimated value function bVh : S ! R by setting
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bVh(x) = h bQh(x, ·),⇡h(· |x)iA for all x 2 S . For all x 2 S , we have

bV1(x)� V
⇡
0

1 (x) =
HX

h=1

E⇡0
⇥
h bQh(sh, ·),⇡h(· | sh)� ⇡

0
h
(· | sh)iA

�� s1 = x
⇤

+
HX

h=1

E⇡0
⇥ bQh(sh, ah)� (Bh

bVh+1)(sh, ah)
�� s1 = x

⇤
,

where E⇡0 is taken with respect to the trajectory generated by ⇡0, while Bh is the Bellman operator defined in Equation (2.4).

Proof. See Section B.1 in (Cai et al., 2020) for a detailed proof.

Applying Lemma D.1 with ⇡ = b⇡, ⇡0 = ⇡
⇤, and { bQh}

H

h=1 being the estimated Q-functions constructed by the meta-
algorithm, we have

bV1(x)� V
⇡
⇤

1 (x) =
HX

h=1

E⇡⇤
⇥
h bQh(sh, ·), b⇡h(· | sh)� ⇡

⇤
h
(· | sh)iA

�� s1 = x
⇤

+
HX

h=1

E⇡⇤
⇥ bQh(sh, ah)� (Bh

bVh+1)(sh, ah)
�� s1 = x

⇤
,

where E⇡⇤ is taken with respect to the trajectory generated by ⇡⇤. By the definition of the model evaluation error ◆h in
Equation (3.1), we have

V
⇡
⇤

1 (x)� bV1(x) =
HX

h=1

E⇡⇤
⇥
h bQh(sh, ·),⇡

⇤
h
(· | sh)� b⇡h(· | sh)iA

�� s1 = x
⇤
+

HX

h=1

E⇡⇤
⇥
◆h(sh, ah)

�� s1 = x
⇤
.

Similarly, applying Lemma D.1 with ⇡ = ⇡
0 = b⇡ and { bQh}

H

h=1 being the estimated Q-functions constructed by the
meta-algorithm, we have

bV1(x)� V
b⇡
1 (x) =

HX

h=1

Eb⇡
⇥ bQh(sh, ah)� (Bh

bVh+1)(sh, ah)
�� s1 = x

⇤
= �

HX

h=1

Eb⇡
⇥
◆h(sh, ah)

�� s1 = x
⇤
,

where Eb⇡ is taken with respect to the trajectory generated by b⇡. By Equation (D.1), we conclude the proof of Lemma
3.1.

E. Proofs of Pessimistic Value Iteration

E.1. Proof of Lemma C.1

Proof of Lemma C.1. We first show that on the event E defined in Equation (4.1), the model evaluation errors {◆h}Hh=1 are
nonnegative. In the sequel, we assume that E holds. Recall the construction of Q

h
in Line 1 of Algorithm 1 for all h 2 [H].

For all h 2 [H] and all (x, a) 2 S ⇥A, if Q
h
(x, a) < 0, we have

bQh(x, a) = min{Q
h
(x, a), H � h+ 1}+ = 0.

By the definition of ◆h in Equation (3.1), we have

◆h(x, a) = (Bh
bVh+1)(x, a)� bQh(x, a) = (Bh

bVh+1)(x, a) � 0,

as rh and bVh+1 are nonnegative. Otherwise, if Q
h
(x, a) � 0, we have

bQh(x, a) = min{Q
h
(x, a), H � h+ 1}+  Q

h
(x, a).

As {�h}
H

h=1 are ⇠-uncertainty quantifiers, which are defined in Definition 4.1, we have

◆h(x, a) � (Bh
bVh+1)(x, a)�Q

h
(x, a) = (Bh

bVh+1)(x, a)� (bBh
bVh+1)(x, a) + �h(x, a) � 0.
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Here the last inequality follows from the definition of E in Equation (4.1). Therefore, we conclude the proof of ◆h(x, a) � 0
for all h 2 [H] and all (x, a) 2 S ⇥A on E .

It remains to establish the upper bound in Equation (C.1). For all h 2 [H] and all (x, a) 2 S ⇥A, combining the definition
of event E in Equation (4.1) as well as the construction of Q

h
in Line 1 of Algorithm 1 gives

Q
h
(x, a) = (bBh

bVh+1)(x, a)� �h(x, a)  (Bh
bVh+1)(x, a)  H � h+ 1,

where the first inequality follows from the triangle inequality, while the second inequality follows from the fact that
rh 2 [0, 1] and bVh+1 2 [0, H � h]. Hence, we have

bQh(x, a) = min{Q
h
(x, a), H � h+ 1}+ = max{Q

h
(x, a), 0} � Q

h
(x, a),

which by the definition of ◆h in Equation (3.1) implies

◆h(x, a) = (Bh
bVh+1)(x, a)� bQh(x, a)  (Bh

bVh+1)(x, a)�Q
h
(x, a)

= (Bh
bVh+1)(x, a)� (bBh

bVh+1)(x, a) + �h(x, a)  2�h(x, a).

Here the last inequality follows from the definition of E in Equation (4.1). Therefore, we complete the proof of ◆h(x, a) 
2�h(x, a) for all h 2 [H] and all (x, a) 2 S ⇥A on E .

In summary, we conclude that on E ,

0  ◆h(x, a)  2�h(x, a), 8(x, a) 2 S ⇥A, 8h 2 [H].

Therefore, we conclude the proof of Lemma C.1.

E.2. Proof of Lemma C.2

Proof of Lemma C.2. It suffices to show that under Assumption 2.2, the event E defined in Equation (4.1) satisfies PD(E) �
1 � ⇠ with the ⇠-uncertainty quantifiers {�h}

H

h=1 defined in Equation (4.7). To this end, we upper bound the difference
between (Bh

bVh+1)(x, a) and (bBh
bVh+1)(x, a) for all h 2 [H] and all (x, a) 2 S ⇥A, where the Bellman operator Bh is

defined in Equation (2.4), the estimated Bellman operator bBh is defined in Equation (4.5), and the estimated value function
bVh+1 is constructed in Line 2 of Algorithm 2.

For any function V : S ! [0, H], Definition 4.3 ensures that PhV and BhV are linear in the feature map � for all h 2 [H].
To see this, note that Equation (4.4) implies

(PhV )(x, a) =
D
�(x, a),

Z

S
V (x0)µh(x

0)dx0
E
, 8(x, a) 2 S ⇥A, 8h 2 [H].

Also, Equation (4.4) ensures that the expected reward is linear in � for all h 2 [H], which implies

(BhV )(x, a) = h�(x, a), ✓hi+
D
�(x, a),

Z

S
V (x0)µh(x

0)dx0
E
, 8(x, a) 2 S ⇥A, 8h 2 [H]. (E.1)

Hence, there exists an unknown vector wh 2 Rd such that

(Bh
bVh+1)(x, a) = �(x, a)>wh, 8(x, a) 2 S ⇥A, 8h 2 [H]. (E.2)

Recall the definition of bwh in Equation (4.6) and the construction of bBh
bVh+1 in Equation (4.5). The following lemma upper

bounds the norms of wh and bwh, respectively.

Lemma E.1 (Bounded Weights of Value Functions). Let Vmax > 0 be an absolute constant. For any function V : S !

[0, Vmax] and any h 2 [H], we have

kwhk  (1 + Vmax)
p

d, k bwhk  H

p
Kd/�,

where wh and bwh are defined in Equations (E.2) and (4.6), respectively.

Proof of Lemma E.1. For all h 2 [H], Equations (E.1) and (E.2) imply

wh = ✓h +

Z

S
V (x0)µh(x

0)dx0
.

By the triangle inequality and the fact that kµh(S)k 
p
d in Definition 4.3 with the notation kµh(S)k =

R
S kµh(x0)kdx0,
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we have

kwhk  k✓hk+
���
Z

S
V (x0)µh(x

0)dx0
���  k✓hk+

Z

S
kV (x0)µh(x

0)kdx0



p

d+ Vmax · kµh(S)k  (1 + Vmax)
p

d, (E.3)

where the third inequality follows from the fact that V 2 [0, Vmax].

