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A. Extra Notations
In addition to the notations that we have introduced in the main body of this paper, we need some extra notations that are
used in the following appendices. The distribution of the initial weights V0[j] is denoted by the probability density λ(·) on
Rd, and the directions of the initial weights (i.e., the normalized initial weights V0[j]

‖V0[j]‖2 ) follows the probability density

λ̃(·) on Sd−1. Let λa(·) be the Lebesgue measure on Ra where the dimension a can be, e.g., (d− 1) and (d− 2).

Let Bino(a, b) denote the binomial distribution, where a is the number of trials and b is the success probability. Let I·(·, ·)
denote the regularized incomplete beta function (Dutka, 1981). Let B(·, ·) denote the beta function (Chaudhry et al., 1997).
Specifically,

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt, (19)

Ix(a, b) :=

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
. (20)

Define a cap on a unit hyper-sphere Sd−1 as the intersection of Sd−1 with an open ball in Rd centered at v∗ with radius r,
i.e.,

Brv∗ :=
{
v ∈ Sd−1 | ‖v − v∗‖2 < r

}
. (21)

Remark 4. For ease of exposition, we will sometimes neglect the subscript v∗ of Brv∗ and use Br instead, when the quantity
that we are estimating only depends on r but not v∗. For example, where we are interested in the area of Brv∗ , it only depends
on r but not v∗. Thus, we write λd−1(Br) instead.

For any x ∈ Rd such that xTv∗ = 0, define two halves of the cap Brv∗ as

Br,xv∗,+
:=
{
v ∈ Brv∗ | x

Tv > 0
}
, Br,xv∗,− :=

{
v ∈ Brv∗ | x

Tv < 0
}
. (22)

Define the set of directions of the initial weights V0[j]’s as

AV0
:=

{
V0[j]

‖V0[j]‖2

∣∣∣∣∣ j ∈ {1, 2, · · · , p}
}
. (23)

B. GD (gradient descent) Converges to Min `2-Norm Solutions
We assume that the GD algorithm for minimizing the training MSE is given by

∆VGD
k+1 = ∆VGD

k − γk
n∑
i=1

(Hi∆VGD
k − yi)HT

i , (24)

where ∆VGD
k denotes the solution in the k-th GD iteration (∆VGD

0 = 0), and γk denotes the step size of the k-th iteration.

Lemma 6. If ∆V`2 exists and GD in Eq. (24) converges to zero-training loss (i.e., H∆VGD
∞ = y), then ∆VGD

∞ = ∆V`2 .

Proof. Because ∆VGD
0 = 0 and Eq. (24), we know that ∆VGD

k is in the row space of H for any k. Thus, we can let
∆VGD

∞ = HTa where a ∈ Rn. When GD converges to zero training loss, we have H∆VGD
∞ = y. Thus, we have

HHTa = y, which implies a = (HHT )−1y. Therefore, we must have ∆VGD
∞ = HTa = HT (HHT )−1y = ∆V`2 .

C. Assumptions and Justifications

Because f̂∆V,V0
(ax) = a · f̂∆V,V0

(x) for any a ∈ R, we can always do preprocessing to normalize the input x. For
simplicity, we focus on the simplest situation that the randomness for the inputs and the initial weights are uniform.
Nonetheless, methods and results of this paper can be readily generalized to other continuous random variable distributions,
which we leave for future work. We thus make the following Assumption 1.
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Assumption 1. The input x are uniformly distributed in Sd−1. The initial weights V0[j]’s are uniform in all directions. In
other words, µ(·) and λ̃(·) are both unif(Sd−1).

We study the overparameterized and overfitted setting, so in this paper we always assume p ≥ n/d, i.e., the number of
parameters pd is larger than or equal to the number of training samples n. The situation of d = 1 is relatively trivial, so we
only consider the case d ≥ 2. We then make Assumption 2.

Assumption 2. p ≥ n/d and d ≥ 2.

If the input is a continuous random vector, then for any i 6= j, we have Pr{Xi = Xj} = 0 and Pr{Xi = −Xj} = 0
(because the probability that a continuous random variable equals to a given value is zero). Thus, Pr{Xi ‖ Xj} = 0, and
Pr{Xi ∦ Xj} = 1. Similarly, we can show that Pr{V0[k] ∦ V0[l]} = 1. We thus make Assumption 3.

Assumption 3. Xi ∦ Xj for any i 6= j, and V0[k] ∦ V0[l] for any k 6= l.

With these assumptions, the following lemma says that when p is large enough, with high probability H has full row-rank
(and thus ∆V`2 exists).

Lemma 7. limp→∞ Pr
V0

{rank(H) = n |X} = 1.

Proof. See Appendix E.

D. Some Useful Supporting Results
Here we collect some useful lemmas that are needed for proofs in other appendices, many of which are estimations of certain
quantities that we will use later.

D.1. Quantities related to the area of a cap on a hyper-sphere

The following lemma is introduced by (Li, 2011), which gives the area of a cap on a hyper-sphere with respect to the
colatitude angle.

Lemma 8. Let φ ∈ [0, π2 ] denote the colatitude angle of the smaller cap on Sd−1, then the area (in the measure of λd−1)
of this hyper-spherical cap is

1

2
λd−1(Sd−1)Isin2 φ

(
d− 1

2
,

1

2

)
.

The following lemma is another representation of the area of the cap with respect to the radius r (recall the definition of Br
in Eq. (21) and Remark 4).

Lemma 9. If r ≤
√

2, then we have

λd−1(Br) =
1

2
λd−1(Sd−1)I

r2(1− r24 )

(
d− 1

2
,

1

2

)
.

Proof. Let φ denote the colatitude angle. By the law of cosines, we have

cosφ = 1− r2

2
.

Thus, we have

sin2 φ = 1− cos2 φ = 1−
(

1− r2

2

)2

= r2

(
1− r2

4

)
.

By Lemma 8, the result of this lemma thus follows. Notice that we require r ≤
√

2 to make sure that φ ∈ [0, π2 ], which is
required by Lemma 8.
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The area of a cap can be interpreted as the probability of the event that a uniformly-distributed random vector falls into that
cap. We have the following lemma.

Lemma 10. Suppose that a random vector b ∈ Sd−1 follows uniform distribution in all directions. Given any a ∈ Sd−1

and for any c ∈ (0, 1), we have

Pr
b

{
|aT b| > c

}
= I1−c2

(
d− 1

2
,

1

2

)
.

Proof. Notice that
{
b
∣∣ aT b > c

}
is a hyper-spherical cap. Define its colatitude angle as φ. We have cosφ = aT b = c.

Thus, we have sin2 φ = 1− c2. By Lemma 8, we then have

λd−1

({
b
∣∣ aT b > c

})
=

1

2
λd−1(Sd−1)I1−c2

(
d− 1

2
,

1

2

)
.

Further, by symmetry, we have

λd−1

({
b
∣∣ |aT b| > c

})
= 2λd−1

({
b
∣∣ aT b > c

})
= λd−1(Sd−1)I1−c2

(
d− 1

2
,

1

2

)
.

Because b follows uniform distribution in all directions, we have

Pr
b

{
|aT b| > c

}
=
λd−1

({
b
∣∣ |aT b| > c

})
λd−1(Sd−1)

= I1−c2

(
d− 1

2
,

1

2

)
.

D.2. Estimation of certain norms

In this subsection, we will show ‖hV0,x‖2 ≤
√
p in Lemma 11. We also upper bound the norm of the product of two

matrices by the product of their norms in Lemma 12. At last, Lemma 13 states that if two vector differ a lot, then the sum of
their norm cannot be too small.

Lemma 11. ‖hV0,x‖2 ≤
√
p for any x ∈ Sd−1.

Proof. This follows because the input x is normalized. Specifically, by Eq. (1), we have

‖hV0,x‖2 =

√√√√ p∑
j=1

∥∥1{xTV0[j]>0} · xT
∥∥2

2
≤ √p. (25)

Lemma 12. If C = AB, then ‖C‖2 ≤ ‖A‖2 · ‖B‖2. Here A, B, and C could be scalars, vectors, or matrices.

Proof. This lemma directly follows the definition of matrix norm.

Remark 5. Note that the (`2) matrix-norm (i.e., spectral norm) of a vector is exactly its `2 vector-norm (i.e., Euclidean
norm)7. Therefore, when applying Lemma 12, we do not need to worry about whether A, B, and C are matrices or vectors.

Lemma 13. For any v1,v2 ∈ Rd, we have

‖v1‖22 + ‖v2‖22 ≥
1

2
‖v1 − v2‖22.

7To see this, consider a (row or column) vector a. The matrix norm of a is

max
|x|=1

‖ax‖2 (when a is a column vector),

or max
‖x‖2=1

‖ax‖2 (when a is a row vector).

In both cases, the value of the matrix-norm equals to
√∑

a2i , which is exactly the `2-norm (Euclidean norm) of a.
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Proof. It is easy to prove that ‖ · ‖22 is convex. Thus, we have

‖v1‖22 + ‖v2‖22 = ‖v1‖22 + ‖ − v2‖22

≥ 2

∥∥∥∥v1 − v2

2

∥∥∥∥2

2

(apply Jensen’s inequality on the convex function ‖ · ‖22)

=
1

2
‖v1 − v2‖22.

D.3. Estimates of certain tail probabilities

The following is the (restated) Corollary 5 of (Goemans, 2015).
Lemma 14. If the random variable X follows Bino(a, b), then for all 0 < δ < 1, we have

Pr{|X − ab| > δab} ≤ 2e−abδ
2/3.

The following lemma is the (restated) Theorem 1.8 of (Hayes, 2005).
Lemma 15 (Azuma–Hoeffding inequality for random vectors). Let X1, X2, · · · , Xk be i.i.d. random vectors with zero
mean (of the same dimension) in a real Euclidean space such that ‖Xi‖2 ≤ 1 for all i = 1, 2, · · · , k. Then, for every a > 0,

Pr

{∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥
2

≥ a

}
< 2e2 exp

(
−a

2

2k

)
.

In the following lemma, we use Azuma–Hoeffding inequality to upper bound the deviation of the empirical mean value of a
bounded random vector from its expectation.
Lemma 16. Let X1, X2, · · · , Xk be i.i.d. random vectors (of the same dimension) in a real Euclidean space such that
‖Xi‖2 ≤ U for all i = 1, 2, · · · , k. Then, for any q ∈ [1, ∞),

Pr

{∥∥∥∥∥
(

1

k

k∑
i=1

Xi

)
− EX1

∥∥∥∥∥
2

≥ k
1
2q− 1

2

}
< 2e2 exp

(
−

q
√
k

8U2

)
.

Proof. Because ‖Xi‖2 ≤ U , we have E ‖Xi‖2 ≤ U . By triangle inequality, we have ‖Xi− EXi‖2 ≤ ‖Xi‖2 + E ‖Xi‖2 ≤
2U , i.e., ∥∥∥∥Xi − EXi

2U

∥∥∥∥
2

≤ 1. (26)

We also have

E

[
Xi − EXi

2U

]
=

EXi − EXi

2U
= 0. (27)

We then have

Pr

{∥∥∥∥∥
(

1

k

k∑
i=1

Xi

)
− EX1

∥∥∥∥∥
2

≥ k
1
2q− 1

2

}

=Pr

{∥∥∥∥∥
k∑
i=1

(Xi − EXi)

∥∥∥∥∥
2

≥ k
1
2q+ 1

2

}

=Pr

{∥∥∥∥∥
k∑
i=1

(
Xi − EXi

2U

)∥∥∥∥∥
2

≥ k
1
2q+ 1

2

2U

}

<2e2 exp

(
−

q
√
k

8U2

)
(by Eqs. (26)(27) and letting a =

k
1
2q+ 1

2

2U
in Lemma 15).
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Figure 4. The arc
_

CBF is π−θ
2π

of the perimeter of the circle O.

D.4. Calculation of certain integrals

The following lemma calculates the ratio between the intersection area of two hyper-hemispheres and the area of the whole
hyper-sphere.
Lemma 17. ∫

Sd−1

1{zT v>0, xT v>0}dλ̃(v) =
π − arccos(xTz)

2π
. (28)

(Recall that λ̃(·) denotes the distribution of the normalized version of V0[j] on Sd−1 and is assumed to be uniform in all
directions.)

Before we give the proof of Lemma 17, we give its geometric explanation.

Geometric explanation of Eq. (28): Indeed, since λ̃ is uniform on Sd−1, the integral on the left-hand-side of Eq. (28)
represents the probability that a random point falls into the intersection of two hyper-hemispheres that are represented by
{v ∈ Sd−1 | zTv > 0} and {v ∈ Sd−1 | xTv > 0}, respectively. We can calculate that probability by

measure of a hyper-spherical lune with angle π − θ(z,x)

measure of a unit hyper-sphere
=
π − arccos(xTz)

2π
, (29)

where θ(·, ·) denote the angle (in radians) between two vectors, which would lead to Eq. (28). To help readers understand
Eq. (29), we give examples for 2D and 3D in Fig. 4 and Fig. 5, respectively. In the 2D case depicted in Fig. 4,

−→
OA denotes

z,
−→
OB denotes x. Thus, the arc

_

EAF denotes {v | zTv > 0}, and the arc
_

CBD denotes {v | xTv > 0}. The intersection

of
_

EAF and
_

CBD, i.e., the arc
_

CBF, represents {v | zTv > 0,xTv > 0}. Notice that the angle of
_

CBF equals π − θ,

where θ denotes the angle between z and x. Therefore, ratio of the length of
_

CBF to the perimeter of the circle equals
to ∠COF

2π = π−θ
2π . Similarly, in the 3D case depicted in Fig. 5, the spherical lune ICHF denotes the intersection of the

semi-sphere in the direction of
−→
OA and the semi-sphere in the direction of

−→
OB. We can see that the area of the spherical

lune ICHF is still proportional to the angle ∠COF. Thus, we still have the result that the area of the spherical lune ICHF is
π−θ
2π of the area of the whole sphere. The proof below, on the other hand, applies to arbitrary dimensions.

Proof. Due to symmetry, we know that the integral of Eq. (28) only depends on the angle between x and z. Thus, without
loss of generality, we let

x = [x1 x2 · · · xd] = [0 0 · · · 0 1 0]T , z = [0 0 · · · 0 cos θ sin θ]T ,

where

θ = arccos(xTz) ∈ [0, π]. (30)

Thus, for any v = [v1 v2 · · · vd]T that makes zTv > 0 and xTv > 0, it only needs to satisfy

[cos θ sin θ]

[
vd−1

vd

]
> 0, [1 0]

[
vd−1

vd

]
> 0. (31)
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Figure 5. The area of the spherical lune ICHF is π−θ
2π

of the area of the whole sphere.

We compute the spherical coordinates ϕx = [ϕx
1 ϕ

x
2 · · · ϕx

d−1]T where ϕx
1 , · · · , ϕx

d−2 ∈ [0, π] and ϕx
d−1 ∈ [0, 2π) with

the convention that

x1 = cos(ϕx
1 ),

x2 = sin(ϕx
1 ) cos(ϕx

2 ),

x3 = sin(ϕx
1 ) sin(ϕx

2 ) cos(ϕx
3 ),

...
xd−1 = sin(ϕx

1 ) sin(ϕx
2 ) · · · sin(ϕx

d−2) cos(ϕx
d−1),

xd = sin(ϕx
1 ) sin(ϕx

2 ) · · · sin(ϕx
d−2) sin(ϕx

d−1).

Thus, we have ϕx = [π/2 π/2 · · · π/2 0]T . Similarly, the spherical coordinates for z is ϕz = [π/2 π/2 · · ·π/2 θ]T . Let
the spherical coordinates for v be ϕv = [ϕv

1 ϕ
v
2 · · · ϕv

d−1]T . Thus, Eq. (31) is equivalent to

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2)

(
cos θ cos(ϕv

d−1) + sin θ sin(ϕv
d−1)

)
> 0, (32)

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2) cos(ϕv

d−1) > 0. (33)

Because ϕv
1 , · · · , ϕv

d−2 ∈ [0, π] (by the convention of spherical coordinates), we have

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2) ≥ 0.