Meanwhile, by the definition of bwh in Equation (4.6) and the triangle inequality, we have

k bwhk =
���⇤�1

h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
r
⌧

h
+ bVh+1(x

⌧

h+1)
�⌘���



KX

⌧=1

��⇤�1
h
�(x⌧

h
, a

⌧

h
) ·
�
r
⌧

h
+ bVh+1(x

⌧

h+1)
���.

Note that |r⌧
h
+ bVh+1(x⌧

h+1)|  H , which follows from the fact that r⌧
h
2 [0, 1] and bVh+1 2 [0, H � 1] by Line 2 of

Algorithm 2. Also, note that ⇤h ⌫ � · I , which follows from the definition of ⇤h in Equation (4.6). Hence, we have

k bwhk  H ·

KX

⌧=1

k⇤�1
h
�(x⌧

h
, a

⌧

h
)k = H ·

KX

⌧=1

q
�(x⌧

h
, a

⌧

h
)>⇤�1/2

h
⇤�1
h

⇤�1/2
h

�(x⌧

h
, a

⌧

h
)


H
p
�
·

KX

⌧=1

q
�(x⌧

h
, a

⌧

h
)>⇤�1

h
�(x⌧

h
, a

⌧

h
),

where the last inequality follows from the fact that k⇤�1
h

kop  �
�1. Here k · kop denotes the matrix operator norm. By the

Cauchy-Schwarz inequality, we have

k bwhk  H

p
K/� ·

vuut
KX

⌧=1

�(x⌧

h
, a

⌧

h
)>⇤�1

h
�(x⌧

h
, a

⌧

h
) = H

p
K/� ·

vuutTr
⇣
⇤�1
h

KX

⌧=1

�(x⌧

h
, a

⌧

h
)�(x⌧

h
, a

⌧

h
)>
⌘

= H

p
K/� ·

q
Tr
�
⇤�1
h

(⇤h � � · I)
�
 H

p
K/� ·

q
Tr(⇤�1

h
⇤h) = H

p
Kd/�, (E.4)

where the second equality follows from the definition of ⇤h in Equation (4.6).

Therefore, combining Equations (E.3) and (E.4), we conclude the proof of Lemma E.1.

We upper bound the difference between Bh
bVh+1 and bBh

bVh+1. For all h 2 [H] and all (x, a) 2 S ⇥A, we have

(Bh
bVh+1)(x, a)� (bBh

bVh+1)(x, a) = �(x, a)>(wh � bwh)

= �(x, a)>wh � �(x, a)>⇤�1
h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
r
⌧

h
+ bVh+1(x

⌧

h+1)
�⌘

= �(x, a)>wh � �(x, a)>⇤�1
h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
) · (Bh

bVh+1)(x
⌧

h
, a

⌧

h
)
⌘

| {z }
(i)

(E.5)

� �(x, a)>⇤�1
h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
r
⌧

h
+ bVh+1(x

⌧

h+1)� (Bh
bVh+1)(x

⌧

h
, a

⌧

h
)
�⌘

| {z }
(ii)

.

Here the first equality follows from the definition of the Bellman operator Bh in Equation (2.4), the decomposition of Bh in
Equation (E.1), and the definition of the estimated Bellman operator bBh in Equation (4.5), while the second equality follows
from the definition of bwh in Equation (4.6). By the triangle inequality, we have

��(Bh
bVh+1)(x, a)� (bBh

bVh+1)(x, a)
��  |(i)|+ |(ii)|.
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In the sequel, we upper bound terms (i) and (ii) respectively. By the construction of the estimated value function bVh+1 in
Line 2 of Algorithm 2, we have bVh+1 2 [0, H � 1]. By Lemma E.1, we have kwhk  H

p
d. Hence, term (i) defined in

Equation (E.5) is upper bounded by

|(i)| =
�����(x, a)

>
wh � �(x, a)>⇤�1

h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
)�(x⌧

h
, a

⌧

h
)>wh

⌘����

=
���(x, a)>wh � �(x, a)>⇤�1

h
(⇤h � � · I)wh

�� = � ·
���(x, a)>⇤�1

h
wh

��

 � · kwhk⇤�1
h

· k�(x, a)k⇤�1
h

 H

p

d� ·

q
�(x, a)>⇤�1

h
�(x, a). (E.6)

Here the second equality follows from the definition of ⇤h in Equation (4.6). Also, the first inequality follows from the
Cauchy-Schwarz inequality, while the last inequality follows from the fact that

kwhk⇤�1
h

=
q
w

>
h
⇤�1
h

wh  k⇤�1
h

k
1/2
op · kwhk  H

p
d/�.

Here k · kop denotes the matrix operator norm and we use the fact that k⇤�1
h

kop  �
�1.

It remains to upper bound term (ii). For notational simplicity, for any h 2 [H], any ⌧ 2 [K], and any function V : S ! [0, H],
we define the random variable

✏
⌧

h
(V ) = r

⌧

h
+ V (x⌧

h+1)� (BhV )(x⌧

h
, a

⌧

h
). (E.7)

By the Cauchy-Schwarz inequality, term (ii) defined in Equation (E.5) is upper bounded by

|(ii)| =
�����(x, a)

>⇤�1
h

⇣ KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

⌘����



���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

���
⇤�1

h

· k�(x, a)k⇤�1
h

=
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

���
⇤�1

h

| {z }
(iii)

·

q
�(x, a)>⇤�1

h
�(x, a). (E.8)

In the sequel, we upper bound term (iii) via concentration inequalities. An obstacle is that bVh+1 depends on {(x⌧

h
, a

⌧

h
)}⌧2[K]

via {(x⌧

h0 , a
⌧

h0)}⌧2[K],h0>h, as it is constructed based on the dataset D. To this end, we resort to uniform concentration
inequalities to upper bound

sup
V 2Vh+1(R,B,�)

���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V )

���

for each h 2 [H], where it holds that bVh+1 2 Vh+1(R,B,�). Here for all h 2 [H], we define the function class

Vh(R,B,�) =
�
Vh(x; ✓,�,⌃) : S ! [0, H] with k✓k  R,� 2 [0, B],⌃ ⌫ � · I

 
,

where Vh(x; ✓,�,⌃) = max
a2A

n
min

�
�(x, a)>✓ � � ·

q
�(x, a)>⌃�1�(x, a), H � h+ 1

 +
o
. (E.9)

For all " > 0 and all h 2 [H], let Nh(";R,B,�) be the minimal "-cover of Vh(R,B,�) with respect to the supremum
norm. In other words, for any function V 2 Vh(R,B,�), there exists a function V

†
2 Nh(";R,B,�) such that

sup
x2S

��V (x)� V
†(x)

��  ".

Meanwhile, among all "-covers of Vh(R,B,�) defined by such a property, we choose Nh(";R,B,�) as the one with the
minimal cardinality.

By Lemma E.1, we have k bwhk  H

p
Kd/�. Hence, for all h 2 [H], we have

bVh+1 2 Vh+1(R0, B0,�), where R0 = H

p
Kd/�, B0 = 2�.
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Here � > 0 is the regularization parameter and � > 0 is the scaling parameter, which are specified in Algorithm 2. For
notational simplicity, we use Vh+1 and Nh+1(") to denote Vh+1(R0, B0,�) and Nh+1(";R0, B0,�), respectively. As it
holds that bVh+1 2 Vh+1 and Nh+1(") is an "-cover of Vh+1, there exists a function V

†
h+1 2 Nh+1(") such that

sup
x2S

��bVh+1(x)� V
†
h+1(x)

��  ". (E.10)

Hence, given V
†
h+1 and bVh+1, the monotonicity of conditional expectations implies

��(PhV
†
h+1)(x, a)� (Ph

bVh+1)(x, a)
�� (E.11)

=
���E
⇥
V

†
h+1(sh+1)

�� sh = x, ah = a
⇤
� E

⇥bVh+1(sh+1)
�� sh = x, ah = a

⇤���

 E
h��V †

h+1(sh+1)� bVh+1(sh+1)
��
��� sh = x, ah = a

i
 ", 8(x, a) 2 S ⇥A, 8h 2 [H].