Thus, for Eq. (32) and Eq. (33), we have

cos(θ − ϕv
d−1) > 0, cos(ϕv

d−1) > 0,
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i.e., ϕv
d−1 ∈ (−π/2, π/2) ∩ (θ − π/2, θ + π/2) (mod 2π). We have∫

Sd−1

1{zT v>0, xT v>0}dλ̃(v)

=

∫
(−π2 , π2 )∩(θ−π2 , θ+π

2 )

∫ π
0
· · ·
∫ π

0
sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1∫ 2π

0

∫ π
0
· · ·
∫ π

0
sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1

=

∫
(−π2 , π2 )∩(θ−π2 , θ+π

2 )
A · dϕd−1∫ 2π

0
A · dϕd−1

(by defining A :=

∫ π

0

· · ·
∫ π

0

sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2)

=
length of the interval (−π2 ,

π
2 ) ∩ (θ − π

2 , θ + π
2 )

2π

=
π − θ

2π
(because θ ∈ [0, π] by Eq. (30))

=
π − arccos(xTz)

2π
(by Eq. (30)).

The result of this lemma thus follows.

D.5. Limits of |CV0
z,x|/p when p→∞

We introduce some notions given by (Wainwright, 2015).

Glivenko-Cantelli class. Let F be a class of integrable real-valued functions with domain X , and let Xk
1 = {X1, · · · , Xk}

be a collection of i.i.d. samples from some distribution P over X . Consider the random variable

‖Pk − P‖F := sup
f̃∈F

∣∣∣∣∣1k
k∑
i=1

f̃(Xk)− E[f̃ ]

∣∣∣∣∣ ,
which measures the maximum deviation (over the class F ) between the sample average 1

k

∑k
i=1 f̃(Xi) and the population

average E[f̃ ] = E[f̃(X)]. We say that F is a Glivenko-Cantelli class for P if ‖Pk − P‖F converges to zero in probability as
k →∞.

Polynomial discrimination. A class F of functions with domain X has polynomial discrimination of order ν ≥ 1 if for
each positive integer k and collection Xk

1 = {X1, · · · , Xk} of k points in X , the set F (Xk
1 ) has cardinality upper bounded

by

card(F (Xk
1 )) ≤ (k + 1)ν .

The following lemma is shown in Page 108 of (Wainwright, 2015).

Lemma 18. Any bounded function class with polynomial discrimination is Glivenko-Cantelli.

For our case, we care about the following value.∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ =

∣∣∣∣∣∣1p
p∑
j=1

1{xTV0[j]>0,zTV0[j]>0} − E
v∼λ̃(·)

[1{xT v>0,zT v>0}]

∣∣∣∣∣∣ (by Lemma 17).

In the language of Glivenko-Cantelli class, the function class F∗ consists of functions 1{xT v>0,zT v>0} that map v ∈ Sd−1

to 0 or 1, where every x ∈ Sd−1 and z ∈ Sd−1 corresponds to a distinct function in F∗. According to Lemma 18, we need
to calculate the order of the polynomial discrimination for this F∗. Towards this end, we need the following lemma, which
can be derived from the quantity Qn,N in (Wendel, 1962) (which is the quantity Qd,k in the following lemma).
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Lemma 19. Given v1,v2, · · · ,vk ∈ Sd−1, the number of different values (i.e., the cardinality) of the set{(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

) ∣∣ x ∈ Sd−1
}

is at most Qd,k, where

Qd,k :=

{
2
∑d−1
i=0

(
k−1
i

)
, if k > d,

2k, if k ≤ d.

Intuitively, Lemma 19 states the number of different regions that k hyper-planes through the origin (i.e., the kernel of the
inner product with each vi) can cut Sd−1 into, because all x in one region corresponds to the same value of the tuple(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

)
. For example, in the 2D case (i.e., d = 2), k diameters of a circle can at most

cut the whole circle into 2k (which equals to Q2,k) parts. Notice that if some vi’s are parallel (thus some diameters are
overlapped), then the total number of different parts can only be smaller. That is why Lemma 19 states that the cardinality is
“at most” Qd,k.

The following lemma shows that the cardinality in Lemma 19 is polynomial in k.

Lemma 20. Recall the definition Qd,k in Lemma 19. For any integer k ≥ 1 and d ≥ 2, we must have Qd,k ≤ (k + 1)d+1.

Proof. When k > d, because
(
k−1
i

)
≤ (k − 1)d−1 when i ≤ d − 1, we have Qd,k = 2

d−1∑
i=0

(
k−1
i

)
≤ 2d(k + 1)d−1 ≤

(k + 1)d+1 (the last step uses k ≥ 1 and k > d). When k ≤ d, because k ≥ 1, we have Qd,k = 2k ≤ (k + 1)k ≤ (k + 1)d.
In summary, for any integer k ≥ 1 and d ≥ 2, the result Qd,k ≤ (k + 1)d+1 always holds.

We can now calculate the order of the polynomial discrimination for the function class F∗. Because

card
({(

1{xT v1>0,zT v1>0},1{xT v2>0,zT v2>0}, · · · ,1{xT vk>0,zT vk0}
) ∣∣ x ∈ Sd−1, z ∈ Sd−1

})
≤card

({(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

) ∣∣ x ∈ Sd−1
})

· card
({(

1{zT v1>0},1{zT v2>0}, · · · ,1{zT vk>0}
) ∣∣ z ∈ Sd−1

})
,

by Lemma 19 and Lemma 20, we know that

card(F∗(X
k
1 )) ≤ (Qd,k)

2 ≤ (k + 1)2(d+1).

(Here Xk
1 means {V0[1], · · · ,V0[k]}.)

Thus, F∗ has polynomial discrimination with order at most 2(d+ 1). Notice that all functions in F∗ is bounded because
their outputs can only be 0 or 1. Therefore, by Lemma 18 (i.e., any bounded function class with polynomial discrimination
is Glivenko-Cantelli), we know that F∗ is Glivenko-Cantelli. In other words, we have shown the following lemma.

Lemma 21.

sup
x,z∈Sd−1

∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ P→ 0, as p→∞. (34)

E. Proof of Lemma 7 (H has full row-rank with high probability as p→∞)
In this section, we prove Lemma 7, i.e., the matrix H has full row-rank with high probability when p → ∞. We first
introduce two useful lemmas as follows.

The following lemma states that, given X (that satisfies Assumption 3) and k ∈ {1, 2, · · · , n}, there always exists a vector
v ∈ Sd−1 that is only orthogonal to one training input Xk but not orthogonal to other training inputs Xi for all i 6= k. An
intuitive explanation is that, because no training inputs are parallel (as stated in Assumption 3), the total set of vectors that
are orthogonal to at least two training inputs is too small. That gives us many options to pick such a vector v that is only
orthogonal to one input but not others.

Lemma 22. For all k ∈ {1, 2, · · · , n} we have

Tk :=
{
v ∈ Sd−1 | vTXk = 0,vTXi 6= 0, for all i ∈ {1, 2, · · · , n} \ {k}

}
6= ∅.
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Figure 6. Geometric interpretation of Bri,Xiv∗,i,+
and Bri,Xiv∗,i,− on a sphere (i.e., S2).

Proof. We have

Tk = Sd−1 ∩ ker(Xk) \

 ⋃
i∈{1,2,··· ,n}\{k}

ker(Xi)


= Sd−1 ∩ ker(Xk) \

 ⋃
i∈{1,2,··· ,n}\{k}

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

) .

Because

dim(Sd−1 ∩ ker(Xk)) = d− 2,

dim(Sd−1 ∩ ker(Xk) ∩ ker(Xi)) = d− 3 for all i ∈ {1, 2, · · · , n} \ {k} (because Xi ∦ Xk), (35)

we have

λd−2(Sd−1 ∩ ker(Xk)) = λd−2(Sd−2) > 0,

λd−2

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
= 0 for all i ∈ {1, 2, · · · , n} \ {k}. (36)

(When d = 2, the set in Eq. (35) is not defined. Nonetheless, Eq. (36) still holds when d = 2.) Thus, we have

λd−2(Tk) = λd−2

(
Sd−1 ∩ ker(Xk)

)
− λd−2

 ⋃
i∈{1,2,··· ,n}\{k}

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
≥ λd−2

(
Sd−1 ∩ ker(Xk)

)
−

∑
i∈{1,2,··· ,n}\{k}

λd−2

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
= λd−2(Sd−2)

> 0.

Therefore, Tk 6= ∅.

The following lemma plays an important role in answering whether H has full row-rank. Further, it is also closely related to
our estimation on the min eig(HHT ) later in Appendix F.
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Lemma 23. Consider any i ∈ {1, 2, · · · , n}. For any v∗,i ∈ Sd−1 satisfying vT∗,iXi = 0, we define

ri := min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ . (37)

If there exist k, l ∈ {1, · · · , p} such that

V0[k]

‖V0[k]‖2
∈ Bri,Xi

v∗,i,+,
V0[l]

‖V0[l]‖2
∈ Bri,Xi

v∗,i,−, (38)

then we must have

Hj [k] = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}, (39)

Hi[k] = XT
i , (40)

Hi[l] = 0. (41)

(Notice that Eq. (38) implies ri > 0.)
Remark 6. We first give an intuitive geometric interpretation of Lemma 23. In Fig. 6, the sphere centered at O denotes Sd−1,
the vector

−→
OC denotes Xi, the vector

−→
OD denotes one of other Xj’s, the vector

−→
OE denotes v∗,i, which is perpendicular to

Xi (i.e., XT
i v∗,i = 0). The upper half of the cap E denotes Bri,Xi

v∗,i,+, the lower half of the cap E denotes Bri,Xi

v∗,i,−. The great

circle Lc cuts the sphere into two semi-spheres. The semi-sphere in the direction of
−→
OC corresponds to all vectors v on

the sphere that have positive inner product with Xi (i.e., vT∗,iXi > 0), and the semi-sphere in the opposite direction of
−→
OC

corresponds to all vectors v on the sphere that have negative inner product with Xi (i.e., vTXi < 0). The great circle Ld

is similar to the great circle Lc, but is perpendicular to the direction
−→
OD (i.e., Xj). By choosing the radius of the cap E

in Eq. (37), we can ensure that all great circles that are perpendicular to other Xj’s do not pass the cap E. In other words,
for the two semi-spheres cut by the great circle perpendicular to Xj , j 6= i, the cap E must be contained in one of them.
Therefore, vectors on the upper half of the cap E and the vectors on the lower half of the cap E must have the same sign
when calculating the inner product with all Xj’s, for all j 6= i.

Now, let us consider the meaning of Eq. (38) in this geometric setup depicted in Fig. 6. The expression V0[k]
‖V0[k]‖2 ∈ B

ri,Xi

v∗,i,+

means that the direction of V0[k] is in the upper half of the cap E. By the definition of Hi = hV0,Xi
in Eq. (1), we must

then have Hi[k] = XT
i . Similarly, the expression V0[l]

‖V0[l]‖2 ∈ B
ri,Xi

v∗,i,− means that the direction of V0[l] is in the lower half of
the cap E, and thus Hi[l] = 0. Then, based on the discussions in the previous paragraph, we know that V0[k] and V0[l] has
the same activation pattern under ReLU for all Xj’s that j 6= i, which implies that Hj [k] = Hj [l]. These are precisely the
conclusions in Eqs. (39)(40)(41).

Later in Appendix F, Lemma 23 plays an important role in estimating mina∈Sn−1 ‖HTa‖22. To see this, let aj denotes
the j-th element of a. By Eq. (39), we have

∑
j∈{1,2,··· ,n}\{i}((H

Taj)[k] − (HTaj)[l]) = 0. By Eq. (40) and Eq. (41),
we have (HTai)[k]− (HTai)[l] = Xi. Combining them together, we have (HTa)[k]− (HTa)[l] = aiXi. As long as ai
is not zero, then regardless values of other elements in a, we always obtain that HTa is a non-zero vector. This implies
‖HTa‖2 > 0, which will be useful for estimating min eig(HHT )/p in Appendix F.

Proof. By the definition of ri, we have

|vT∗,iXj | − ri ≥ 0, for all j ∈ {1, 2, · · · , n} \ {i}. (42)

For any j ∈ {1, 2, · · · , n} \ {i} and any v ∈ Briv∗,i , since ‖v − v∗,i‖2 < ri, we have

(vTXj)(v
T
∗,iXj) =

(
(v − v∗,i)TXj + vT∗,iXj

)
(vT∗,iXj)

= (vT∗,iXj)
2 + (vT∗,iXj)

(
(v − v∗,i)TXj

)
≥ (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ∣∣(v − v∗,i)TXj

∣∣
≥ (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ‖v − v∗,i‖2 ‖Xj‖2
> (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ri (by Eq. (21))

= |vT∗,iXj |(|vT∗,iXj | − ri)
≥ 0 (by Eq. (42)).
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Thus, for any v1 ∈ Briv∗,i , v2 ∈ Briv∗,i , j ∈ {1, 2, · · · , n} \ {i}, we have (vT1 Xj)(v
T
∗,iXj) > 0 and (vT2 Xj)(v

T
∗,iXj) > 0.

It implies that

sign(vT1 Xj) = sign(vT∗,iXj) = sign(vT2 Xj). (43)

By Eq. (38), we know that both V0[k] and V0[l] are in Briv∗,i . Applying Eq. (43), we have

sign(XT
j V0[k]) = sign(XT

j V0[l]), for all j ∈ {1, 2, · · · , n} \ {i}.

Thus, by Eq. (1), we have

Hj [k] = 1{XT
j V0[k]>0}X

T
j = 1{XT

j V0[l]>0}X
T
j = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}.

By Eq. (22), we have

XT
i V0[k] > 0, XT

i V0[l] < 0.

Thus, by Eq. (1), we have

Hi[k] = 1{XT
i V0[k]>0}X

T
i = XT

i , Hi[l] = 1{XT
i V0[l]>0}X

T
i = 0.

Now, we are ready to prove Lemma 7.

Proof. We prove by contradiction. Suppose on the contrary that with some nonzero probability, the design matrix is not full
row-rank as p→∞. Note that when the design matrix is not full row-rank, there exists a set of indices I ⊆ {1, · · · , n}
such that ∑

i∈I
biHi = 0, bi 6= 0 for all i ∈ I. (44)

The proof will be finished by two steps: 1) find an event J that happens almost surely when p→∞; 2) prove this event J
contradicts Eq. (44).

Step 1:

Consider each i ∈ {1, 2, · · · , n}. By Lemma 22, we know that there exists a v∗,i ∈ Sd−1 such that

vT∗,iXi = 0, vT∗,iXj 6= 0, for all j ∈ {1, 2, · · · , n} \ {i}. (45)

Define

ri = min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ > 0. (46)

For all i = 1, 2, · · · , n, we define several events as follows.

Ji :=
{
AV0

∩ Bri,Xi

v∗,i,+ 6= ∅, AV0
∩ Bri,Xi

v∗,i,− 6= ∅
}
,

Ji,+ =
{
AV0

∩ Bri,Xi

v∗,i,+ 6= ∅
}
,

Ji,− =
{
AV0

∩ Bri,Xi

v∗,i,− 6= ∅
}
,

J :=

n⋂
i=1

Ji.

(Recall the geometric interpretation in Remark 6. The events Ji,+ and Ji,− mean that there exists V0[j]/‖V0[j]‖2 in the
upper half and the lower half of the cap E, respectively. The event Ji = Ji,+ ∩Ji,− means that there exist V0[j]/‖V0[j]‖2
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in both halves of the cap E. Finally, the event J occurs when Ji occurs for all i, although the vector V0[j]/‖V0[j]‖2 that
falls into the two halves may differ across i. As we will show later, whenever the event J occurs, the matrix H will have the
full row-rank, which is why we are interesting in the probability of the event J .)