Here the conditional expectation is induced by the transition kernel Ph(· |x, a). Combining Equation (E.11) and the
definition of the Bellman operator Bh in Equation (2.4), we have

��(BhV
†
h+1)(x, a)� (Bh

bVh+1)(x, a)
��  ", 8(x, a) 2 S ⇥A, 8h 2 [H]. (E.12)

By the triangle inequality, Equations (E.10) and (E.12) imply
���
�
rh(x, a) + bVh+1(x

0)� (Bh
bVh+1)(x, a)

�
�
�
rh(x, a) + V

†
h+1(x

0)� (BhV
†
h+1)(x, a)

����  2" (E.13)

for all h 2 [H] and all (x, a, x0) 2 S ⇥A⇥ S . Setting (x, a, x0) = (x⌧

h
, a

⌧

h
, x

⌧

h+1) in Equation (E.13), we have
��✏⌧

h
(bVh+1)� ✏

⌧

h
(V †

h+1)
��  2", 8⌧ 2 [K], 8h 2 [H]. (E.14)

Also, recall the definition of term (iii) in Equation (E.8). By the Cauchy-Schwarz inequality, for any two vectors a, b 2 Rd

and any positive definite matrix ⇤ 2 Rd⇥d

+ , it holds that ka+ bk
2
⇤  2 · kak2⇤ + 2 · kbk2⇤. Hence, for all h 2 [H], we have

(iii)  2 ·
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V †

h+1)
���
2

⇤�1
h

+ 2 ·
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
✏
⌧

h
(bVh+1)� ✏

⌧

h
(V †

h+1)
����

2

⇤�1
h

. (E.15)

The second term on the right-hand side of Equation (E.15) is upper bounded by

2 ·
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
✏
⌧

h
(bVh+1)� ✏

⌧

h
(V †

h+1)
����

2

⇤�1
h

= 2 ·
KX

⌧,⌧ 0=1

�(x⌧

h
, a

⌧

h
)>⇤�1

h
�(x⌧

0

h
, a

⌧
0

h
) ·
�
✏
⌧

h
(bVh+1)� ✏

⌧

h
(V †

h+1)
�
·
�
✏
⌧
0

h
(bVh+1)� ✏

⌧
0

h
(V †

h+1)
�

 8"2 ·
KX

⌧,⌧ 0=1

���(x⌧

h
, a

⌧

h
)>⇤�1

h
�(x⌧

0

h
, a

⌧
0

h
)
��  8"2 ·

KX

⌧,⌧ 0=1

k�(x⌧

h
, a

⌧

h
)k · k�(x⌧

0

h
, a

⌧
0

h
)k · k⇤�1

h
kop,

where the first inequality follows from Equation (E.14). As it holds that ⇤h ⌫ � · I by the definition of ⇤h in Equation (4.6)
and k�(x, a)k  1 for all (x, a) 2 S ⇥A by Definition 4.3, for all h 2 [H], we have

2 ·
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) ·
�
✏
⌧

h
(bVh+1)� ✏

⌧

h
(V †

h+1)
����

2

⇤�1
h

 8"2K2
/�. (E.16)

Combining Equations (E.15) and (E.16), for all h 2 [H], we have

(iii)  2 · sup
V 2Nh+1(")

���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V )

���
2

⇤�1
h

+ 8"2K2
/�. (E.17)

Note that the right-hand side of Equation (E.17) does not involve the estimated value functions bQh and bVh+1, which are
constructed based on the dataset D. Hence, it allows us to upper bound the first term via uniform concentration inequalities.
We utilize the following lemma to characterize the first term for any fixed function V 2 Nh+1("). Recall the definition of
✏
⌧

h
(V ) in Equation (E.7). Also recall that PD is the joint distribution of the data collecting process.

Lemma E.2 (Concentration of Self-Normalized Processes). Let V : S ! [0, H � 1] be any fixed function. Under
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Assumption 2.2, for any fixed h 2 [H] and any � 2 (0, 1), we have
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✓���
KX
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�(x⌧

h
, a
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h
) · ✏⌧

h
(V )

���
2

⇤�1
h

> H
2
·
�
2 · log(1/�) + d · log(1 +K/�)

�◆
 �.

Proof of Lemma E.2. For the fixed h 2 [H] and all ⌧ 2 {0, . . . ,K}, we define the �-algebra

Fh,⌧ = �
�
{(xj

h
, a

j

h
)}(⌧+1)^K

j=1 [ {(rj
h
, x

j

h+1)}
⌧

j=1

�
,

where �(·) denotes the �-algebra generated by a set of random variables and (⌧ + 1) ^K denotes min{⌧ + 1,K}. For all
⌧ 2 [K], we have �(x⌧

h
, a

⌧

h
) 2 Fh,⌧�1, as (x⌧

h
, a

⌧

h
) is Fh,⌧�1-measurable. Also, for the fixed function V : S ! [0, H � 1]

and all ⌧ 2 [K], we have

✏
⌧

h
(V ) = r

⌧

h
+ V (x⌧

h+1)� (BhV )(x⌧

h
, a

⌧

h
) 2 Fh,⌧ ,

as (r⌧
h
, x

⌧

h+1) is Fh,⌧ -measurable. Hence, {✏⌧
h
(V )}K

⌧=1 is a stochastic process adapted to the filtration {Fh,⌧}
K

⌧=0. By
Assumption 2.2, we have
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h
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��Fh,⌧�1

⇤
= ED

⇥
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⌧

h
+ V (x⌧
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h
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h
)
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⇥
rh(sh, ah) + V (sh+1)

�� sh = x
⌧

h
, ah = a

⌧

h

⇤
� (BhV )(x⌧

h
, a

⌧

h
) = 0,

where the second equality follows from Equation (2.7) and the last equality follows from the definition of the Bellman
operator Bh in Equation (2.4). Here ED is taken with respect to PD, while E is taken with respect to the immediate reward
and next state in the underlying MDP.

Moreover, as it holds that r⌧
h

2 [0, 1] and V 2 [0, H � 1], we have r
⌧

h
+ V (x⌧

h+1) 2 [0, H]. Meanwhile, we have
(BhV )(x⌧

h
, a

⌧

h
) 2 [0, H], which implies |✏⌧

h
(V )|  H . Hence, for the fixed h 2 [H] and all ⌧ 2 [K], the random variable

✏
⌧

h
(V ) defined in Equation (E.7) is mean-zero and H-sub-Gaussian conditioning on Fh,⌧�1.

We invoke Lemma G.2 with M0 = � · I and Mk = � · I +
P

k

⌧=1 �(x
⌧

h
, a

⌧

h
) �(x⌧

h
, a

⌧

h
)> for all k 2 [K]. For the fixed

function V : S ! [0, H � 1] and fixed h 2 [H], we have
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h
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> 2H2
· log

⇣ det(⇤h)1/2

� · det(� · I)1/2

⌘◆
 �

for all � 2 (0, 1). Here we use the fact that MK = ⇤h. Note that k�(x, a)k  1 for all (x, a) 2 S ⇥A by Definition 4.3.
We have

k⇤hkop =
���� · I +

KX

⌧=1

�(x⌧

h
, a

⌧

h
)�(x⌧

h
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k�(x⌧

h
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⌧

h
)�(x⌧

h
, a

⌧

h
)>kop  �+K,

where k · kop denotes the matrix operator norm. Hence, it holds that det(⇤h)  (� +K)d and det(� · I) = �
d, which

implies
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✓���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V )

���
2

⇤�1
h

> H
2
·
�
2 · log(1/�) + d · log(1 +K/�)
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⌧
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(V )
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2

⇤�1
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> 2H2
· log
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Therefore, we conclude the proof of Lemma E.2.

Applying Lemma E.2 and the union bound, for any fixed h 2 [H], we have

PD

✓
sup

V 2Nh+1(")

���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V )

���
2

⇤�1
h

> H
2
·
�
2 · log(1/�) + d · log(1 +K/�)

�◆
 � · |Nh+1(")|.
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For all ⇠ 2 (0, 1) and all " > 0, we set � = ⇠/(H · |Nh+1(")|). Hence, for any fixed h 2 [H], it holds that

sup
V 2Nh+1(")

���
KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(V )

���
2

⇤�1
h

 H
2
·

⇣
2 · log

�
H · |Nh+1(")|/⇠

�
+ d · log(1 +K/�)

⌘
(E.18)

with probability at least 1� ⇠/H , which is taken with respect to PD. Combining Equations (E.17) and (E.18), we have
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✓ \
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⌧

h
) · ✏⌧

h
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���
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(E.19)

 2H2
·

⇣
2 · log

�
H · |Nh+1(")|/⇠

�
+ d · log(1 +K/�)

⌘
+ 8"2K2

/�

�◆
� 1� ⇠,

which follows from the union bound.

It remains to choose a proper " > 0 and upper bound the "-covering number |Nh+1(")|. In the sequel, we set " = dH/K

and � = 1. By Equation (E.19), for all h 2 [H], it holds that
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

���
2

⇤�1
h

 2H2
·

⇣
2 · log

�
H · |Nh+1(")|/⇠

�
+ d · log(1 +K) + 4d2

⌘
(E.20)

with probability at least 1 � ⇠, which is taken with respect to PD. To upper bound |Nh+1(")|, we utilize the following
lemma, which is obtained from (Jin et al., 2020). Recall the definition of the function class Vh(R,B,�) in Equation (E.9).
Also, recall that Nh(";R,B,�) is the minimal "-cover of Vh(R,B,�) with respect to the supremum norm.

Lemma E.3 ("-Covering Number (Jin et al., 2020)). For all h 2 [H] and all " > 0, we have

log |Nh(";R,B,�)|  d · log(1 + 4R/") + d
2
· log

�
1 + 8d1/2B2

/("2�)
�
.

Proof of Lemma E.3. See Lemma D.6 in (Jin et al., 2020) for a detailed proof.

Recall that
bVh+1 2 Vh+1(R0, B0,�), where R0 = H

p
Kd/�, B0 = 2�, � = 1, � = c · dH

p
⇣.

Here c > 0 is an absolute constant, ⇠ 2 (0, 1) is the confidence parameter, and ⇣ = log(2dHK/⇠) is specified in Algorithm
2. Recall that Nh+1(") = Nh+1(";R0, B0,�) is the minimal "-cover of Vh+1 = Vh+1(R0, B0,�) with respect to the
supremum norm. Applying Lemma E.3 with " = dH/K, we have

log |Nh+1(")|  d · log(1 + 4d�1/2
K

3/2) + d
2
· log(1 + 32c2 · d1/2K2

⇣)

 d · log(1 + 4d1/2K2) + d
2
· log(1 + 32c2 · d1/2K2

⇣). (E.21)

As it holds that ⇣ > 1, we set c � 1 to ensure that the second term on the right-hand side of Equation (E.21) is the dominating
term, where 32c2 · d1/2K2

⇣ � 1. Hence, we have

log |Nh+1(")|  2d2 · log(1 + 32c2 · d1/2K2
⇣)  2d2 · log(64c2 · d1/2K2

⇣). (E.22)

By Equations (E.20) and (E.22), for all h 2 [H], it holds that
���
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⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

���
2

⇤�1
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 2H2
·
�
2 · log(H/⇠) + 4d2 · log(64c2 · d1/2K2

⇣) + d · log(1 +K) + 4d2
�

(E.23)

with probability at least 1 � ⇠, which is taken with respect to PD. Note that log(1 +K)  log(2K)  ⇣ and log ⇣  ⇣.
Hence, we have

2 · log(H/⇠) + 4d2 · log(d1/2K2
⇣) + d · log(1 +K) + 4d2

 2d2 · log(dHK
4
/⇠) + d⇣ + 8d2⇣  18d2⇣.
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As it holds that ⇣ > 1 and log ⇣  ⇣, Equation (E.23) implies
���

KX

⌧=1

�(x⌧

h
, a

⌧

h
) · ✏⌧

h
(bVh+1)

���
2

⇤�1
h

 d
2
H

2
⇣ ·

�
36 + 8 · log(64c2)

�
. (E.24)

We set c � 1 to be sufficiently large, which ensures that 36+8 · log(64c2)  c
2
/4 on the right-hand side of Equation (E.24).

By Equations (E.8) and (E.24), for all h 2 [H], it holds that

|(ii)|  c/2 · dH
p
⇣ ·

q
�(x, a)>⇤�1

h
�(x, a) = �/2 ·

q
�(x, a)>⇤�1

h
�(x, a) (E.25)

with probability at least 1� ⇠, which is taken with respect to PD.

By Equations (4.7), (E.5), (E.6), and (E.25), for all h 2 [H] and all (x, a) 2 S ⇥A, it holds that
��(Bh

bVh+1)(x, a)� (bBh
bVh+1)(x, a)

��  (H
p

d+ �/2) ·
q
�(x, a)>⇤�1

h
�(x, a)  �h(x, a)

with probability at least 1� ⇠, which is taken with respect to PD. In other words, {�h}
H

h=1 defined in Equation (4.7) are
⇠-uncertainty quantifiers. Therefore, we conclude the proof of Lemma C.2.

E.3. Proof of Corollary 4.5

Proof of Corollary 4.5. By the Cauchy-Schwarz inequality, we have
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(E.26)

for all x 2 S and all h 2 [H]. We define the event

E
‡ =

⇢
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�
Pess(D);x

�
 2�
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i
for all x 2 S
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. (E.27)

For notational simplicity, we define

⌃h(x) = E⇡⇤
⇥
�(sh, ah)�(sh, ah)

> �� s1 = x
⇤

for all x 2 S and all h 2 [H]. On the event E†
\ E

‡, where E† and E
‡ are defined in Equations (4.9) and (E.27), respectively,

we have
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��1
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HX
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dX

j=1

�h,j(x)

1 + c† ·K · �h,j(x)
.

Here {�h,j(x)}dj=1 are the eigenvalues of ⌃h(x) for all x 2 S and all h 2 [H], the first inequality follows from the definition
of E‡ in Equation (E.27), and the second inequality follows from Equation (E.26) and the definition of E† in Equation (4.9).
Meanwhile, by Definition 4.3, we have k�(s, a)k  1 for all (x, a) 2 S ⇥A. By Jensen’s inequality, we have

k⌃h(x)kop  E⇡⇤
⇥
k�(sh, ah)�(sh, ah)

>
kop

�� s1 = x
⇤
 1
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for all x 2 S and all h 2 [H]. As ⌃h(x) is positive semidefinite, we have �h,j(x) 2 [0, 1] for all x 2 S , all h 2 [H], and all
j 2 [d]. Hence, on E

†
\ E

‡, we have
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�
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1

1 + c† ·K
 c

0
· d

3/2
H

2
K

�1/2
p
⇣

for all x 2 S, where the second inequality follows from the fact that �h,j(x) 2 [0, 1] for all x 2 S, all h 2 [H], and all
j 2 [d], while the third inequality follows from the choice of the scaling parameter � > 0 in Corollary 4.5. Here we define
the absolute constant c0 = 2c/

p

c† > 0, where c
†
> 0 is the absolute constant used in Equation (4.9) and c > 0 is the

absolute constant used in Theorem 4.4. By the condition in Corollary 4.5, we have PD(E†) � 1� ⇠/2. Also, by Theorem
4.4, we have PD(E‡) � 1� ⇠/2. Hence, by the union bound, we have PD(E†

\ E
‡) � 1� ⇠, which yields Equation (4.10).