Those definitions implies that

J ci = J ci,+ ∪ J ci,− for all i = 1, 2, · · · , n, (47)

J c =

n⋃
i=1

J ci . (48)

Thus, we have

Pr
V0

[J ] =1− Pr
V0

[J c]

≥1−
n∑
i=1

Pr
V0

[J ci ] (by Eq. (48) and the union bound). (49)

For a fixed i, recall that by Eq. (46), we have ri > 0. Because Bri,Xi

v∗,i,+ and Bri,Xi

v∗,i,− are two halves of Briv∗,i , we have

λd−1(Bri,Xi

v∗,i,+) = λd−1(Bri,Xi

v∗,i,−) =
1

2
λd−1(Briv∗,i). (50)

Therefore, we have

Pr
V0

[J ci ] ≤ Pr
V0

[J ci,+] + Pr
V0

[J ci,−] (by Eq. (47) and the union bound)

=

(
1−

λd−1(Bri,Xi

v∗,i,+)

λd−1(Sd−1)

)p
+

(
1−

λd−1(Bri,Xi

v∗,i,−)

λd−1(Sd−1)

)p
(all V0[i]’s are independent and Assumption 1)

=2

(
1−

λd−1(Briv∗,i)
2λd−1(Sd−1)

)p
(by Eq. (50)).

Notice that ri is determined only by X, and is independent of V0 and p. Therefore, we have

lim
p→∞

Pr
V0

[J ci ] = 0. (51)

Plugging Eq. (51) into Eq. (49), we have

lim
p→∞

Pr
V0

[J ] = 1 (because n is finite).

Step 2:

To complete the proof, it remains to show that the event J contradicts Eq. (44). Towards this end, we assume the event J
happens. By Eq. (44), we can pick one i ∈ I. Further, by the definition of J , there exists ri such that AV0 ∩ B

ri,Xi

v∗,i,+ 6= ∅
and AV0 ∩ B

ri,Xi

v∗,i,− 6= ∅. In other words, there must exist k, l ∈ {1, · · · , p} such that

V0[k]

‖V0[k]‖2
∈ Bri,Xi

v∗,i,+,
V0[l]

‖V0[l]‖2
∈ Bri,Xi

v∗,i,−.

By Lemma 23, we have

Hj [k] = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}, (52)

Hi[k] = XT
i , Hi[l] = 0. (53)
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We now show that H restricted to the columns corresponding to k and l cannot be linearly dependent. Specifically, we have∑
j∈I

bjHj [k] = biHi[k] +
∑

j∈I\{i}
bjHj [k] (as we have picked i ∈ I)

= biHi[k]− bjHi[l] +
∑
j∈I

bjHj [l] (by Eq. (52))

= biX
T
i +

∑
j∈I

bjHj [l] (by Eq. (53))

6=
∑
j∈I

bjHj [l] (because bi 6= 0).

This contradicts the assumption Eq. (44) that∑
j∈I

bjHj [k] =
∑
j∈I

bjHj [l] = 0.

The result thus follows.

F. Proof of Proposition 4 (the upper bound of the variance)
The following lemma shows the relationship between the variance term and min eig

(
HHT

)
/p.

Lemma 24.

|hV0,xHT (HHT )−1ε| ≤
√
p‖ε‖2√

min eig(HHT )
.

Proof. We have

‖HT (HHT )−1ε‖2 =
√

(HT (HHT )−1ε)THT (HHT )−1ε =
√
εT (HHT )−1ε ≤ ‖ε‖2√

min eig(HHT )
. (54)

Thus, we have

|hV0,xHT (HHT )−1ε|
=‖hV0,xHT (HHT )−1ε‖2 (`2-norm of a number equals to its absolute value)

≤‖hV0,x‖2 · ‖HT (HHT )−1ε‖2 (by Lemma 12)

≤
√
p‖ε‖2√

min eig(HHT )
(by Lemma 11 and Eq. (54)).

The following lemma shows our estimation on min eig
(
HHT

)
/p.

Lemma 25. For any n ≥ 2, m ∈
[
1, lnn

ln π
2

]
, d ≤ n4, if p ≥ 6Jm(n, d) ln

(
4n1+ 1

m

)
, we must have

Pr
X,V0

{min eig
(
HHT

)
p

≥ 1

Jm(n, d)n

}
≥ 1− 2

m
√
n
.

Proposition 4 directly follows from Lemma 25 and Lemma 24. 8

In rest of this section, we will show how to prove Lemma 25. The following lemma shows that, to estimate
min eig

(
HHT

)
/p, it is equivalent to estimate mina∈Sn−1 ‖HTa‖22/p.

8We can see that the key part during the proof of Proposition 4 is to estimate min eig
(
HHT

)
/p. Lemma 25 shows a lower bound

of min eig
(
HHT

)
/p which is almost Ω(n1−2d) when p is large. However, our estimation of this value may be loose. We will show a

upper bound which is O(n−
1
d−1 ) (see Appendix G).
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Lemma 26.

min eig
(
HHT

)
= min

a∈Sn−1
‖HTa‖22.

Proof. Do the singular value decomposition (SVD) of HT as HT = UΣWT , where

Σ ∈ R(dp)×n = diag(Σ1,Σ2, · · · ,Σn).

By properties of singular values, we have

min
a∈Sn−1

‖HTa‖22 = min
i∈{1,2,··· ,n}

Σ2
i .

We also have

HHT = WΣTUTUΣWT

= WΣTΣWT (because UTU = I)

= Wdiag(Σ2
1,Σ

2
2, · · · ,Σ2

n)WT .

This equation is indeed the eigenvalue decomposition of HHT , which implies that its eigenvalues are Σ2
1,Σ

2
2, · · · ,Σ2

n.
Thus, we have

min eig
(
HHT

)
= min
i∈{1,2,··· ,n}

Σ2
i = min

a∈Sn−1
‖HTa‖22.

Therefore, to finish the proof of Proposition 4, it only remains to estimate mina∈Sn−1 ‖HTa‖22.

By Lemma 7 and its proof in Appendix E, we have already shown that HTa is not likely to be zero (i.e.
mina∈Sn−1 ‖HTa‖22 > 0) when p → ∞. Here, we basically use the similar method as in Appendix E, but with more
precise quantification.

Recall the definitions in Eqs. (21)(22)(23). For any i ∈ {1, 2, · · · , n}, we choose one

v∗,i ∈ Sd−1 independently of Xj , j 6= i, such that vT∗,iXi = 0. (55)

(Note that here, unlike in Eq. (45), we do not require vT∗,iXj 6= 0 for all j 6= i. This is important as we would like Xj to be
independent of v∗,i for all j 6= i.) Further, for any 0 ≤ r0 ≤ 1, we define

cir0 := min
{
|AV0

∩ Br0,Xi

v∗,i,+|, |AV0
∩ Br0,Xi

v∗,i,−|
}
. (56)

Then, we define

ri := min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ , (57)

r̂ := min
i∈{1,2,··· ,n}

ri. (58)

(Note that here ri or r̂ may be zero. Later we will show that they can be lower bounded with high probability.) Define

DX :=
λd−1(Br̂)

8nλd−1(Sd−1)
. (59)

Similar to Remark 6, these definitions have their geometric interpretation in Fig. 6. The value cir0 denotes the number of

distinct pairs
(

V0[k]
‖V0[k]‖2 ,

V0[l]
‖V0[l]‖2

)
9 such that V0[k]

‖V0[k]‖2 is in the upper half of the cap E, and V0[l]
‖V0[l]‖2 is in the lower half of

the cap E. The quantities r0, ri, and r̂ can all be used as the radius of the cap E. The ratio DX is proportional to the area of
the cap E with radius r̂ (or equivalently, the probability that the normalized V0[j] falls in the cap E).

The following lemma gives an estimation on ‖HTa‖22/p when X is given. We put its proof in Appendix F.1.

9Here, “distinct” means that any normalized version of V0[j] can appear at most in one pair.
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Lemma 27. Given X, we have

Pr
V0

{
‖HTa‖22 ≥ pDX, for all a ∈ Sn−1

}
≥ 1− 4ne−npDX/6.

Notice that DX only depends on X and it may even be zero if r̂ is zero. However, after we introduce the randomness of X,
we can show that r̂ is lower bounded with high probability. We can then obtain the following lemma. We put its proof in
Appendix F.2.

Define

Cd :=
2
√

2

B(d−1
2 , 1

2 )
, (60)

D(n, d, δ) :=
1

16n
I

δ2

n4C2
d

(
1− δ2

4n4C2
d

)(d− 1

2
,

1

2

)
. (61)

Lemma 28. For any δ ∈
(
0, 2

π

]
, we have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ 1− 4ne−npD(n,d,δ)/6 − δ.

Notice that Lemma 28 is already very close to Lemma 25, and we put the final steps of the proof of Lemma 25 in
Appendix F.3.

F.1. Proof of Lemma 27

Proof. Define events as follows.

J :=
{
‖HTa‖22 ≥ pDX, for all a ∈ Sn−1

}
,

Ji :=

{
there exists a ∈ Sn−1 that i ∈ arg max

j∈{1,2,··· ,n}
|aj |, and ‖HTa‖22 ≤ pDX

}
,

Ki :=
{
ciri ≤ 2npDX

}
, for i = 1, 2, · · · , n.

Those definitions directly imply that

J c =

n⋃
i=1

Ji. (62)

Step 1: prove Ji ⊆ Ki

To show Ji ⊆ Ki, we only need to prove that Ji implies Ki. To that end, it suffices to show ‖HTa‖22 ≥
ciri
2n for the vector

a defined in Ji. Because i ∈ arg maxnj=1 |aj | and ‖a‖2 = 1, we have

|ai| ≥
1√
n
. (63)

By Eq. (56), we can construct ciri pairs (kj , lj) for j = 1, 2, · · · , ciri (all kj’s are different and all lj’s are different), such
that

V0[kj ]

‖V0[kj ]‖2
∈ Bri,Xi

v∗,i,+,
V0[lj ]

‖V0[lj ]‖2
∈ Bri,Xi

v∗,i,−.

Thus, we have

(HTa)[kj ]− (HTa)[lj ] =

n∑
k=1

ak (Hk[kj ]−Hk[lj ])

=ai (Hi[kj ]−Hi[lj ]) +
∑

k∈{1,2,··· ,n}\{i}
ak (Hk[kj ]−Hk[lj ])

=aiXi (by Lemma 23).
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We then have

‖(HTa)[kj ]‖22 + ‖(HTa)[lj ]‖22 ≥
1

2
‖aiXi‖22 (by Lemma 13)

≥ 1

2n
(by Eq. (63)).

Further, we have

‖HTa‖22 =

p∑
j=1

‖(HTa)[j]‖22 ≥
ciri∑
j=1

‖(HTa)[kj ]‖22 + ‖(HTa)[lj ]‖22 =
ciri
2n
. (64)

Clearly, if the event Ji occurs, then ‖Ha‖22 ≤ pDX. Combining with Eq. (64), we then have ciri ≤ 2npDX. In other words,
the event Ki must occur. Hence, we have shown that Ji ⊆ Ki.

Step 2: estimate the probability of Ki
For all j ∈ {1, 2, · · · , p}, because V0[j] is uniformly distributed in all directions, for any fixed 0 ≤ r0 ≤ 1, we have

Pr
V0

{
V0[j]

‖V0[j]‖2
∈ Br0,Xi

v∗,i,+

∣∣∣∣∣ i
}

=
λd−1(Br0v∗)

2λd−1(Sd−1)
.

Thus, |AV0
∩Br0,Xi

v∗,i,+| follows the distribution Bino
(
p,

λd−1(Br0v∗ )

2λd−1(Sd−1)

)
given i and X. By Lemma 14 (with δ = 1

2 ), we have

Pr
V0

{
|AV0

∩ Br0,Xi

v∗,i,+| <
pλd−1(Br0v∗)

4λd−1(Sd−1)

∣∣∣ i} ≤ 2 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
. (65)

Similarly, we have

Pr
V0

{
|AV0 ∩ B

r0,Xi

v∗,i,−| <
pλd−1(Br0v∗)

4λd−1(Sd−1)

∣∣∣ i} ≤ 2 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
. (66)

By plugging Eq. (65) and Eq. (66) into Eq. (56) and applying the union bound, we have

Pr
V0

{
cir0 <

pλd−1(Br0v∗)
4λd−1(Sd−1)

∣∣∣ i} ≤ 4 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
.

By letting r0 = r̂ and by Eq. (59), we thus have

Pr
V0

{
ciri ≤ 2npDX

∣∣∣ i} ≤ 4 exp

(
−1

6
npDX

)
,

i.e.,

Pr
V0

[Ki] ≤ 4 exp

(
−1

6
npDX

)
, for all i = 1, 2, · · · , n. (67)

Step3: estimate the probability of J

We have

Pr
V0

[J c] ≤
n∑
i=1

Pr
V0

[Ji] (by Eq. (62) and the union bound)

≤
n∑
i=1

Pr
V0

[Ki] (by Ji ⊆ Ki proven in Step 1)

≤4n exp

(
−1

6
npDX

)
(by Eq. (67)).

Thus, we have

Pr
V0

[J ] = 1− Pr
V0

[J c] ≥ 1− 4n exp

(
−1

6
npDX

)
.

The result of this lemma thus follows.
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F.2. Proof of Lemma 28

Based on Lemma 27, it remains to estimate r̂, which will then allow us to bound DX. Towards this end, we need a few
lemmas to estimate B

(
d−1

2 , 1
2

)
and Ix

(
d−1

2 , 1
2

)
.

Lemma 29. For any x ∈ R, we must have x+ 1 ≤ ex.

Proof. Consider a function g(x) = ex − x − 1. It remains to show that g(x) ≥ 0 for all x. We have g′(x) = ex − 1. In
other words, g′(x) ≤ 0 when x ≤ 0, and g′(x) ≥ 0 when x ≥ 0. Thus, g(x) is monotone decreasing when x ≤ 0, and is
monotone increasing when x ≥ 0. Hence, we know that g(x) achieves its minimum value at x = 0, i.e., g(x) ≥ g(0) = 0
for any x. The conclusion of this lemma thus follows.

Lemma 30. For any d ≥ 5, we have (
1− 1

d− 3

)d−3

≥ 1

e2
.

Proof. By letting x = 1
d−4 in Lemma 29, we have

d− 3

d− 4
=

1

d− 4
+ 1 ≤ exp

(
1

d− 4

)
,

i.e.,

d− 4

d− 3
≥ exp

(
− 1

d− 4

)
. (68)

Thus, we have (
1− 1

d− 3

)d−3

=

(
d− 4

d− 3

)d−3

≥ exp

(
−d− 3

d− 4

)
= exp

(
−1− 1

d− 4

)
≥ exp(−2) (because exp(·) is monotone increasing and d ≥ 5).

Lemma 31. For any d ≥ 5, we must have

2

e

√
1

d− 3
≥ 1√

d

Proof. Because 1− 4
e2 ≈ 0.46 ≤ 0.6, we have

3

5
≥ 1− 4

e2

=⇒ 3

d
≥ 1− 4

e2
(because d ≥ 5)

=⇒ 1− 3

d
≤ 4

e2

=⇒ d− 3

d
≤ 4

e2

=⇒ 4

e2

d

d− 3
≥ 1

=⇒ 2

e

√
1

d− 3
≥ 1√

d
.
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Lemma 32.

B

(
d− 1

2
,

1

2

)
∈
[

1√
d
, π

]
.

Further, if d ≥ 5, we have

B

(
d− 1

2
,

1

2

)
∈
[

1√
d
,

4√
d− 3

]
.

Proof. When d = 2, we have B
(
d−1

2 , 1
2

)
= π. When d = 3, we have B

(
d−1

2 , 1
2

)
= 2. When d = 4, we have

B
(
d−1

2 , 1
2

)
≈ 1.57. It is easy to verify that the statement of the lemma holds for d = 2, 3, and 4. It remains to validate the

case of d ≥ 5. We first prove the lower bound. For any m ∈ (0, 1), we have

B

(
d− 1

2
,

1

2

)
=

∫ 1

0

t
d−3
2 (1− t)− 1

2 dt

≥
∫ 1

m

t
d−3
2 (1− t)− 1

2 dt (because t
d−3
2 (1− t)− 1

2 ≥ 0)

≥m
d−3
2

∫ 1

m

(1− t)− 1
2 dt

(because t
d−3
2 is monotone increasing with respect to t when d ≥ 5)

=m
d−3
2

(
−2
√

1− t
∣∣∣∣1
m

)
=m

d−3
2 · 2

√
1−m.

By letting m = 1− 1
d−3 , we thus have

B

(
d− 1

2
,

1

2

)
≥
(

1− 1

d− 3

) d−3
2

· 2
√

1

d− 3
.

Then, applying Lemma 30, we have

B

(
d− 1

2
,

1

2

)
≥ 2

e
·
√

1

d− 3
.

Thus, by Lemma 31, we have

B

(
d− 1

2
,

1

2

)
≥ 1√

d
.

Now we prove the upper bound. For any m ∈ (0, 1), we have

B

(
d− 1

2
,

1

2

)
=

∫ 1

0

t
d−3
2 (1− t)− 1

2 dt

=

∫ m

0

t
d−3
2 (1− t)− 1

2 dt+

∫ 1

m

t
d−3
2 (1− t)− 1

2 dt

≤
∫ m

0

t
d−3
2 (1−m)−

1
2 dt+

∫ 1

m

(1− t)− 1
2 dt

=
2

d− 1
m

d−1
2 (1−m)−

1
2 + 2

√
1−m

≤ 2

d− 1
(1−m)−

1
2 + 2

√
1−m (because m < 1 and d ≥ 5).
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By letting m = 1− 1
d−3 , we thus have

B

(
d− 1

2
,

1

2

)
≤2
√
d− 3

d− 1
+

2√
d− 3

≤ 4√
d− 3

.

Notice that 4√
5−3

= 2
√

2 < π. The result of this lemma thus follows.

Lemma 33. Recall Cd is defined in Eq. (60). If d ≤ n4 and δ ≤ 1, then

(
1− δ2

4n4C2
d

) d−1
2

≥ 1

2
.

Proof. We have

(
1− δ2

4n4C2
d

) d−1
2

≥
(

1− δ2

4n4C2
d

)d−1

≥1− (d− 1)δ2

4n4C2
d

(by Bernoulli’s inequality (1 + x)a ≥ 1 + ax)

=1−
(d− 1)

(
B
(
d−1

2 , 1
2

))2
4n4 · 8

(by δ ≤ 1 and Eq. (60))

≥1− (d− 1)π2

32n4
(by Lemma 32)

≥1− d

n4
· π

2

32

≥1

2
(because n4 ≥ d and π ≤ 4).

Lemma 34. For any δ ∈
(
0, 2

π

]
, we must have δ

n2Cd
≤ 1√

2
.

Proof. Because Eq. (60), δ ≤ 2
π , and n ≥ 1, this lemma directly follows by Lemma 32.

Lemma 35. For any x ∈ [0, 1], we must have

Ix

(
d− 1

2
,

1

2

)
≥ Cd√

2(d− 1)
x
d−1
2 ,

and

lim
x→0

Ix
(
d−1

2 , 1
2

)
x
d−1
2

=
Cd√

2(d− 1)
.
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Proof. we have

Ix

(
d− 1

2
,

1

2

)
=

∫ x
0
t
d−3
2 (1− t)− 1

2 dt

B
(
d−1

2 , 1
2

)
=
Cd

2
√

2

∫ x

0

t
d−3
2 (1− t)− 1

2 dt (by Eq. (60))

∈
[
Cd

2
√

2

∫ x

0

t
d−3
2 dt,

Cd

2
√

2
√

1− x

∫ x

0

t
d−3
2 dt

]
(because (1− t)−1/2 ∈

[
1,

1√
1− x

]
)

∈
[

Cd√
2(d− 1)

x
d−1
2 ,

Cd√
2(d− 1)

√
1− x

x
d−1
2

]
.

Thus, we have

Ix
(
d−1

2 , 1
2

)
x
d−1
2

∈
[

Cd√
2(d− 1)

,
Cd√

2(d− 1)
√

1− x

]
,

which implies

lim
x→0

Ix
(
d−1

2 , 1
2

)
x
d−1
2

=
Cd√

2(d− 1)
.

Lemma 36. For any x ∈
[

1
2 , 1

)
and for any d ∈ {2, 3, · · · }, we have

Ix

(
d− 1

2
,

1

2

)
≥ 1−

2
√

2(1− x)

B
(
d−1

2 , 1
2

) .
We also have

lim
(1−x)→0+

1− Ix
(
d−1

2 , 1
2

)
√

1− x
=

2

B
(
d−1

2 , 1
2

) .

Proof. By the definition of regularized incomplete beta function in Eq. (20), we have

Ix

(
d− 1

2
,

1

2

)
=

∫ x
0
t
d−1
2 −1(1− t)− 1

2 dt

B
(
d−1

2 , 1
2

) = 1−
∫ 1

x
t
d−3
2 (1− t)− 1

2 dt

B
(
d−1

2 , 1
2

) .

Thus, it remains to show that

∫ 1

x

t
d−3
2 (1− t)− 1

2 dt ≤ 2
√

2(1− x), and (69)

lim
(1−x)→0+

∫ 1

x
t
d−3
2 (1− t)− 1

2 dt
√

1− x
= 2. (70)
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First, we prove Eq. (69). Case 1: d = 2. We have∫ 1

x

t
d−3
2 (1− t)− 1

2 dt

=

∫ 1

x

t−
1
2 (1− t)− 1

2 dt

≤ 1√
x

∫ 1

x

(1− t)− 1
2 dt (because t−

1
2 is monotone decreasing in [x, 1])

=2

√
1− x
x

≤2
√

2(1− x) (because x ≥ 1

2
).

Case 2: d ≥ 3. Then t
d−3
2 is monotone increasing in [x, 1]. Thus, we have∫ 1

x

t
d−3
2 (1− t)− 1

2 dt ≤
∫ 1

x

(1− t)− 1
2 dt = 2

√
1− x ≤ 2

√
2(1− x).

To conclude, for all d ∈ {2, 3, · · · }, Eq. (69) holds.

Second, we prove Eq. (70). We have∫ 1

x
t
d−3
2 (1− t)− 1

2 dt
√

1− x
∈

[
min{1, x d−3

2 }
∫ 1

x
(1− t)− 1

2 dt
√

1− x
,

max{1, x d−3
2 }

∫ 1

x
(1− t)− 1

2 dt
√

1− x

]
=
[
2 min{1, x

d−3
2 }, 2 max{1, x

d−3
2 }
]
.

Since limx→1 x
d−3
2 = 1, Eq. (70) thus follows.

Now we are ready to prove Lemma 28.

Recall v∗,i defined in Eq. (55). For any b ∈
(

0, 1√
2

]
, we have, for x independent of v∗,i and with distribution µ,

Pr
x∼µ

{
|vT∗,ix| ≥ b

}
= I1−b2

(
d− 1

2
,

1

2

)
(because Lemma 10)

≥ 1−
2
√

2 (1− (1− b2))

B
(
d−1

2 , 1
2

) (by Lemma 36)

= 1− Cdb (by the definition of Cd in Eq. (60)). (71)

Since each of the Xj , j 6= i, is independent of v∗,i, we have

Pr
X

{
min

j∈{1,2,··· ,n}\{i}
|vT∗,iXj | ≥ b

}
=

(
Pr
x∼µ

{
|vT∗,ix| ≥ b

})n−1

(because each Xj , j 6= i, is i.i.d. and independent of v∗,i)

≥ (1− Cdb)n−1 (by Eq. (71))
≥1− (n− 1)Cdb (by Bernoulli’s inequality)
≥1− nCdb.

Or, equivalently,

Pr
X

{
min

i∈{1,2,··· ,n}\{i}
|vT∗,iXi| < b

}
≤ nCdb. (72)
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Recall the definition of ri and r̂ in Eqs. (57)(58). Thus, we then have

Pr
X,V0

{
r̂ <

δ

n2Cd

}
≤n Pr

X,V0

{
ri <

δ

n2Cd

}
(by Eq. (58) and the union bound)

=nPr
X

{
ri <

δ

n2Cd

}
(because r is independent of V0)

=nPr
X

{
min

j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ < δ

n2Cd

}
(by Eq. (57))

≤n · nCd ·
δ

n2Cd
(by letting b =

δ

n2Cd
in Eq. (72) and b ≤ 1√

2
because of Lemma 34)

=δ. (73)

By Lemma 9 and Eq. (61), we have

λd−1(B
δ

n2Cd ) =
1

2
λd−1(Sd−1)I δ2

n4C2
d

(1− δ2

4n4C2
d

)

(
d− 1

2
,

1

2

)
= 8nλd−1(Sd−1)D(n, d, δ).

Thus, we have

D(n, d, δ) =
λd−1(B

δ
n2Cd )

8nλd−1(Sd−1)
. (74)

By Eq. (59) and Eq. (74), we have

DX ≥ D(n, d, δ), when r̂ ≥ δ

n2Cd
.

Notice that r̂ only depends on X and is independent of V0. By Lemma 27, for any X that makes r̂ ≥ δ
n2Cd

, we must have

Pr
V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ 1− 4ne−npD(n,d,δ)/6.

In other words,

Pr
V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ any given X such that r̂ ≥ δ

n2Cd

}
≥ 1− 4ne−npD(n,d,δ)/6.

We thus have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ r̂ ≥ δ

n2Cd

}
≥ 1− 4ne−npD(n,d,δ)/6. (75)

Thus, we have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ Pr

X,V0

{
r̂ ≥ δ

n2Cd
, and ‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
= Pr

X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ r̂ ≥ δ

n2Cd

}
· Pr
X,V0

{
r̂ ≥ δ

n2Cd

}
≥(1− 4ne−npD(n,d,δ)/6)(1− δ) (by Eq. (73) and Eq. (75))

≥1− 4ne−npD(n,d,δ)/6 − δ.

The result of this lemma thus follows.
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F.3. Proof of Lemma 25

Based on Lemma 28, it only remains to estimate D(n, d, δ). We start with a lemma.
Lemma 37. If δ ≤ 1 and d ≤ n4, we must have

D(n, d, δ) ≥ 2−1.5d−5.5d−0.5dn−2d+1δd−1. (76)

For any given δ ≥ 0 and d, we must have

lim
n→∞

D(n, d, δ)

n2d−1
= 2−1.5d−1.5

(
B

(
d− 1

2
,

1

2

))d−2
1

d− 1
δd−1.

Proof. We start from

1

(d− 1)Cd−2
d

=

(
B
(
d−1

2 , 1
2

))d−2

(d− 1)(2
√

2)d−2
(by Eq. (60))

≥ 1

(d− 1)d
d
2−1(2

√
2)d−2

(by Lemma 32)

≥ 1

d
d
2 (2
√

2)d

=(8d)−
d
2 . (77)

Thus, we have

D(n, d, δ) ≥ 1

16n

Cd√
2(d− 1)

(
δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

(by Eq. (61) and Lemma 35)

=
1

16
√

2

1

(d− 1)Cd−2
d

(
1− δ2

4n4C2
d

) d−1
2 δd−1

n2d−1

≥ 1

32
√

2
(8d)−

d
2
δd−1

n2d−1
(by Lemma 33 and Eq. (77))

=2−1.5d−5.5d−0.5dn−2d+1δd−1.

For any given d and δ ≥ 0, we have

lim
n→∞

D(n, d, δ)

n2d−1
= lim
n→∞

1

16n2d−2
I

δ2

n4C2
d

(
1− δ2

4n4C2
d

)(d− 1

2
,

1

2

)
(by Eq. (61))

= lim
n→∞

(
δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

16n2d−2
·

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16
lim
n→∞

(
δ2

C2
d

(
1− δ2

4n4C2
d

)) d−1
2

·

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16
lim
n→∞

(
δ2

C2
d

(
1− δ2

4n4C2
d

)) d−1
2

· lim
n→∞

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16

δd−1

Cd−1
d

Cd√
2(d− 1)

(by Lemma 35)

=2−1.5d−1.5

(
B

(
d− 1

2
,

1

2

))d−2
1

d− 1
δd−1 (by Eq. (60)).
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Now we are ready to finish our proof of Lemma 25.

We have

D(n, d, δ)

∣∣∣∣
δ= 1

m√n

≥ 1

21.5d+5.5d0.5dn2d−1n
d−1
m

(by Eq. (76))

=
1

21.5d+5.5d0.5dn(2+ 1
m )(d−1)n

=
1

Jm(n, d)n
(by Eq. (9)).

Thus, when p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
, we have

1− 4ne−npD(n,d,δ)/6 − δ
∣∣∣∣
δ= 1

m√n

≥1− 2
m
√
n
.

Then, we have

m ∈
[
1,

lnn

ln π
2

]
=⇒

(π
2

)m
≤ n =⇒ n

1
m ≥ π

2
=⇒ 1

m
√
n
≤ 2

π
=⇒ δ ≤ 2

π
.

By Lemma 26 and Lemma 28, the conclusion of Lemma 25 thus follows.

G. Upper bound of min eig
(
HHT

)
/p

By Lemma 26, to get an upper bound of min eig
(
HHT

)
/p, it is equivalent to get an upper bound of mina∈Sn−1 ‖HTa‖22/p.

To that end, we only need to construct a vector a and calculate the value of ‖HTa‖22/p, which automatically becomes an
upper bound mina∈Sn−1 ‖HTa‖22/p.

The following lemma shows that, for given X, if two input training data Xi and Xk are close to each other, then
mina∈Sn−1 ‖HTa‖22/p is unlikely to be large.

Lemma 38. If there exist Xi and Xk such that i 6= k and θ := arccos(XT
i Xk), then

Pr
V0

{
min

a∈Sn−1
‖HTa‖22 ≥

3pθ2

8
+

3pθ

4π

}
≤ 2 exp

(
− p

24

)
+ 2 exp

(
−pθ

12

)
.

Intuitively, Lemma 38 is true because, when Xi and Xk are similar, Hi and Hk (the i-th and k-th row of H, respectively)
will also likely be similar, i.e., ‖Hi−Hk‖2 is not likely to be large. Thus, we can construct a such that HTa is proportional
to Hi −Hk, which will lead to the result of Lemma 38. We put the proof of Lemma 38 in Appendix G.1.

The next step is to estimate such difference between Xi and Xk (or equivalently, the angle θ between them). We have the
following lemma.

Lemma 39. When n ≥ π(d− 1), there must exist two different Xi’s such that the angle between them is at most

θ = π

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1 .

Lemma 39 is intuitive because Sd−1 has limited area. When there are many Xi’s on Sd−1, there must exist at least two
Xi’s that are relatively close. We put the proof of Lemma 39 in Appendix G.2.

Finally, we have the following lemma.
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Lemma 40. When n ≥ π(d− 1), we have

Pr
V0,X

{min eig(HHT )

p
≤ 3π2

8

(
(d− 1)B(

d− 1

2
,

1

2
)

) 2
d−1

n−
2
d−1

+
3

4

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1

}
≥1− 2 exp

(
− p

24

)
− 2 exp

(
− p

12
π

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1

)
.

Proof. This lemma directly follows by combining Lemma 26, Lemma 38, and Lemma 39.

By Lemma 40, we can conclude that when p is much larger than n
1
d−1 , min eig(HHT )

p = O(n−
1
d−1 ) with high probability.

G.1. Proof of Lemma 38

We first prove a useful lemma.