In particular, if rank(⌃h(x))  r for all x 2 S and all h 2 [H], on E
†
\ E

‡, which satisfies PD(E†
\ E

‡) � 1� ⇠, we have
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where c
00 = 2c

p
r/c† > 0 is an absolute constant. Here the second inequality follows from the fact that �h,j(x) 2 [0, 1]

and rank(⌃h(x))  r for all x 2 S , all h 2 [H], and all j 2 [d], while the third inequality follows from the choice of � in
Corollary 4.5. Hence, we obtain Equation (4.11). Therefore, we conclude the proof of Corollary 4.5.

E.4. Proof of Corollary B.1

Proof of Corollary B.1. For all h 2 [H] and all ⌧ 2 [K], we define the random matrices
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. (E.28)

For all h 2 [H] and all ⌧ 2 [K], Equation (E.28) implies E⇡̄[A⌧

h
] = 0. Here E⇡̄ is taken with respect to the trajectory

induced by the fixed behavior policy ⇡̄ in the underlying MDP. As the K trajectories in the dataset D are i.i.d., for all
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h
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h
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⌧=1 are i.i.d. and centered.

By Definition 4.3, we have k�(x, a)k  1 for all (x, a) 2 S ⇥A. By Jensen’s inequality, we have
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where the first inequality follows from Jensen’s inequality. Similarly, for all h 2 [H] and all ⌧ 2 [K], as it holds that

k(A⌧

h
)>A⌧

h
kop  k(A⌧

h
)>kop · kA

⌧

h
kop  4,

we have

kE⇡̄[Z
>
h
Zh]kop  4K.

Applying Lemma G.1 to Zh defined in Equation (E.28), for any fixed h 2 [H] and any t � 0, we have
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For all ⇠ 2 (0, 1), we set t =
p
10K · log(4dH/⇠). By Equation (E.29), when K is sufficiently large so that K �

5 · log(4dH/⇠), we have 2t/3  K. Hence, for the fixed h 2 [H], we have
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By Equation (E.30) and the union bound, for all h 2 [H], it holds that
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with probability at least 1� ⇠/2, which is taken with respect to PD.

By the definition of Zh in Equation (E.28), we have

Zh =
KX

⌧=1

�(x⌧

h
, a

⌧

h
)�(x⌧

h
, a

⌧

h
)> �K · ⌃h = (⇤h � � · I)�K · ⌃h. (E.32)

Recall that there exists an absolute constant c > 0 such that �min(⌃h) � c, which implies k⌃�1
h

kop  1/c. By Equations
(E.31) and (E.32), when K is sufficiently large so that K � 40/c · log(4dH/⇠), for all h 2 [H], it holds that
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K, 8(x, a) 2 S ⇥A, 8h 2 [H]. (E.33)

Here we define the absolute constant c00 =
p
2/c and use the fact that k�(x, a)k  1 for all (x, a) 2 S ⇥A in Definition

4.3.

We define the event

E
⇤
1 =

nq
�(x, a)>⇤�1

h
�(x, a)  c

00
/

p

K for all (x, a) 2 S ⇥A and all h 2 [H]
o
.

By Equation (E.33), we have PD(E⇤
1 ) � 1� ⇠/2 for K � 40/c · log(4dH/⇠). Also, we define the event

E
⇤
2 =

⇢
SubOpt(b⇡;x)  2� ·

HX

h=1

E⇡⇤

hq
�(sh, ah)>⇤

�1
h
�(sh, ah)

��� s1 = x

i
for all x 2 S

�
.

Here we set � = c ·dH
p
log(4dHK/⇠), where c > 0 is the same absolute constant as in Theorem 4.4. By Theorem 4.4, we

have PD(E⇤
2 ) � 1� ⇠/2. Hence, when K is sufficiently large so that K � 40/c · log(4dH/⇠), on the event E⇤ = E

⇤
1 \ E

⇤
2 ,

we have

SubOpt(b⇡;x)  2� ·H · c
00
/

p

K = c
0
· dH

2
p
log(4dHK/⇠)/K, 8x 2 S.

By the union bound, we have PD(E⇤) � 1� ⇠ with c
0 = 2c · c00, where c00 =

p
2/c and c > 0 is the same absolute constant
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as in Theorem 4.4. Therefore, we conclude the proof of Corollary B.1.

F. Proofs of Minimax Optimality

F.1. Proof of Lemma C.3

Proof of Lemma C.3. We consider two linear MDPs M1 = M(p⇤, p, p) and M2 = M(p, p⇤, p) in the class M defined in
Equation (C.6). As we have p

⇤
> p, by Equations (C.7) and (C.8), the optimal policy for M1 satisfies ⇡⇤,1

1 (a1 |x0) =
1{a1 = b1}, which always chooses the action b1 for step h = 1, while the optimal policy for M2 satisfies ⇡⇤,2

1 (a1 |x0) =
1{a1 = b2}, which always chooses the action b2 for step h = 1. Given the dataset D, we denote by ⇡ = {⇡h}

H

h=1 =

Algo(D) the output of any RL algorithm. Recall that
P

A

j=1 ⇡1(bj |x0) = 1. By Equation (C.11), the suboptimality of ⇡
for M1 is

SubOpt(M1,⇡;x0) =
⇣
p
⇤
� p

⇤
· ⇡1(b1 |x0)�

AX

j=2

p · ⇡1(bj |x0)
⌘
· (H � 1)

= (p⇤ � p) ·
�
1� ⇡1(b1 |x0)

�
· (H � 1). (F.1)

Similarly, the suboptimality of ⇡ for M2 is

SubOpt(M2,⇡;x0) = (p⇤ � p) ·
�
1� ⇡1(b2 |x0)

�
· (H � 1). (F.2)

Recall that we define nj =
P

K

⌧=1 1{a
⌧

1 = bj} for all j 2 [A]. Combining Equations (F.1) and (F.2), we have

max
`2{1,2}

p
n` · ED⇠M`

h
SubOpt

�
M`,Algo(D);x0

�i

�

p
n1n2

p
n1 +

p
n2

·

✓
ED⇠M1

h
SubOpt

�
M1,Algo(D);x0

�i
+ ED⇠M2

h
SubOpt

�
M2,Algo(D);x0

�i◆

=

p
n1n2

p
n1 +

p
n2

· (p⇤ � p) · (H � 1) ·
⇣
ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
1� ⇡1(b2 |x0)

⇤⌘

�

p
n1n2

p
n1 +

p
n2

· (p⇤ � p) · (H � 1) ·
⇣
ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
⇡1(b1 |x0)

⇤⌘
,

where ED⇠M`
is the expectation taken with respect to the randomness of D, which is compliant with the underlying MDP

M` for all ` 2 {1, 2}. Here the first inequality follows from the fact that max{x, y} � a · x+ (1� a) · y, for all a 2 [0, 1]
and all x, y � 0. Therefore, we conclude the proof of Lemma C.3.

F.2. Suboptimality of PEVI on M

In this section, we establish the suboptimality of PEVI for the linear MDPs in M. We consider any linear MDP M =
M(p1, p2, p3) 2 M and the dataset D = {(x⌧

h
, a

⌧

h
, r

⌧

h
)}K,H

⌧,h=1 compliant with M, which is constructed in Section C.3.1.
Recall that nj =

P
K

⌧=1 1{a
⌧

1 = bj} for all j 2 [A] and j
⇤ = argmax

j2[A] pj . We define mj =
P

K

⌧=1 1{x
⌧

2 = xj} for all
j 2 {1, 2}.