Lemma 41. For any ϕ ∈ [0, 2π], we must have sinϕ ≤ ϕ. For any ϕ ∈ [0, π/2], we must have ϕ ≤ π
2 sinϕ.

Proof. To prove the first part of the lemma, note that

d(ϕ− sinϕ)

dϕ
= 1− cosϕ ≥ 0.

Thus, the function (ϕ− sinϕ) is monotone increasing with respect to ϕ ∈ [0, 2π]. Thus, we have

min
ϕ∈[0,2π]

(ϕ− sinϕ) = (ϕ− sinϕ)
∣∣
ϕ=0

= 0.

In other words, we have sinϕ ≤ ϕ for any ϕ ∈ [0, 2π].

To prove the second part of the lemma, note that when ϕ ∈ [0, π/2], we have

d2(ϕ− π
2 sinϕ)

dϕ2
=
π

2
sinϕ ≥ 0.

Thus, the function ϕ− π
2 sinϕ is convex with respect to ϕ ∈ [0, π/2]. Because the maximum of a convex function must be

attained at the endpoint of the domain interval, we have

max
ϕ∈[0,π/2]

(ϕ− π

2
sinϕ) = max

ϕ∈{0,π/2}
(ϕ− π

2
sinϕ) = 0.

Thus, we have ϕ ≤ π
2 sinϕ for any ϕ ∈ [0, π/2].

Now we are ready to prove Lemma 38.

Proof. Through the proof, we fix Xi and Xk, and only consider the randomness of V0. Because θ is the angle between Xi

and Xk and because of Assumption 1, we have

‖Xi −Xk‖2 =2 sin
θ

2

≤2 · θ
2

(by Lemma 41)

=θ. (78)
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Let a = 1√
2
(ei − ek), where eq denotes the q-th standard basis vector, q = 1, 2, · · · , n. Then, we have

‖HTa‖22 =
1

2
‖HT

i −HT
k ‖22

=
1

2

p∑
j=1

∥∥∥1{XT
i V0[j]>0}Xi − 1{XT

kV0[j]>0}Xk

∥∥∥2

2
(by Eq. (1))

=
1

2

p∑
j=1

(
1{XT

i V0[j]>0, XT
kV0[j]>0}‖Xi −Xk‖22 + 1{(XT

i V0[j])(XT
kV0[j])<0}

)
(by ‖Xi‖22 = ‖Xk‖22 = 1)

≤1

2

p∑
j=1

(
1{XT

i V0[j]>0, XT
kV0[j]>0}θ

2 + 1{(XT
i V0[j])(XT

kV0[j])<0}
)

(by Eq. (78))

≤θ
2

2

p∑
j=1

1{XT
i V0[j]>0} +

1

2

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0}. (79)

Since Xi is fixed and the direction of V0[j] is uniformly distributed, we have PrV0
{XT

i V0[j] > 0} = 1
2 and

Pr
V0

{(XT
i V0[j])(XT

kV0[j]) < 0} =2 Pr
V0

{XT
i V0[j] > 0, XT

kV0[j] < 0}

=2 Pr
V0

{XT
i V0[j] > 0, −XT

kV0[j] > 0}

=2

∫
Sd−1

1{XT
i v>0, −XT

k v>0}dλ̃(v)

=2 · π − (π − θ)
2π

(by Lemma 17)

=
θ

π
.

Thus, based on the randomness of V0, when X are given, we have

p∑
j=1

1{XT
i V0[j]>0} ∼ Bino

(
p,

1

2

)
,

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ∼ Bino

(
p,

θ

π

)
.

By letting δ = 1
2 , a = p, b = 1

2 in Lemma 14, we then have

Pr
V0


p∑
j=1

1{XT
i V0[j]>0} ≥

3p

4

 ≤ 2 exp
(
− p

24

)
, (80)

Pr
V0


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π

 ≤ 2 exp

(
− pθ

12π

)
. (81)
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Thus, we have

Pr
V0

{
‖HTa‖22 ≥

3pθ2

8
+

3pθ

4π

}

≤ Pr
V0

θ2

2

p∑
j=1

1{XT
i V0[j]>0} +

1

2

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ2

8
+

3pθ

4π


(by Eq. (79))

≤ Pr
V0




p∑
j=1

1{XT
i V0[j]>0} >

3p

4

 ∪


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π




≤ Pr
V0


p∑
j=1

1{XT
i V0[j]>0} >

3p

4

+ Pr
V0


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π


(by the union bound)

≤2 exp
(
− p

24

)
+ 2 exp

(
−pθ

12

)
(by Eq. (80) and Eq. (81)).

The result of Lemma 38 thus follows.

G.2. Proof of Lemma 39

We first prove a useful lemma. Recall the definition of Cd in Eq. (60).

Lemma 42. We have

2
√

2(d− 1)

nCd
∈
[
d− 1

n
√
d
,
π(d− 1)

n

]
.

Proof. By Lemma 32 and Eq. (60), we have

Cd ∈

[
2
√

2

π
, 2
√

2d

]
.

Thus, we have

2
√

2(d− 1)

nCd
∈
[
d− 1

n
√
d
,
π(d− 1)

n

]
.

Now we are ready to proof Lemma 39.

Proof. Recall the definition of θ in Lemma 39. Draw n caps on Sd−1 centered at X1, X2, · · · ,Xn with the colatitude
angle ϕ where

ϕ =
θ

2
=
π

2

(
2
√

2(d− 1)

nCd

) 1
d−1

(by Eq. (60)). (82)

By Lemma 42 and n ≥ π(d− 1), we have ϕ ∈ [0, π/2]. Thus, by Lemma 41, we have

sinϕ ≥ 2ϕ

π
=

(
2
√

2(d− 1)

nCd

) 1
d−1

. (83)
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By Lemma 8, the area of each cap is

A =
1

2
λd−1(Sd−1)Isin2 ϕ

(
d− 1

2
,

1

2

)
.

Applying Lemma 35 and Eq. (83), we thus have

A ≥ 1

2
λd−1(Sd−1)

Cd√
2(d− 1)

(sin2 ϕ)
d−1
2 =

1

n
λd−1(Sd−1).

In other words, we have

λd−1(Sd−1)

A
≤ n.

By the pigeonhole principle, we know there exist at least two different caps that overlap, i.e., the angle between them is at
most 2ϕ. The result of this lemma thus follows by Eq. (82).

H. Proof of Proposition 5
We follow the sketch of proof in Section 5. Recall the definition of the pseudo ground-truth function fgV0

in Definition 2,
and the corresponding ∆V∗ ∈ Rdp that

∆V∗[j] =

∫
Sd−1

1{zTV0[j]>0}z
g(z)

p
dµ(z), for all j ∈ {1, 2, · · · , p}. (84)

We first show that the pseudo ground-truth can be written in a linear form.
Lemma 43. hV0,x∆V∗ = fgV0

(x) for all x ∈ Sd−1.

Proof. For all x ∈ Sd−1, we have

hV0,x∆V∗ =

p∑
j=1

hV0,x[j]∆V∗[j]

=

p∑
j=1

1{xTV0[j]>0} · xT
∫
Sd−1

1{zTV0[j]>0}z
g(z)

p
dµ(z) (by Eq. (1) and Eq. (84))

=

∫
Sd−1

p∑
j=1

1{xTV0[j]>0} · xT1{zTV0[j]>0}z
g(z)

p
dµ(z)

=

∫
Sd−1

xTz
|CV0

z,x|
p

g(z)dµ(z) (by Eq. (6))

= fgV0
(x) (by Definition 2).

Let P := HT (HHT )−1H. Since P2 = P and P = PT , we know that P is an orthogonal projection to the row-space of
H. Next, we give an expression for the test error. Note that even though Proposition 4 assumes no noise, below we state a
more general version below with noise (which will be useful later).
Lemma 44. If the ground-truth is f(x) = hV0,x∆V∗ for all x, then we have

f̂ `2(x)− f(x) = hV0,x(P− I)∆V∗ + hV0,xHT (HHT )−1ε, for all x.

Proof. Because f(x) = hV0,x∆V∗, we have y = H∆V∗ + ε. Thus, we have

∆V`2 = HT (HHT )−1y (by Eq. (3))

= HT (HHT )−1(H∆V∗ + ε).
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Further, we have

∆V`2 −∆V∗ =
(
HT (HHT )−1H− I

)
∆V∗ + HT (HHT )−1ε

=(P− I)∆V∗ + HT (HHT )−1ε.

Finally, using Eq. (4), we have

f̂ `2(x)− f(x) = hV0,x∆V`2 − hV0,x∆V∗ = hV0,x(P− I)∆V∗ + hV0,xHT (HHT )−1ε.

When there is no noise, Lemma 44 reduces to f̂ `2(x) − f(x) = hV0,x(P − I)∆V∗. As we described in Section 5,
(P− I)∆V∗ has the interpretation of the distance from ∆V∗ to the row-space of H. We then have the following.

Lemma 45. For all a ∈ Rn, we have

|hV0,x(P− I)∆V∗| ≤ √p‖∆V∗ −Ha‖2.

Proof. Recall that P = HT (HHT )−1H. Thus, we have

PHT = HT (HHT )−1HHT = HT . (85)

We then have

‖(P− I)∆V∗‖2 = ‖P∆V∗ −∆V∗‖2
= ‖P(HTa+ ∆V∗ −HTa)−∆V∗‖2
= ‖PHTa+ P(∆V∗ −HTa)−∆V∗‖2
= ‖HTa+ P(∆V∗ −HTa)−∆V∗‖2 (by Eq. (85))

= ‖(P− I)(∆V∗ −HTa)‖2
≤ ‖∆V∗ −HTa‖2 (because P is an orthogonal projection).

Therefore, we have

|hV0,x(P− I)∆V∗| = ‖hV0,x(P− I)∆V∗‖2
≤‖hV0,x‖2 · ‖(P− I)∆V∗‖2 (by Lemma 12)
≤√p‖∆V∗ −Ha‖2 (by Lemma 11).

Now we are ready to prove Proposition 5.

Proof. Because there is no noise, we have ε = 0. Thus, by Lemma 44, we have

f̂ `2(x)− f(x) = hV0,x(P− I)∆V∗. (86)

We then have, for all a ∈ Rn,

Pr
X

{∣∣∣f̂ `2(x)− f(x)
∣∣∣ ≥ n− 1

2 (1− 1
q )
}

=Pr
X

{
|hV0,x(P− I)∆V∗| ≥ n−

1
2 (1− 1

q )
}

≤Pr
X

{√
p‖HTa−∆V∗‖2 ≥ n−

1
2 (1− 1

q )
}

(by Lemma 45). (87)
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It only remains to find the vector a. Define Ki ∈ Rdp for i = 1, 2, · · · , n as

Ki[j] := 1{XT
i V0[j]>0}Xi

g(Xi)

p
, j = 1, 2, · · · , p.

By Eq. (84), for all j = 1, 2, · · · , p, we have

E
Xi

[Ki[j]] = ∆V∗[j]. (88)

Because ‖Xi‖2 = 1, we have

‖Ki[j]‖2 ≤
‖g‖∞
p

.

Thus, we have

‖Ki‖2 =

√√√√ p∑
j=1

‖Ki[j]‖22 ≤
‖g‖∞√

p
,

i.e.,
√
p‖Ki‖2 ≤ ‖g‖∞. (89)

We now construct the vector a. Define a ∈ Rn whose i-th element is ai = g(Xi)
np , i = 1, 2, · · · , n. Notice that a is

well-defined because ‖g‖∞ <∞. Then, for all j ∈ {1, 2, · · · , p}, we have

(HTa)[j] =

n∑
i=1

HT
i [j]ai

=

n∑
i=1

1{XT
i V0[j]>0}Xi

g(Xi)

np

=
1

n

n∑
i=1

Ki[j],

i.e.,

HTa =
1

n

n∑
i=1

Ki. (90)

Thus, by Eq. (89) and Lemma 16 (with Xi =
√
pKi, U = ‖g‖∞, and k = n), we have

Pr
X

{
√
p

∥∥∥∥∥
(

1

n

n∑
i=1

Ki

)
− E

X
K1

∥∥∥∥∥
2

≥ n−
1
2 (1− 1

q )

}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
.

Further, by Eq. (90) and Eq. (88), we have

Pr
X

{√
p‖HTa−∆V∗‖2 ≥ n−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
. (91)

Plugging Eq. (91) into Eq. (87), we thus have

Pr
X

{∣∣∣f̂ `2(x)− f(x)
∣∣∣ ≥ n− 1

2 (1− 1
q )
}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
.
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I. Proof of Theorem 1
We first prove a useful lemma.

Lemma 46. If ‖g‖1 <∞, then for any x, we must have∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v) =

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z).

Proof. This follows from Fubini’s Theorem and by a change of order of the integral. Specifically, because ‖g‖1 <∞, we
have ∫

Sd−1

|g(z)|dµ(z) <∞.

Thus, we have ∫
Sd−1×Sd−1

|g(z)|dµ(z)λ̃(v) <∞.

Because
∣∣xTz1{zT v>0, xT v>0}

∣∣ ≤ 1 when x ∈ Sd−1 and z ∈ Sd−1, we have∫
Sd−1×Sd−1

∣∣xTz1{zT v>0, xT v>0}g(z)
∣∣ dµ(z)λ̃(v) ≤

∫
Sd−1×Sd−1

|g(z)|dµ(z)λ̃(v) <∞.

Thus, by Fubini’s theorem, we can exchange the sequence of integral, i.e., we have∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v)

=

∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dλ̃(v)dµ(z)

=

∫
Sd−1

(∫
Sd−1

1{zT v>0, xT v>0}dλ̃(v)

)
xTzg(z)dµ(z)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z) (by Lemma 17).

The following proposition characterizes generalization performance when ε = 0, i.e., the bias term in Eq. (18).

Proposition 47. Assume no noise (ε = 0), a ground truth f = fg ∈ F`2 where ‖g‖∞ < ∞, n ≥ 2, m ∈
[
1, lnn

ln π
2

]
,

d ≤ n4, and p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
. Then, for any q ∈ [1, ∞) and for almost every x ∈ Sd−1, we must have

Pr
V0,X

{
|f̂ `2(x)− f(x)| ≥ n−

1
2 (1− 1

q )

+
(

1 +
√
Jm(n, d)n

)
p−

1
2 (1− 1

q )}
≤ 2e2

(
exp

(
−

q
√
n

8‖g‖2∞

)
+ exp

(
−

q
√
p

8‖g‖21

)
+ exp

(
−

q
√
p

8n‖g‖21

))
+

2
m
√
n
.

Proof. We split the whole proof into 5 steps as follows.

Step 1: use pseudo ground-truth as a “intermediary”
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Recall Definition 2 where we define the pseudo ground-truth fgV0
. We then define the output of the pseudo ground-truth for

training input as

FgV0
(X) := [fgV0

(X1) fgV0
(X2) · · · fgV0

(Xn)]T .

The rest of the proof will use the pseudo ground-truth as a “intermediary” to connect the ground-truth f and the model
output f̂ `2 . Specifically, we have

f̂ `2(x) = hV0,x∆V`2

= hV0,xHT (HHT )−1F(X) (by Eq. (17) and ε = 0)

= hV0,xHT (HHT )−1FgV0
(X) + hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)
. (92)

Thus, we have

|f̂ `2(x)− f(x)|

=
∣∣∣f̂ `2(x)− fgV0

(x) + fgV0
(x)− f(x)

∣∣∣
=
∣∣hV0,xHT (HHT )−1FgV0

(X)− fgV0
(x) + hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)

+fgV0
(x)− f(x)

∣∣ (by Eq. (92))

≤
∣∣hV0,xHT (HHT )−1FgV0

(X)− fgV0
(x)
∣∣︸ ︷︷ ︸

termA

+
∣∣hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)∣∣︸ ︷︷ ︸

termB

+
∣∣fgV0

(x)− f(x)
∣∣︸ ︷︷ ︸

term C

. (93)

In Eq. (93), we can see that the term A corresponds to the test error of the pseudo ground-truth, the term B corresponds to
the impact of the difference between the pseudo ground-truth and the real ground-truth in the training data, and the term C
corresponds to the impact of the difference between pseudo ground-truth and real ground-truth in the test data. Using the
terminology of bias-variance decomposition, we refer to term A as the “pseudo bias” and term B as the “pseudo variance”.

Step 2: estimate term A

We have

Pr
X,V0

{
term A ≥ n−

1
2 (1− 1

q )
}

=

∫
V0∈Rdp

Pr
X

{
term A ≥ n−

1
2 (1− 1

q )
∣∣∣∣V0

}
dλ(V0)

≤
∫
V0∈Rdp

2e2 exp

(
−

q
√
n

8‖g‖2∞

)
dλ(V0) (by Proposition 5)

= 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
. (94)

Step 3: estimate term C

For all j = 1, 2, · · · , p, define

Kx
j :=

∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z).

We now show that Kx
j is bounded and with mean equal to fg , where fg =

∫
Sd−1 x

Tz π−arccos(xT z)
2π g(z)dµ(z) defined by

Definition 1. Specifically, we have

E
V0

Kx
j = E

v∼λ̃

(∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)

)
=

∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z) (by Lemma 46)

=fg(x) (by Definition 1). (95)
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From Definition 2, we have

fgV0
(x) =

∫
Sd−1

xTz
|CV0

z,x|
p

g(z)dµ(z) (by Definition 2)

=
1

p

p∑
j=1

∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z) (by Eq. (6))

=
1

p

p∑
j=1

Kx
j . (96)

Because V0[j]’s are i.i.d., Kx
j ’s are also i.i.d.. Thus, we have

E
V0

fgV0
(x) = fg(x). (97)

Further, for any j ∈ {1, 2, · · · , p}, we have

‖Kx
j ‖2 =|Kx

j | (because Kx
j is a scalar)

=

∣∣∣∣∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z)

∣∣∣∣
≤
∫
Sd−1

∣∣xTz1{zTV0[j]>0, xTV0[j]>0}g(z)
∣∣ dµ(z)

≤
∫
Sd−1

∣∣xTz1{zTV0[j]>0, xTV0[j]>0}
∣∣ · |g(z)| dµ(z)

≤
∫
Sd−1

|g(z)| dµ(z)

=‖g‖1. (98)

Thus, by Lemma 16, we have

Pr
V0


∥∥∥∥∥∥
1

p

p∑
j=1

Kx
j

− E
V0

K1

∥∥∥∥∥∥
2

≥ p−
1
2 (1− 1

q )

 ≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Further, by Eq. (96) and Eq. (95), we have

Pr
V0

{∣∣fgV0
(x)− fg(x)

∣∣ ≥ p− 1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Because f a.e.
= fg , we have

Pr
V0

{∣∣fgV0
(x)− f(x)

∣∣ ≥ p− 1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Because fgV0
does not change with X, we thus have

Pr
V0,X

{
term C ≥ p−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
. (99)

Step 4: estimate term B

Our idea is to treat FgV0
(X)−F(X) as a special form of noise, and then apply Proposition 4. We first bound the magnitude

of this special noise. For j = 1, 2, · · · , p, we define

Kj := [KX1
j KX2

j · · · KXn
j ]T .
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Then, we have

‖Kj‖2 =

√√√√ n∑
i=1

‖KXi
j ‖22 ≤

√
n‖g‖1 (by Eq. (98)).

Similar to how we get Eq. (99) in Step 3, we have

Pr
V0,X

{∥∥FgV0
(X)− F(X)

∥∥
2
≥ p−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8n‖g‖21

)
. (100)

Thus, we have

Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q )
}

= Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q ),
∥∥FgV0

(X)− F(X)
∥∥

2
≥ p−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q ),
∥∥FgV0

(X)− F(X)
∥∥

2
< p−

1
2 (1− 1

q )
}

≤ Pr
V0,X

{∥∥FgV0
(X)− F(X)

∥∥
2
≥ p−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)n

∥∥FgV0
(X)− F(X)

∥∥
2

}
≤2e2 exp

(
−

q
√
p

8n‖g‖21

)
+

2
m
√
n

(by Eq. (100) and Proposition 4). (101)

Step 5: estimate |f̂ `2(x)− f(x)|

We have

Pr
V0,X

{
|f̂ `2(x)− f(x)| ≥ n−

1
2 (1− 1

q ) +
1 +

√
Jm(n, d)n
4
√
p

}

≤ Pr
V0,X

{
term A+ term B + term C ≥ n−

1
2 (1− 1

q ) +
1 +

√
Jm(n, d)n
4
√
p

}
(by Eq. (93))

≤ Pr
X,V0

{{
term A ≥ n−

1
2 (1− 1

q )
}
∪
{

term B ≥
√
Jm(n, d)np−

1
2 (1− 1

q )
}

∪
{

term C ≥ p−
1
2 (1− 1

q )
}}

≤ Pr
X,V0

{
term A ≥ n−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term C ≥ p−

1
2 (1− 1

q )
}

(by the union bound)

≤2e2

(
exp

(
−

q
√
n

8‖g‖2∞

)
+ exp

(
−

q
√
p

8‖g‖21

)
+ exp

(
−

q
√
p

8n‖g‖21

))
+

2
m
√
n

(by Eqs. (94)(99)(101)).

The last step exactly gives the conclusion of this proposition.

Theorem 1 thus follows by Proposition 4, Proposition 47, Eq. (18), and the union bound.

J. Proof of Proposition 2 (lower bound for ground-truth functions outside F `2)

We first show what f̂ `2∞ looks like. Define H∞ ∈ Rn×n where its (i, j)-th element is

H∞i,j = XT
i Xj

π − arccos(XT
i Xj)

2π
.
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Notice that (
HHT

p

)
i,j

=
1

p

p∑
k=1

XT
i Xj1{XT

i V0[k]>0,XT
j V0[k]>0} = XT

i Xj

|CV0

Xi,Xj
|

p
.

By Lemma 21, we have that
(

HHT

p

)
i,j

converges in probability to (H∞)i,j as p→∞ uniformly in i, j. In other words,

max
i,j

∣∣∣∣∣
(

HHT

p

)
i,j

− (H∞)i,j

∣∣∣∣∣ P→ 0, as p→∞. (102)

Let {ei | 1 ≤ i ≤ n} denote the standard basis in Rn. For i = 1, 2, · · · , n, define

gi,p := npeTi (HHT )−1y, (103)

which is a number. Further, define

[g1,p g2,p · · · gn,p]T = np(HHT )−1y.

Further, define the number

gi,∞ := neTi (H∞)−1y,

and

[g1,∞ g2,∞ · · · gn,∞]T = n(H∞)−1y.

Notice that (H∞)−1 exists because of Eq. (102) and Lemma 7.

By Eq. (102), we have

max
i∈{1,2,··· ,n}

|gi,p − gi,∞|
P→ 0, as p→∞. (104)

For any given X, we define f̂ `2∞(·) : Sd−1 7→ R as

f̂ `2∞(x) :=
1

n

n∑
i=1

xTXi
π − arccos(xTXi)

2π
gi,∞. (105)

By the definition of the Dirac delta function δa(·) with peak position at a, we can write f̂ `2∞(x) as an integral

f̂ `2∞(x) =

∫
Sd−1

xTz
π − arccos(xTz)

2π

1

n

n∑
i=1

gi,∞δXi
(z)dµ(z).

Notice that gi,∞ only depends on the training data and does not change with p (and thus is finite). Therefore, we have
f̂ `2∞ ∈ F`2 . It remains to show why f̂ `2 converges to f̂ `2∞ in probability. The following lemma shows what f̂ `2 looks like.

Lemma 48. f̂ `2(x) = 1
n

∑n
i=1 x

TXi
|CV0

Xi,x
|

p gi,p =
∫
Sd−1 x

Tz
|CV0

z,x|
p

1
n

∑n
i=1 gi,pδXi

(z)dµ(z).

Proof. For any x ∈ Sd−1, we have

f̂ `2(x) = hV0,x∆V`2

= hV0,xHT (HHT )−1y (by Eq. (3))

= hV0,x

n∑
i=1

HT
i e

T
i (HHT )−1y

=
1

np

n∑
i=1

hV0,xHT
i gi,p (by Eq. (103))

=
1

np

n∑
i=1

p∑
j=1

xTXi1{XT
i V0[j]>0, xTV0[j]>0}gi,p.
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By Eq. (6), we thus have

f̂ `2(x) =
1

n

n∑
i=1

xTXi

|CV0

Xi,x
|

p
gi,p. (106)

By the definition of the Dirac delta function, we have

f̂ `2(x) =
1

n

n∑
i=1

xTXi

|CV0

Xi,x
|

p
gi,p =

∫
Sd−1

xTz
|CV0

z,x|
p

1

n

n∑
i=1

gi,pδXi(z)dµ(z).

Now we are ready to prove the statement of Proposition 2, i.e., uniformly over all x ∈ Sd−1, f̂ `2(x)
P→ f̂ `2∞(x) as p→∞

(notice that we have already shown that f̂ `2∞ ∈ F`2). To be more specific, we restate that uniform convergence as the
following lemma.

Lemma 49. For any given X, sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| P→ 0 as p→∞.

Proof. For any ζ > 0, define two events:

J1 :=

{
sup

x,z∈Sd−1

∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ < ζ

}
,

J2 :=

{
max

i∈{1,2,··· ,n}
|gi,p − gi,∞| < ζ

}
.

By Lemma 21, there exists a threshold p0 such that for any p > p0,

Pr[J1] > 1− ζ.

By Eq. (104), there exists a threshold p1 such that for any p > p1,

Pr[J2] > 1− ζ.

Thus, by the union bound, when p > max{p0, p1}, we have

Pr[J1 ∩ J2] > 1− 2ζ. (107)

When J1 ∩ J2 happens, we have

sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)|

= sup
x∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

xTXi

(
|CV0

Xi,x
|

p
gi,p −

π − arccos(xTXi)

2π
gi,∞

)∣∣∣∣∣
(by Lemma 48 and Eq. (105))

≤ sup
x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
gi,p −

π − arccos(xTXi)

2π
gi,∞

)∣∣∣∣∣ (because |xTXi| ≤ 1)

= sup
x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
− π − arccos(xTXi)

2π

)
gi,∞ + (gi,p − gi,∞)

|CV0

Xi,x
|

p

∣∣∣∣∣
≤ sup

x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
− π − arccos(xTXi)

2π

)
gi,∞

∣∣∣∣∣+

∣∣∣∣∣(gi,p − gi,∞)
|CV0

Xi,x
|

p

∣∣∣∣∣
≤ζ ·

(
max
i
|gi,∞|+ 1

)
(because J1 ∩ J2 happens,

|CV0

Xi,x
|

p
∈ [0, 1], and

π − arccos(xTXi)

2π
∈ [0, 0.5]).

Because maxi |gi,∞| is fixed when X is given, ζ · (maxi |gi,∞|+ 1) can be arbitrarily small as long as ζ is small enough.
The conclusion of this lemma thus follows by Eq. (107).
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If the ground-truth function f /∈ F`2 (or equivalently, D(f,F`2) > 0), then the MSE of f̂ `2∞ (with respect to the ground-truth
function f ) is at least D(f,F`2) (because f̂ `2∞ ∈ F`2). Therefore, we have proved Proposition 2. Below we state an even
stronger result than part (ii) of Proposition 2, i.e., it captures not only the MSE of f̂ `2∞ , but also that of f̂ `2 for sufficiently
large p.

Lemma 50. For any given X and ζ > 0, there exists a threshold p0 such that for all p > p0, Pr{
√

MSE ≥ D(f,F`2)−ζ} >
1− ζ.

Proof. By Lemma 49, for any ζ > 0, there must exist a threshold p0 such that for all p > p0,

Pr

{
sup

x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| < ζ

}
> 1− ζ.

When sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| < ζ, we have

D(f̂ `2 , f̂ `2∞) =

√∫
Sd−1

(
f̂ `2(x)− f̂ `2∞(x)

)2

dµ(x) ≤ ζ.

Because f̂ `2∞ ∈ F`2 , we have D(f̂ `2∞ , f) ≥ D(f,F`2). Thus, by the triangle inequality, we have D(f, f̂ `2) ≥ D(f, f̂ `2∞)−
D(f̂ `2 , f̂ `2∞) ≥ D(f,F`2)− ζ. Putting these together, we have

Pr
{
D(f, f̂ `2) ≥ D(f,F`2)− ζ

}
> 1− ζ.

Notice that MSE = (D(f, f̂ `2))2. The result of this lemma thus follows.

K. Details for Section 4 (hyper-spherical harmonics decomposition on Sd−1)
K.1. Convolution on Sd−1

First, we introduce the definition of the convolution on Sd−1. In (Dokmanic & Petrinovic, 2009), the convolution on Sd−1

is defined as follows.

f1 ~ f2(x) :=

∫
SO(d)

f1(Se)f2(S−1x)dS,

where S is a d × d orthogonal matrix that denotes a rotation in Sd−1, chosen from the set SO(d) of all rotations. In the
following, we will show Eq. (13). To that end, we have

g ~ h(x) =

∫
SO(d)

g(Se)h(S−1x)dS. (108)

Now, we replace Se by z. Thus, we have

Se = z =⇒ e = S−1z =⇒ (S−1x)Te = (S−1x)TS−1z =⇒ (S−1x)Te = xT (S−1)TS−1z.

Because S is an orthonormal matrix, we have ST = S−1. Therefore, we have (S−1x)Te = xTz. Thus, by Eq. (14), we
have

h(S−1x) = (S−1x)Te
π − arccos((S−1x)Te)

2π
= xTz

π − arccos(xTz)

2π
. (109)

By plugging Eq. (109) into Eq. (108), we have

g ~ h(x) =

∫
Sd−1

g(z)xTz
π − arccos(xTz)

2π
dµ(z).

Eq. (13) thus follows.

The following lemma shows the intrinsic symmetry of such a convolution.
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Lemma 51. Let S ∈ Rd×d denotes any rotation in Rd. If f(x) ∈ F`2 , then f(Sx) ∈ F`2 .

Proof. Because f(x) ∈ F`2 , we can find g such that

f(x) =

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z).

Thus, we have

f(Sx) =

∫
Sd−1

(Sx)Tz
π − arccos((Sx)Tz)

2π
g(z)dµ(z)

=

∫
Sd−1

xT (STz)
π − arccos(xT (STz))

2π
g(z)dµ(z)

=

∫
Sd−1

xT (STz)
π − arccos(xT (STz))

2π
g(SSTz)dµ(z)

(because S is a rotation, we have SST = I)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(Sz)dµ(Sz) (replace STz by z)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(Sz)dµ(z) (by Assumption 1)

The result of this lemma thus follows.

K.2. Hyper-spherical harmonics

We follow the the conventions of hyper-spherical harmonics in (Dokmanic & Petrinovic, 2009). We express x =
[x1 x2 · · · xd] ∈ Sd−1 in a set of hyper-spherical polar coordinates as follows.

x1 = sin θd−1 sin θd−2 · · · sin θ2 sin θ1,

x2 = sin θd−1 sin θd−2 · · · sin θ2 cos θ1,

x3 = sin θd−1 sin θd−2 · · · cos θ2,

...
xd−1 = sin θd−1 cos θd−2,

xd = cos θd−1.