Lemma F.1 (Suboptimality of PEVI). Suppose Assumption 2.2 holds and the underlying MDP is M 2 M. In Algorithm
2, we set � = 1 and � = c · dH

p
log(4dHK/⇠). Here c > 0 is an absolute constant and ⇠ 2 (0, 1) is the confidence

parameter, which are specified in Theorem 4.4. We have
HX

h=1

E⇡⇤

h�
�(sh, ah)

>⇤�1
h
�(sh, ah)

�1/2 ��� s1 = x0

i

=
1p

1 + nj⇤
+ (H � 1) ·

⇣
pj⇤

p
1 +m1

+
1� pj⇤
p
1 +m2

⌘
, (F.3)

where E⇡⇤ is taken with repsect to the trajectory induced by the optimal policy ⇡⇤ in M. When K is sufficiently large so
that K � 32 · log(8/⇠), Pess(D) in Algorithm 2 satisfies

SubOpt
�
M,Pess(D);x0

�
 9�H/

p
nj⇤ (F.4)

with probability at least 1� ⇠, which is with respect to PD.
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Proof of Lemma F.1. Recall that x⌧

1 = x0 for all ⌧ 2 [K]. By the definition of ⇤h in Equation (4.6), we have

⇤1 = � · I +
KX

⌧=1

�(x0, a
⌧

1)�(x0, a
⌧

1)
> = diag(�+ n1, . . . ,�+ nA,�,�) 2 R(A+2)⇥(A+2)

, (F.5)

where the second equality follows from the definition of � in Equation (C.9). Since x1, x2 2 S are the absorbing states, for
all a 2 A and all h 2 {2, . . . , H}, we have

⇤h = � · I +
KX

⌧=1

�(x⌧

h
, a

⌧

h
)�(x⌧

h
, a

⌧

h
)> = diag(�, . . . ,�,�+m1,�+m2) 2 R(A+2)⇥(A+2)

, (F.6)

where the second equality follows from the definition of � in Equation (C.9). Also, we have

P⇡⇤(s2 = x1) = pj⇤ , and P⇡⇤(s2 = x2) = 1� pj⇤ ,

where P⇡⇤ is taken with respect to the trajectory induced by ⇡⇤ in M. Combining Equations (F.5) and (F.6), we have

E⇡⇤

h�
�(sh, ah)

>⇤�1
h
�(sh, ah)

�1/2 ��� s1 = x0

i

=

(
(1 + nj⇤)�1/2

, h = 1,

pj⇤ · (1 +m1)�1/2 + (1� pj⇤) · (1 +m2)�1/2
, h 2 {2, . . . , H},

(F.7)

which yields Equation (F.3). Here we use the definition of � in Equation (C.9) and the parameter � = 1 in Algorithm 2.

In the sequel, we lower bound m1 and m2 via concentration inequalities. By the construction of D in Section C.3.1, for all
⌧ 2 [K] and all j 2 [A], given the action a

⌧

1 = bj , 1{x⌧

2 = x1} is a Bernoulli random variable with the success probability
pj . As p1, p2, p3 2 [1/4, 3/4], we have

ED[m1] =
KX

⌧=1

ED
⇥
1{x⌧

2 = x1}
⇤
=

AX

j=1

pj · nj � 1/4 ·
AX

j=1

nj = K/4. (F.8)

Given the actions {a⌧1}K⌧=1, m1 is a sum of K independent Bernoulli random variables. By Hoeffding’s inequality, for all
⇠ > 0, it holds that

��m1 � ED[m1]
�� 

p
K/2 · log(8/⇠) (F.9)

with probability at least 1� ⇠/4, which is with respect to PD. By Equations (F.8) and (F.9), it holds that

m1 � K/4�
p
K/2 · log(8/⇠) (F.10)

with probability at least 1� ⇠/4, which is with respect to PD. Similarly, we have

ED[m2] =
KX

⌧=1

ED
⇥
1{x⌧

2 = x2}
⇤
=

AX

j=1

(1� pj) · nj � 1/4 ·
AX

j=1

nj � K/4.

By Hoeffding’s inequality, it holds that

m2 � K/4�
p
K/2 · log(8/⇠) (F.11)

with probability at least 1� ⇠/4, which is taken with respect to PD. We define the event

E = {m1 � K/8, m2 � K/8}. (F.12)

Combining Equations (F.10) and (F.11), by the union bound, when K is sufficiently large so that K � 32 · log(8/⇠), we
have PD(E) � 1� ⇠/2.

Meanwhile, by Theorem 4.4 with the parameter � = 1 and the confidence parameter ⇠/2, it holds that

SubOpt
�
M,Pess(D);x0

�


2�p
1 + nj⇤

+ 2�(H � 1) ·
⇣

pj⇤
p
1 +m1

+
1� pj⇤
p
1 +m2

⌘
(F.13)

with probability at least 1 � ⇠/2, which is taken with respect to PD. By the union bound on the two events defined in
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Equations (F.12) and (F.13), respectively, it holds that

SubOpt
�
M,Pess(D);x0

�


2�
p
nj⇤

+ 2�(H � 1) ·
⇣ 3/4
p
m1

+
3/4
p
m2

⌘

 2�/
p
nj⇤ + 9�(H � 1)/

p

K  9�H/
p
nj⇤

with probability at least 1�⇠, which is with respect to PD. Here the first inequality follows from the fact that pj⇤ 2 [1/4, 3/4],
the second inequality follows from the fact that m1,m2 � K/8 on E defined in (F.12), while the last inequality follows
from the fact that nj⇤  K. Therefore, we conclude the proof of Lemma F.1.

F.3. Proof of Theorem 4.6

Proof of Theorem 4.6. We consider two linear MDPs M1 = M(p⇤, p, p) and M2 = (p, p⇤, p) in the class M and the
dataset D compliant with M1 or M2, which is constructed in Section C.3.1. We additionally assume that n1, n2 � 4 and
1/c̄  n1/n2  c̄ for an absolute constant c̄ > 0. For the policy ⇡ = {⇡h}

H

h=1 = Algo(D) constructed by any offline RL
algorithm, recall the test function  Algo(D) defined in Equation (C.17), which is constructed for the hypothesis testing
problem defined in Equation (C.16). By Equation (C.18), we have

ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
⇡1(b1 |x0)

⇤

= ED⇠M1

⇥
1{ Algo(D) = 1}

⇤
+ ED⇠M2

⇥
1{ Algo(D) = 0}

⇤

� 1� TV(PD⇠M1 ,PD⇠M2) � 1�
p

KL(PD⇠M1 kPD⇠M2)/2, (F.14)

where the first inequality follows from the definition of the total variation distance, while the second inequality follows
from Pinsker’s inequality. Here for each ` 2 {1, 2}, we use PD⇠M`

is with respect to the randomness of D when D is
compliant with M` for all ` 2 {1, 2}. Also, we use TV and KL to denote the total variation and the Kullback-Leibler (KL-)
divergence, respectively.

Recall the mapping of the rewards {r⌧2}⌧2[N ] into the relabeled rewards {i
j
}
nj ,A

i,j=1 in Equation (C.12). Also, recall that the
actions {a⌧

h
}⌧2[K],h�2 are chosen arbitrarily but fixed in the dataset D. Since x1, x2 2 S are absorbing states, we have

PD⇠M`
(D) = PD⇠M`

(D1) for all ` 2 {1, 2}, where D1 = {(x⌧

1 , a
⌧

1 , x
⌧

2 , r
⌧

2 )}⌧2[K] is the reduced dataset. By Equation
(C.14), the probabilities of observing D1 under M1 and M2 take the form

PD⇠M1(D1) = (p⇤)
Pn1

i=1 
i

1 · (1� p
⇤)n1�

Pn1
i=1 

i

1 ·

AY

j=2

⇣
p

Pnj

i=1 
i

j · (1� p)nj�
Pnj

i=1 
i

j

⌘
,

PD⇠M2(D2) = (p⇤)
Pn2

i=1 
i

2 · (1� p
⇤)n2�

Pn2
i=1 

i

2 ·

Y

j2[A]

j 6=2

⇣
p

Pnj

i=1 
i

j · (1� p)nj�
Pnj

i=1 
i

j

⌘
, (F.15)

respectively. Here we use the fact that p1 = p
⇤, p2 = p in M1 = M(p⇤, p, p), while p1 = p, p2 = p