Notice that θ1 ∈ [0, 2π) and θ2, θ3, · · · , θd−1 ∈ [0, π). Let ξ = [θ1 θ2 · · · θd−1]. In such coordinates, hyper-spherical
harmonics are given by (Dokmanic & Petrinovic, 2009)

ΞlK(ξ) = AlK ×
d−3∏
i=0

C
d−i−2

2 +ki+1

ki−ki+1
(cos θd−i−1) sinki+1 θd−i−1e

±jkd−2θ1 , (110)

where the normalization factor is

AlK =

√√√√ 1

Γ
(
d
2

) d−3∏
i=0

22ki+1+d−i−4 ×
(ki − ki+1)!(d− i+ 2ki − 2)Γ2

(
d−i−2

2 + ki+1

)
√
πΓ(ki + ki+1 + d− i− 2)

,

and Cλd (t) are the Gegenbauer polynomials of degree d. These Gegenbauer polynomials can be defined as the coefficients
of αn in the power-series expansion of the following function,

(1− 2tα+ α2)−λ =

∞∑
i=0

Cλi (t)αi.

Further, the Gegenbauer polynomials can be computed by a three-term recursive relation,

(i+ 2)Cλi+2(t) = 2(λ+ i+ 1)tCλi+1(t)− (2λ+ i)Cλi (t), (111)

with Cλ0 (t) = 1 and Cλ1 (t) = 2λt.
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K.3. Calculate ΞlK(ξ) where K = 0

Recall that K = (k1, k2, · · · , kd−2) and l = k0. By plugging K = 0 into Eq. (110), we have

Ξl0(ξ) = Al0 × C
d−2
2

l (cos θd−1). (112)

The following lemma gives an explicit form of Gegenbauer polynomials.

Lemma 52.

Cλi (t) =

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k. (113)

Proof. We use mathematical induction. We already know that Cλ0 (t) = 1 and Cλ1 (t) = 2λt, which both satisfy Eq. (113).
Suppose that Cλi (t) and Cλi+1(t) satisfy Eq. (113), i.e.,

Cλi (t) =

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k,

Cλi+1(t) =

b i+1
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
(2t)i−2k+1.

It remains to show that Cλi+2(t) also satisfy Eq. (113). By Eq. (111), it suffices to show that

(i+ 2)

b i+2
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 2)

Γ(λ)k!(i− 2k + 2)!
(2t)i−2k+2

=2(λ+ i+ 1)t

b i+1
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
(2t)i−2k+1

− (2λ+ i)

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k. (114)

To that end, it suffices to show that the coefficients of (2t)i−2k+2 are the same for both sides of Eq. (114), for k =
0, 1, · · · , b i+2

2 c. For the first step, we verify the coefficients of (2t)i−2k+2 for k = 1, · · · , b i+1
2 c. We have

coefficients of (2t)i−2k+2 on the right-hand-side of Eq. (114)

=(λ+ i+ 1)(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
− (2λ+ i)(−1)k−1 Γ(i− k + λ+ 1)

Γ(λ)(k − 1)!(i− 2k + 2)!

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i− 2k + 2) + (2λ+ i)k)

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i+ 2) + (2λ+ i)k − 2k(λ+ i+ 1))

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i+ 2)− k(i+ 2))

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
(λ− k + i+ 1)(i+ 2)

=(i+ 2)(−1)k
Γ(i− k + λ+ 2)

Γ(λ)k!(i− 2k + 2)!

=coefficients of (2t)i−2k+2 on the left-hand-side of Eq. (114).



On the Generalization Power of Overfitted 2-layer NTK models

For the second step, we verify the coefficient of (2t)i−2k+2 for k = 0, i.e., the coefficient of (2t)i+2. We have

coefficients of (2t)i+2 on the right-hand-side of Eq. (114)

=(λ+ i+ 1)
Γ(i+ λ+ 1)

Γ(λ)(i+ 1)!

=(i+ 2)
Γ(i+ 2 + λ)

Γ(λ)(i+ 2)!

=coefficients of (2t)i+2 on the left-hand-side of Eq. (114).

For the third step, we verify the coefficient of (2t)i−2k+2 for k = b i+2
2 c = b i2c+ 1. We consider two cases: 1) i is even,

and 2) i is odd. When i is even, we have b i2c+ 1 = i
2 + 1, i.e., i− 2k + 2 = 0. Thus, we have

coefficients of (2t)0 on the right-hand-side of Eq. (114)

=− (2λ+ i)(−1)
i
2

Γ
(
i
2 + λ

)
Γ(λ)

(
i
2

)
!

=(i+ 2)(−1)
i
2 +1 Γ

(
i
2 + 1 + λ

)
Γ(λ)

(
i
2 + 1

)
!

=coefficients of (2t)0 on the left-hand-side of Eq. (114).

When i is odd, we have k = b i2c+ 1 = i+1
2 = b i+1

2 c and this case has already been verified in the first step.

In conclusion, the coefficients of (2t)i−2k+2 are the same for both sides of Eq. (114), for k = 0, 1, · · · , b i+2
2 c. Thus, by

mathematical induction, the result of this lemma thus follows.

Applying Lemma 52 in Eq. (112), we have

Ξl0(ξ) = Al0

b l2 c∑
k=0

(−1)k
Γ(l − k + d−2

2 )

Γ(d−2
2 )k!(l − 2k)!

(2 cos θd−1)l−2k. (115)

We give a few examples of Ξl0(ξ) as follows.

Ξ0
0(ξ) = A0

0,

Ξ1
0(ξ) = A1

0(d− 2) cos θd−1,

Ξ2
0(ξ) = A2

0

d− 2

2

(
d cos2 θd−1 − 1

)
,

Ξ3
0(ξ) = A3

0

d− 2

2
· d ·

(
d+ 2

3
cos3 θd−1 − cos θd−1

)
.

K.4. Proof of Proposition 3

Recall that

h(x) := xTe
π − arccos(xTe)

2π
, e := [0 0 · · · 0 1]T ∈ Rd.

Notice that xTe = cos θd−1. Thus, we have

h(x) = cos θd−1
π − arccos(cos θd−1)

2π
.

The arccos function has a Taylor Series Expansion:

arccos(a) =
π

2
−
∞∑
i=0

(2i)!

22i(i!)2

a2i+1

2i+ 1
,
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which converges when −1 ≤ a ≤ 1. Thus, we have

h(x) =
1

4
cos θd−1 +

1

2π

∞∑
i=0

(2i)!

22i(i!)2

cos2i+2 θd−1

2i+ 1
. (116)

By comparing terms of even and odd power of cos θd−1 in Eq. (115) and Eq. (116), we immediately see that h(x) 6⊥ Ξl0(x)
when l = 1, and h(x) ⊥ Ξl0(x) when l = 3, 5, 7, · · · . It remains to examine whether h(x) ⊥ Ξl0(x) or h(x) 6⊥ Ξl0(x) for
l ∈ {0, 1, 2, 4, 6, · · · }. We first introduce the following lemma.

Lemma 53. Let a and b be two non-negative integers. Define the function

Q(a, b) :=

∫
Sd−1

cosa(θd−1)Ξb0(ξ)dµ(x).

We must have

Q(2k, 2m)

{
> 0, if m ≤ k,
= 0, if m > k.

(117)

Proof. We have

Q(2k, 0) =

∫
Sd−1

cos2k(θd−1)Ξ0
0(ξ)dµ(x) = A0

0

∫
Sd−1

cos2k(θd−1)dµ(x) > 0.

Thus, to finish the proof, we only need to consider the case of m ≥ 1 in Eq. (117). We then prove by mathematical induction
on the first parameter of Q(·, ·), i.e., k in Eq. (117). When m > 0, we have

Q(0, 2m) =

∫
Sd−1

Ξ2m
0 (ξ)dµ(x) =

1

A0
0

∫
Sd−1

Ξ0
0(ξ)Ξ2m

0 (ξ)dµ(x) = 0

(by the orthogonality of the basis).

Thus, Eq. (117) holds for all m when k = 0. Suppose that Eq. (117) holds when k = i. To complete the mathematical
induction, it only remains to show that Eq. (117) also holds for all m when k = i+ 1. By Eq. (111) and Eq. (112), for any l,
we have

cos(θd−1)Ξl+1
0 (ξ) =

(l + 2)Al+1
0

(d+ 2l)Al+2
0

Ξl+2
0 (ξ) +

(d− 2 + l)Al+1
0

(d+ 2l)Al0
Ξl0(ξ).

Thus, we have

Q(a+ 1, l + 1) = ql,1 ·Q(a, l + 2) + ql,2 ·Q(a, l), (118)

where

ql,1 :=
(l + 2)Al+1

0

(d+ 2l)Al+2
0

, ql,2 :=
(d− 2 + l)Al+1

0

(d+ 2l)Al0
.

It is obvious that ql,1 > 0 and ql,2 > 0. Applying Eq. (118) multiple times, we have

Q(2i+ 2, 2m) = q2m−1,1 ·Q(2i+ 1, 2m+ 1) + q2m−1,2 ·Q(2i+ 1, 2m− 1), (119)
Q(2i+ 1, 2m+ 1) = q2m,1 ·Q(2i, 2m+ 2) + q2m,2 ·Q(2i, 2m), (120)
Q(2i+ 1, 2m− 1) = q2m−2,1 ·Q(2i, 2m) + q2m−2,2 ·Q(2i, 2m− 2). (121)

(Notice that we have already let m ≥ 1, so all q·,1, q·,2, Q(·, ·) in those equations are well-defined.) By plugging Eq. (120)
and Eq. (121) into Eq. (119), we have

Q(2i+ 2, 2m) =q2m,1q2m−1,1Q(2i, 2m+ 2) + (q2m−1,1q2m,2 + q2m−1,2q2m−2,1)Q(2i, 2m)

+ q2m−1,2q2m−2,2Q(2i, 2m− 2). (122)
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To prove that Eq. (117) holds when k = i+ 1 for all m, we consider two cases, Case 1: m ≤ i+ 1, and Case 2: m > i+ 1.
Notice that by the induction hypothesis, we already know that Eq. (117) holds when k = i for all m.

Case 1. When m ≤ i+ 1, we have m− 1 ≤ i. Thus, by the induction hypothesis for k = i, we have Q(2i, 2m− 2) > 0
(by m− 1 ≤ i), which implies that the third term of the right-hand-side of Eq. (122) is positive. Further, by the induction
hypothesis for k = i, we also know that Q(2i, 2m + 2) ≥ 0 and Q(2i, 2m) ≥ 0 (regardless of the value of m), which
means that the first and the second term of Eq. (122) is non-negative. Thus, by considering all three terms in Eq. (122)
together, we have Q(2i+ 2, 2m) > 0 when m ≤ i+ 1.

Case 2. When m > i+ 1, we have m+ 1 > i, m > i, and m− 1 > i. Thus, by the induction hypothesis for k = i, we
have Q(2i, 2m+ 2) = Q(2i, 2m) = Q(2i, 2m− 2) = 0. Therefore, by Eq. (122), we have Q(2i+ 2, 2m) = 0.

In summary, Eq. (117) holds when k = i + 1 for all m. The mathematical induction is completed and the result of this
lemma follows.

By Lemma 53, for all k ≥ 0, we have∫
Sd−1

1

2π

∞∑
i=0

(2i)!

22i(i!)2

cos2i+2 θd−1

2i+ 1
Ξ2k
0 (ξ)dµ(x)

=
1

2π

∞∑
i=0

(2i)!

22i(i!)2

1

2i+ 1

∫
Sd−1

cos2i+2 θd−1Ξ2k
0 (ξ)dµ(x)

>0.

Thus, by Eq. (116), we know that h(x) 6⊥ Ξl0(x) for all l ∈ {0, 2, 4, · · · }.

K.5. A special case: when d = 2

When d = 2, Sd−1 denotes a unit circle. Therefore, every x corresponds to an angle ϕ ∈ [−π, π] such
that x = [cosϕ sinϕ]T . In this situation, the hyper-spherical harmonics are the well-known Fourier series, i.e.,
1, cos(θ), sin(θ), cos(2θ), sin(2θ), · · · . Thus, we can explicitly calculate all Fourier coefficients of h more easily.

Similarly to Appendix K.1, we first write down the convolution for d = 2, which is also in a simpler form. For any function
fg ∈ F`2 , we have

fg(ϕ) =
1

2π

∫ ϕ+π

ϕ−π

π − |θ − ϕ|
2π

cos(θ − ϕ)g(θ)dθ

=
1

2π

∫ π

−π

π − |θ|
2π

cos θ g(θ + ϕ) dθ (replace θ by θ − ϕ)

=
1

2π

∫ π

−π

π − |θ|
2π

cos θ g(ϕ− θ) dθ (replace θ by −θ).

Define h(θ) := π−|θ|
2π cos θ. We then have

fg(ϕ) =
1

2π
h(ϕ) ~ g(ϕ),

where ~ denotes (continuous) circular convolution. Let cfg (k), ch(k) and cg(k) (where k = · · · ,−1, 0, 1, · · · ) denote the
(complex) Fourier series coefficients for fg(ϕ), h(ϕ), and g(ϕ), correspondingly. Specifically, we have

fg(ϕ) =

∞∑
k=−∞

cfg (k)eikϕ, h(ϕ) =

∞∑
k=−∞

ch(k)eikϕ, g(ϕ) =

∞∑
k=−∞

cg(k)eikϕ.

Thus, we have

cfg (k) = ch(k)cg(k). (123)
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Now we calculate ch(k), i.e., the Fourier decomposition of h(·). We have

ch(k) =
1

2π

∫ π

−π

π − |θ|
2π

cos θ e−ikθdθ

=
1

4π

∫ π

−π

(
1− |θ|

π

)
e−i(k+1)θ + e−i(k−1)θ

2
dθ

= − 1

8π2

∫ π

−π
|θ|
(
e−i(k+1)θ + e−i(k−1)θ

)
dθ +

1

8π

∫ π

−π

(
e−i(k+1)θ + e−i(k−1)θ

)
dθ.

It is easy to verify that ∫
xecxdx = ecx

(
cx− 1

c2

)
, ∀c 6= 0.

Thus, we have

ch(1) = − 1

8π2

∫ π

−π
|θ|
(
e−i2θ + 1

)
dθ +

1

4

= − 1

8π2

(
π2 −

∫ 0

−π
θe−i2θdθ +

∫ π

0

θe−i2θdθ

)
+

1

4

= − 1

8π2

(
π2 +

i2π

−4
+
−i2π
−4

)
+

1

4

= −1

8
+

1

4

=
1

8
.

Similarly, we have

ch(−1) =
1

8
.

Now we consider the situation of n 6= ±1. We have∫ 0

−π
|θ|e−i(k+1)θdθ = −e−i(k+1)θ · −i(k + 1)θ − 1

−(k + 1)2

∣∣∣∣∣
0

−π
= − 1

(k + 1)2
+

1− i(k + 1)π

(k + 1)2
ei(k+1)π,

∫ π

0

|θ|e−i(k+1)θdθ = e−i(k+1)θ · −i(k + 1)θ − 1

−(k + 1)2

∣∣∣∣∣
π

0

= − 1

(k + 1)2
+

1 + i(k + 1)π

(k + 1)2
e−i(k+1)π.

Notice that e−i(k+1)π = e−i(k+1)2πei(k+1)π = ei(k+1)π . Therefore, we have∫ π

−π
|θ|e−i(k+1)θdθ =

2

(k + 1)2

(
ei(k+1)π − 1

)
.

Similarly, we have ∫ π

−π
|θ|e−i(k−1)θdθ =

2

(k − 1)2

(
ei(k−1)π − 1

)
.

In summary, we have

ch(k) =

{
1
8 , k = ±1

− 1
4π2

(
1

(k+1)2 + 1
(k−1)2

) (
ei(k+1)π − 1

)
, otherwise

=


1
8 , k = ±1
1

2π2

(
1

(k+1)2 + 1
(k−1)2

)
, k = 0,±2,±4, · · ·

0, k = ±3,±5, · · ·
.
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By Eq. (123), we thus have

cfg (k) =


1
8cg(k), k = ±1
1

2π2

(
1

(k+1)2 + 1
(k−1)2

)
cg(k), k = 0,±2,±4, · · ·

0, k = ±3,±5, · · ·
.