⇤ in M2 = M(p, p⇤, p),
where p

⇤
> p. By Equation (F.15), we have

KL(PD⇠M1 kPD⇠M2) = ED⇠M1

⇣ n1X

i=1


i

1 �

n2X

i=1


i

2

⌘
· log

p
⇤
· (1� p)

p · (1� p⇤)
+ (n1 � n2) · log

1� p
⇤

1� p

�

= (n1p
⇤
� n2p) · log

p
⇤
· (1� p)

p · (1� p⇤)
+ (n1 � n2) · log

1� p
⇤

1� p

= n1 ·

⇣
p
⇤
· log

p
⇤

p
+ (1� p

⇤) · log
1� p

⇤

1� p

⌘
+ n2 ·

⇣
p · log

p

p⇤
+ (1� p) · log

1� p

1� p⇤

⌘
,

where the second equality follows from Equation (C.13). Note that for all x 2 (�1, 1), it holds that log(1 + x)  x. Hence,
when p

⇤
� p < min{p, 1� p}, we have

p
⇤
· log

p
⇤

p
+ (1� p

⇤) · log
1� p

⇤

1� p
= p

⇤
· log

⇣
1 +

p
⇤
� p

p

⌘
+ (1� p

⇤) · log
⇣
1 +

p� p
⇤

1� p

⌘

 p
⇤
·
p
⇤
� p

p
+ (1� p

⇤) ·
p� p

⇤

1� p
=

(p⇤ � p)2

p · (1� p)
.
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Similarly, when p
⇤
� p < min{p⇤, 1� p

⇤
}, we have

p · log
p

p⇤
+ (1� p) · log

1� p

1� p⇤


(p⇤ � p)2

p⇤ · (1� p⇤)
.

Recall that n1, n2 � 4 and 1/c̄  n1/n2  c̄ for an absolute constant c̄ > 0. We set

p
⇤ =

1

2
+

1

8
·

s
3

2 · (n1 + n2)
, p =

1

2
�

1

8
·

s
3

2 · (n1 + n2)
(F.16)

such that p⇤, p 2 [1/4, 3/4], 0  p
⇤
� p  1/4 and p

⇤
� p < min{p, 1� p, p

⇤
, 1� p

⇤
}. Hence, the KL-divergence is upper

bounded as

KL(PD⇠M1 kPD⇠M2) 
n1 · (p⇤ � p)2

p · (1� p)
+

n2 · (p⇤ � p)2

p⇤ · (1� p⇤)
 16/3 · (n1 + n2) · (p

⇤
� p)2  1/2, (F.17)

where the second inequality follows from the fact that p, p⇤ 2 [1/4, 3/4] and the last inequality follows from Equation
(F.16). By Equations (F.14) and (F.17), we have

ED⇠M1

⇥
1� ⇡1(b1 |x0)

⇤
+ ED⇠M2

⇥
⇡1(b1 |x0)

⇤
� 1�

p
KL(PD⇠M1 kPD⇠M2)/2 � 1/2. (F.18)

Combining Equations (F.16) and (F.18), for the output ⇡ = {⇡h}
H

h=1 = Algo(D) of any offline RL algorithm, we have

max
`2{1,2}

p
n` · ED⇠M`

h
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�
M`,Algo(D);x0
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⇥
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⇤
+ ED⇠M2
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p
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·
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·
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3

2 · (n1 + n2)
·
H � 1

2

=

p
n1/n2

(
p
n1/n2 + 1) ·

p
1 + n1/n2

·

p
3

8
p
2
· (H � 1) � C

0
· (H � 1) (F.19)

for an absolute constant

C
0 =

p
3

8
p
2
·

1

(
p
c̄+ 1) ·

p
c̄ · (c̄+ 1)

> 0. (F.20)

Here the first inequality follows from Lemma C.3, while the last inequality follows from the fact that 1/c̄  n1/n2  c̄.

By the definition of M1 and M2 in Equation (C.15), the optimal policy ⇡⇤,1 for M1 always chooses the action b1, while
the optimal policy ⇡⇤,1 for M2 always chooses the action b2. Recall that nj =

P
K

⌧=1 1{a
⌧

1 = bj} for all j 2 [A] and mj =P
K

⌧=1 1{x
⌧

2 = xj} for all j 2 {1, 2}. Also, recall that j⇤ = argmax
j2[A] pj = 1 for M1, while j⇤ = argmax

j2[A] pj = 2
for M2. Therefore, nj⇤ = ` on M` for all ` 2 {1, 2}. By Lemma F.1, for all ` 2 {1, 2}, we have
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1 +m1

+
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⇤
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1 +m2

⌘
,

where E⇡⇤,`,M`
is taken with repect to the trajectory induced by ⇡⇤,` in M` for all ` 2 {1, 2}. Given the actions {a⌧1}K⌧=1,

m1 and m2 are the sums of K independent Bernoulli random variables. We define the event

E = {m1 � K/8, m2 � K/8}. (F.21)

On E , it holds that
HX
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+
3/4
p
m2

⌘
 6(H � 1)/

p
n`. (F.22)
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Hence, we have

max
`2{1,2}
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, (F.23)

where the last inequality follows from Equation (F.22) and the definition of E in Equation (F.21). We use E
c

to denote the
complement of E . By Equation (C.8), we have rh 2 [0, 1] for all h 2 [H] and r1(x0, a) = 0 for all a 2 A. Hence, the
suboptimality of any policy is upper bounded by H � 1. For all ` 2 {1, 2}, we have
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). (F.24)

We invoke the same argument as in Equations (F.10) and (F.11). For any � > 0 and any ` 2 {1, 2}, since we have
p, p

⇤
� 1/4, when K is sufficiently large so that K � 32 · log(4/�), we have PD⇠M`

(E) � 1 � �. Hence, setting
� = 1/K2, when K is sufficiently large so that K � 32 · log(4K2) = 64 · log(2K), we have PD⇠M`

(E) � 1� 1/K2 for
all ` 2 {1, 2}. By Equation (F.24), for all ` 2 {1, 2}, it holds that
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By Equations (F.19), (F.23), and (F.25), we have
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when K is sufficiently large so that K � 64 · log(2K) and K � 2/C 0 for C 0 defined in Equation (F.20). Here the first
inequality follows from Equation (F.23), the second inequality follows from Equation (F.25), the third inequality follows
from the fact that n`  K for all ` 2 {1, 2}, and the fourth inequality follows from Equation (F.19).

Since M defined in Equation (C.6) is a subclass of linear MDPs, Equation (F.26) implies the lower bound in Equation (4.13)
with c = C

0
/12 for K sufficiently large so that K � 64 · log(2K) and K � 2/C 0. Therefore, we conclude the proof of

Theorem 4.6.

F.4. Locally Refined Upper Bounds

Since M is a class of linear MDPs, a direct application of Theorem 4.4 yields an upper bound on the suboptimality of
Pess(D) constructed by Algorithm 2, which is minimax optimal up to � and absolute constant. In the sequel, focusing on
M, we prove that, with a different choice of the ⇠-uncertainty quantifier designed specifically for M, PEVI achieves a more
refined local minimax optimality.
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Specifically, for any M = M(p1, p2, p3) 2 M, recall that both x1 and x2 are absorbing states. By the construction of the
reward function of M, for any value function V and any h � 2, the Bellman operator Bh is defined by

(BhV )(x1, a) = rh(x1, a) + V (x1) = V (x1) + 1, (BhV )(x2, a) = rh(x2, a) + V (x2) = V (x2),

for all a 2 A. Besides, recall that the initial state is fixed to x0. For any j 2 [A], we have

(B1V )(x0, bj) = pj · V (x1) + (1� pj) · V (x2), (F.27)

where we let pj = p3 for all j � 3. Then, based on any dataset D = {(x⌧

h
, a

⌧

h
, r

⌧

h
)}K,H

⌧,h=1 that is compliant with M, we
construct an estimated Bellman operator bBh and value function bVh as follows. Starting from bVH+1 being a zero function,
for any h � 2, we define bVh by letting bVh(x1) = H � h+ 1 and bVh(x2) = 0. For any a 2 A, we define bBh

bVh+1 by

(bBh
bVh+1)(x1, a) = (Bh

bVh+1)(x1, a) = bVh+1(x1) + 1 = H � h+ 1,

(bBh
bVh+1)(x2, a) = (Bh

bVh+1)(x2, a) = bVh+1(x2) = 0.
(F.28)

Furthermore, for h = 1, we define the empirical Bellman update by replacing Equation (F.27) with its empirical estimator.
Specifically, since r1(x0, a) = 0 for all a 2 A, by Equation (F.28), for all j 2 [A] with nj > 0, we define

(bB1
bV2)(x0, bj) =

1

nj
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1{a⌧1 = bj} · r
⌧

2 , (F.29)

while for j 2 [A] with nj = 0, we simply set (bB1
bV2)(x0, bj) = 0. Furthermore, for any ⇠ > 0, we define

�⇠

1(x0, bj) = (H � 1) ·
q
log(2A/⇠)

�
(1 + nj), 8j 2 [A], �⇠

h
(·, ·) ⌘ 0, 8h � 2. (F.30)

Thus, employing the empirical Bellman update bBh
bVh+1 given in Equations (F.28) and (F.29), and function �⇠

h
defined in

Equation (F.30), we obtain an instantiation of PEVI that is specified in Algorithm 1. We let Pess⇤(D) denote the output
policy, whose suboptimality is established in the following proposition.

Proposition F.2 (Local Optimality of PEVI). For any M 2 M and any dataset D that is compliant with M, we assume that
nj⇤ =

P
K

⌧=1 1{a
⌧

1 = b
⇤
j
} � 1 for the optimal action bj⇤ , where j

⇤ = argmax
j2{1,2}{pj}. Then the following statements

hold: (i) {�⇠

h
}
H

h=1 defined in Equation (F.30) are ⇠-uncertainty quantifiers satisfying Equation (4.1), and hence (ii) we have
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with probability at least least 1� ⇠ with respect to PD, where c > 0 is an absolute constant. Here E⇡⇤ is taken with respect
to the trajectory induced by the optimal policy ⇡⇤ under the MDP M, and ⇤h is defined as in Equation (4.6) with � = 1.

We remark that by choosing ⇠-uncertainty quantifiers designed specifically for linear MDPs in M, Proposition F.2 establishes
a tighter upper bound compared to that in Theorem 4.4. Specifically, Equation (F.4) shows that directly applying Theorem
4.4 yields an eO(H2

A/
p
nj⇤) suboptimality upper bound, where eO(·) omits logarithmic terms and absolute constants. In

contrast, as shown in Equation (F.33), Pess⇤(D) achieves an improved eO(H/
p
nj⇤) suboptimality upper bound. Thus,

neglecting logarithmic terms and absolute constants, although both being minimax optimal algorithms, Pess⇤(D) is
superior over Pess(D) given in Algorithm 2 by a factor of HA, and Pess⇤(D) is minimax optimal up to a factor of H .

Proof of Proposition F.2. The proof consists of two steps. In the first step, we prove that {�⇠

h
}
H

h=1 given in Equation (F.30)
is are valid ⇠-uncertainty quantifiers. In the second step, we apply Theorem 4.2 and establish the final upper bound.

Step I. In the following, we show that {�⇠

h
}
H

h=1 are valid ⇠-uncertainty quantifiers. That is, for the empirical Bellman
operators given in Equations (F.28) and (F.29), we have

PD
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⌘
� 1� ⇠. (F.31)
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Combining Equations (F.28) and (F.30), we directly have
��(bBh

bVh+1)(x, a)� (Bh
bVh+1)(x, a)

�� = 0 = �⇠

h
(x, a)

for all (x, a) 2 S ⇥A and h � 2.

Thus, it suffices to only focus on the case where h = 1. Recall that we define nj =
P

K

⌧=1 1{a
⌧

1 = bj}. For any j 2 [A], we
consider the cases where nj = 0 and nj � 1 separately. For the former case, recall that we define (bB1

bV2)(x0, bj) = 0. By
Equation (F.27), we have (B1

bV2)(x0, bj) = pj · (H � 1). Besides, Equation (F.30) implies that

�⇠

1(x0, bj) = (H � 1) ·
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Thus, we have |(bB1
bV2)(x0, bj)� (B1
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Meanwhile, when nj � 1, consider the �-algebra F⌧ = �({i
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1 = bj , ⌧ 2 [K]} as introduced in Section C.3.1. Since D is compliant with M, by Equation (C.13), {i
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a martingale difference sequence that is adapted to filtration {Fi}

nj

i=1. Applying Azuma-Hoeffding’s inequality, we have
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 2 · (2A/⇠)�2nj/(1+nj)  ⇠/A, (F.32)

where we utilize the fact that nj � 1. Meanwhile, combining Equations (F.27), (F.28), (F.29), (F.30) and (F.32), for any
fixed j 2 [A], we have
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1

nj

njX
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with probability at least 1� ⇠/A. Taking the union bound over all j 2 [A] yields the desired result in Equation (F.31). Thus,
we have shown that {�⇠

h
}
H

h=1 given in Equation (F.30) are ⇠-uncertainty quantifiers.

Step II. In the sequel, we apply Theorem 4.2 to Pess⇤(D) and establish the suboptimality upper bound in Proposition F.2.
Specifically, Theorem 4.2 shows that, with probability at least 1� ⇠ with respect to PD, we have
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where the last equality follows from Equation (F.30) and j
⇤ = argmax

j2{1,2}{pj}. Meanwhile, by Equation (F.7) with
� = 1, it holds that
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Also notice that log(2A/⇠) = log 2 + log(A/⇠)  2 log(A/⇠) for A � 2. Finally, combining Equations (F.33) and (F.34),
we have
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with probability at least 1� ⇠ with respect to PD, where c > 0 is an absolute constant that can be chosen as c = 4. Therefore,
we complete the proof of Proposition F.2.

G. Supporting Lemmas

The following lemma characterizes the deviation of the sample mean of random matrices, which can be found in various
literature, for example, see Theorem 1.6.2 of (Tropp, 2015).

Lemma G.1 (Matrix Bernstein Inequality). Assume that {Ak}
n

k=1 are n independent and centered random matrices in
Rd1⇥d2 , that is, E[Ak] = 0 for all k 2 [n]. Besides, we assume that these random matrices are uniformly bounded and
assume that each one is uniformly bounded in the sense that kAkkop  L for all k 2 [n]. Let Z =

P
n

k=1 Ak, and define
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v(Z) as

v(Z) = max
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Then, for any t � 0, we have

P
�
kZkop � t

�
 (d1 + d2) · exp

⇣
�

t
2
/2

v(Z) + L/3 · t

⌘
.

Proof. See, e.g., Theorem 1.6.2 of (Tropp, 2015) for a detailed proof.

In addition, the following lemma, obtained from (Abbasi-Yadkori et al., 2011), establishes the concentration of self-
normalized processes.

Lemma G.2 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let {✏t}1t=1 be a real-valued
stochastic process that is adaptive to a filtration {Ft}

1
t=0. That is, ✏t is Ft-measurable for all t � 1. Moreover, we assume

that, for any t � 1, conditioning on Ft�1, ✏t is a zero-mean and �-subGaussian random variable such that

E[✏t | Ft�1] = 0 and E[exp(�✏t) | Ft�1]  exp(�2�2
/2), 8� 2 R. (G.1)

Besides, let {�t}1t=1 be an Rd-valued stochastic process such that �t is Ft�1-measurable for all t � 1. Let M0 2 Rd⇥d be
a deterministic and positive-definite matrix, and we define Mt = M0 +

P
t

s=1 �s�
>
s

for all t � 1. Then for any � > 0, with
probability at least 1� �, we have for all t � 1 that
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Proof. See Theorem 1 of (Abbasi-Yadkori et al., 2011) for a detailed proof.