In other words, when d = 2, functions in F`2 can only contain frequencies 0, θ, 2θ, 4θ, 6θ, · · · , and cannot contain other
frequencies 3θ, 5θ, 7θ, · · · .

K.6. Details of Remark 2

As we discussed in Remark 2, a ReLU activation function with bias that operates on x̃ ∈ Rd−1, ‖x̃‖22 = d−1
d can be

equivalently viewed as one without bias that operates on x ∈ Sd−1, but with the last element of x fixed at 1/
√
d. Note

that by fixing the last element of x ∈ Sd−1 at a constant 1√
d

, we essentially consider ground-truth functions with a much

smaller domain D :=
{
x =

[
x̃

1/
√
d

] ∣∣ x̃ ∈ Rd−1, ‖x̃‖22 = d−1
d

}
⊂ Sd−1. Correspondingly, define a vector ã ∈ Rd−1 and

a0 ∈ R such that a =
[

ã
a0

]
∈ Rd. We claim that for any a ∈ Rd and for all non-negative integer l, a ground-truth function

f(x) = (xTa)l,x ∈ D must be learnable. In other words, all polynomials can be learned in the constrained domain D.
Towards this end, recall that we have already shown that polynomials (of x ∈ Sd−1) to the power of l = 0, 1, 2, 4, 6, · · · are
learnable. Thus, it suffices to prove that polynomials of x ∈ D to the power of l = 3, 5, 7, · · · can be represented by a finite
sum of those to the power of l = 0, 1, 2, 4, 6, · · · . The idea is to utilize the fact that the binomial expansion of (x̃T ã+ a0√

d
)l

contains (x̃T ã)k for all k = 0, 1, 2, 3, · · · , l. Here we give an example for writing (xTa)3 as a linear combination of
learnable components. Other values of l = 5, 7, 9, · · · can be proved in a similar way. Notice that

(x̃T ã)3 =
1

4

(
(x̃T ã+ 1)4 − (x̃T ã)4 − 6(x̃T ã)2 − 4(x̃T ã)2 − 1

)
(by the binomial expansion of (x̃T ã+ 1)4)

=
1

4

((
xT
[
ã√
d

])4

−
(
xT
[
ã
0

])4

− 6

(
xT
[
ã
0

])2

− 4

(
xT
[
ã
0

])
− 1

)
. (124)

Thus, for all x =
[

x̃
1/
√
d

]
and a =

[
ã
a0

]
, we have

(xTa)3 =

(
x̃T ã+

a0√
d

)3

=(x̃T ã)3 + 3

(
a0√
d

)
(x̃T ã)2 + 3

(
a0√
d

)2

(x̃T ã) +

(
a0√
d

)3

=(x̃T ã)3 + 3

(
a0√
d

)(
xT
[
ã
0

])2

+ 3

(
a0√
d

)2(
xT
[
ã
0

])
+

(
a0√
d

)3

=
1

4

(
xT
[
ã√
d

])4

− 1

4

(
xT
[
ã
0

])4

+

(
3

(
a0√
d

)
− 3

2

)(
xT
[
ã
0

])2

+

(
3

(
a0√
d

)2

− 1

)(
xT
[
ã
0

])
+

((
a0√
d

)3

− 1

4

)
(by Eq. (124)),

which is a sum of 5 learnable components (corresponding to the polynomials with power of 4, 4, 2, 1, and 0, respectively).

L. Discussion when g is a δ-function (‖g‖∞ =∞)
We now discuss what happens to the conclusion of Theorem 1 if g contains a δ-function, in which case ‖g‖∞ = ∞. In
Eq. (10) of Theorem 1, only Term 1 and Term 4 (come from Proposition 5) will be affected when ‖g‖∞ = ∞. That is
because only Proposition 5 requires ‖g‖∞ < ∞ during the proof of Theorem 1. To accommodate the situation when
g contains a δ-function (‖g‖∞ = ∞), we need a new version of Proposition 5. In other words, we need to know the
performance of the overfitted NTK solution in learning the pseudo ground-truth when ‖g‖∞ =∞.

Without loss of generality, we consider the situation that g = δz0 . We have the following proposition.
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Figure 7. The curves of the model error ‖(P− I)∆V∗‖2 for learning the pseudo ground-truth fgV0
with respect to n for different g and

different d, where p = 20000, and ε = 0. Every curve is the average of 10 random simulation runs.

Proposition 54. If the ground-truth function is f = fgV0
in Definition 2 with g = δz0 and ε = 0, for any x ∈ Sd−1 and

q ∈ (1, ∞), we have

Pr
X,V0

{
|f̂ `2(x)− f(x)| ≤

(√
3

4
+
π2

2

)(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q )

}

≥1− exp
(
−n

1
q

)
− 2 exp

(
− p

24

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1 (1− 1

q )

)
,

when

n ≥
(

(d− 1)B(
d− 1

2
,

1

2
)

) q
q−1

, i.e.,
(

(d− 1)B(
d− 1

2
,

1

2
)

)
n−(1− 1

q ) ≤ 1. (125)

(Estimates of B(d−1
2 , 1

2 ) can be found in Lemma 32.)

Proposition 54 implies that when n is large and p is much larger than n−
1

2(d−1)
(1− 1

q ), the test error between the pseudo
ground-truth and learned result decreases with n at the speed O(n−

1
2(d−1)

(1− 1
q )). Further, if we let q be large, then the

decreasing speed with n is almost O(n−
1

2(d−1) ). When d ≥ 3, this speed is slower than O(n−
1
2 ) described in Proposition 5

(i.e., Term 1 in Eq. (10) of Theorem 1). When d = 2, the decreasing speed with respect to n isO(n−
1
2 ) for both Proposition 5

and Proposition 54. Nonetheless, Proposition 54 implies that the ground-truth functions fg ∈ F`2 is still learnable even
when g is a δ-function (i.e., ‖g‖∞ =∞), but the test error potentially suffers a slower convergence speed with respect to n
when d is large.

In Fig. 7, we plot the curves of the model error ‖(P− I)∆V∗‖2 for learning the pseudo ground-truth fgV0
with respect to n

when g = δz0 (two blue curves) and when g is constant (two red curves). We plot both the case when d = 2 (two solid
curves) and the case when d = 10 (two dashed curves). By Lemma 44, the model error ‖(P− I)∆V∗‖2 can represent the
generalization performance for learning the pseudo ground-truth fgV0

when there is no noise. In Fig. 7, we can see that those
two curves corresponding to d = 10 have different slopes and the other two curves corresponding to d = 2 have a similar
slope, which confirms our prediction in the earlier paragraph (i.e., when d = 2 the test error will decay at the same speed
regardless of whether g contains a δ-function or not, but when d > 2 the test error will decay more slowly when g contains a
δ-function).

L.1. Proof of Proposition 54

We first show two useful lemmas.
Lemma 55. For any q ∈ (1,∞), if b ∈ [n−(1−1/q), 1], then

(1− b)n ≤ exp
(
−n

1
q

)
.
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Proof. By Lemma 29, we have

e−b ≥ 1− b

=⇒ e−1 ≥ (1− b) 1
b

=⇒ exp
(
−n

1
q

)
≥ (1− b)n

1
q /b

=⇒ exp
(
−n

1
q

)
≥ (1− b)n because b ∈ [n−(1−1/q), 1].

Lemma 56. Consider x1 ∈ Sd−1 where ϕ = arccos(xT1 z0). For any θ ∈ [ϕ, π], there must exist x2 ∈ Sd−1 such that
arccos(xT2 z0) = θ and

CV0
−x1,z0

⊆ CV0
−x2,z0

, CV0
x1,−z0

⊆ CV0
x2,−z0

. (126)

We will explain the intuition of Lemma 56 in Remark 8 right after we use the lemma. We put the proof of Lemma 56 in
Section L.2.

Now we are ready to prove Proposition 54. Recall ∆V∗ defined in Eq. (84). By Eq. (1) and g = δz0
, we have

∆V∗ =
(hV0,z0)T

p
.

Define

i∗ = arg min
i∈{1,2,··· ,n}

‖Xi − z0‖2,

θ∗ = arccos(XT
i∗z0).

Thus, we have

‖Xi∗ − z0‖2 =
√

2− 2 cos θ∗ (by the law of cosines)

=2 sin
θ∗

2
(by the half angle identity)

≤θ∗ (by Lemma 41). (127)

(Graphically, Eq. (127) means that a chord is not longer than the corresponding arc.)

As we discussed in the proof sketch of Proposition 5, we now construct the vector a such that HTa is close to ∆V∗. Define
a ∈ Rn whose i-th element is

ai =

{
1/p, if i = i∗

0, if i ∈ {1, 2, · · · , n} \ {i∗}
.

Thus, we have HTa = (hV0,Xi∗ )T /p. Therefore, we have

‖HTa−∆V∗‖22 =

p∑
j=1

‖(HTa)[j]−∆V∗[j]‖22

=
1

p2

p∑
j=1

(
1{XT

i∗V0[j]>0,zT0 V0[j]>0}‖Xi∗ − z0‖22 + 1{(XT
i∗V0[j])(zT0 V0[j])<0}

)
≤ 1

p2

(
p‖Xi∗ − z0‖22 + |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|
)

(by Eq. (6))

≤ 1

p2

(
p · (θ∗)2 + |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|
)

(by Eq. (127)).
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Thus, we have

√
p‖Ha−∆V∗‖2 ≤

√
(θ∗)2 +

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p

≤

√
πθ∗ +

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
(because θ∗ ≤ π). (128)

Remark 7. We give a geometric interpretation of Eq. (128) when d = 2 by Fig. 4, where
−→
OA denotes z0,

−→
OB denotes Xi∗ .

Then, |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
| corresponds to the number of V0[j]’s whose direction is in the arc

_

CE or the arc
_

FD, and θ∗

corresponds to the angle ∠AOB. Intuitively, when n increases, Xi∗ and z0 get closer, so θ∗ becomes smaller. At the same

time, both the arc
_

CE and the arc
_

FD become shorter. Consequently, the value of Eq. (128) decreases as n increases. In the
rest of the proof, we will quantitatively estimate the above relationship.

Recall Cd in Eq. (60). Define

θ :=
π

2

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q ) ∈
[
0,
π

2

]
(by Eq. (125)). (129)

For any q ∈ (1,∞), we define two events:

J1 :=

{
|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
≤ 3θ

2π

}
,

J2 := {θ∗ ≤ θ} .

If both J1 and J2 happen, by Eq. (128), we must then have

√
p‖Ha−∆V∗‖2 ≤

(√
3

2π
+ π

)
·
√
θ

=

(√
3

4
+
π2

2

)(
2
√

2(d− 1)

Cd

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q ).

Thus, by Lemma 44 and Lemma 45, if f = fgV0
and both J1 and J2 happen, then for any x ∈ Sd−1, we must have

|f̂ `2(x)− f(x)| ≤

(√
3

4
+
π2

2

)(
2
√

2(d− 1)

Cd

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q ). (130)

It then only remains to estimate the probability of J1 ∩ J2.

Step 1: Estimate the probability of J1 conditional on J2.

When J2 happens, we have θ∗ < θ. By Lemma 56, we can find x ∈ Sd−1 such that the angle between x and z0 is exactly
θ and

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
≤
|CV0
−x,z0

|+ |CV0
x,−z0

|
p

. (131)

Remark 8. We give a geometric interpretation of Eq. (131) (i.e., Lemma 56) when d = 2 by Fig. 4. Recall in Remark 7 that,
if we take

−→
OA as z0 and

−→
OB as Xi∗ , then |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
| corresponds to the number of V0[j]’s whose direction is

in the arc
_

CE or the arc
_

FD. If we fix
−→
OA (i.e., z0) and increase the angle ∠AOB (corresponding to θ∗), then both the arc

_

CE and the arc
_

FD will become longer. In other words, if we replace Xi by x such that the angle θ∗ (between z0 and Xi)
increases to the angle θ (between z0 and x), then CV0

−Xi∗ ,z0
⊆ CV0
−x,z0

and CV0

Xi∗ ,−z0
⊆ CV0

x,−z0
, and thus Eq. (131) follows.
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We next estimate the probability that the right-hand-side of Eq. (131) is greater than 3θ
2π . By Eq. (6), we have

|CV0
−x,z0

|+ |CV0
x,−z0

|
p

=
1

p

p∑
j=1

1{−xTV0[j]>0,zT0 V0[j]>0 OR xTV0[j]>0,−zT0 V0[j]<0}︸ ︷︷ ︸
Term A

. (132)

Notice that the angle between −x and z0 is π − θ, and the angle between x and −z0 is also π − θ. By Lemma 17 and
Assumption 1, we know that the Term A in Eq. (132) follows Bernoulli distribution with the probability 2 · π−(π−θ)

2π = θ
π .

By letting δ = 1/2, a = p, b = θ
π in Lemma 14, we have

Pr
V0

{∣∣∣∣|CV0
−x,z0

|+ |CV0
x,−z0

| − pθ

π

∣∣∣∣ > pθ

2π

}
≤ 2 exp

(
− pθ

12π

)
.

By Eq. (131), we then have

Pr
V0

[J c1 | J2] ≤ Pr
V0

{
|CV0
−x,z0

|+ |CV0
x,−z0

|
p

>
3θ

2π

}
≤ 2 exp

(
− pθ

12π

)
.

Step 2: Estimate the probability of J2.

By Lemma 8 and Assumption 1, for any i ∈ {1, 2, · · · , n} and because θ ∈ [0, π/2], we have

Pr
X

{
arccos(XT

i z0) > θ
}

=1− 1

2
Isin2 θ

(
d− 1

2
,

1

2

)
≤1− Cd

2
√

2(d− 1)
sind−1 θ (by Lemma 35).

Note that since PrX
{

arccos(XT
i z0) > θ

}
≥ 0, we must have

Cd

2
√

2(d− 1)
sind−1 θ ≤ 1. (133)

Further, because all Xi’s are i.i.d. for i ∈ {1, 2, · · · , n}, we have

Pr
X
{θ∗ > θ} = Pr

X

{
min

i∈{1,2,··· ,n}
arccos(XT

i z0) > θ

}
≤
(

1− Cd

2
√

2(d− 1)
sind−1 θ

)n
. (134)

By Eq. (129) and Lemma 41, we then have

sin θ ≥

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q ),

i.e.,

Cd

2
√

2(d− 1)
sind−1 θ ≥ n−(1−1/q).

Thus, by Eq. (133), Eq. (134), and Lemma 55, we have

Pr
X

[J c2 ] = Pr
X
{θ∗ > θ} ≤ exp

(
−n

1
q

)
.



On the Generalization Power of Overfitted 2-layer NTK models

Combining the results of Step 1 and Step 2, we thus have

Pr
X,V0

[J1 ∩ J2] = Pr
X,V0

[J1 | J2] · Pr
X,V0

[J2]

= Pr
V0

[J1 | J2] · Pr
X

[J2] (because of V0 and X are independent)

≥
(

1− 2 exp

(
− pθ

12π

))(
1− exp

(
−n

1
q

))
≥1− exp

(
−n

1
q

)
− 2 exp

(
− pθ

12π

)

=1− exp
(
−n

1
q

)
− 2 exp

− p

24

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q )

 (by Eq. (130)).

By Eq. (60), the conclusion of Proposition 54 thus follows.

L.2. Proof of Lemma 56

Proof. When x1 = z0, the conclusion of this lemma trivially holds because CV0
−x1,z0

= CV0
x1,−z0

= ∅ (because −xTV0[j]

and zT0 V0[j] cannot be both positive or negative at the same time when x1 = z0.). It remains to consider x1 6= z0. Define

z0,⊥ :=
x1 − (xT1 z0)z0

‖x1 − (xT1 z0)z0‖2
.

Thus, we have zT0,⊥z0 = 0 and ‖z0,⊥‖2 = 1, i.e., z0 and z0,⊥ are orthonormal basis vectors on the 2D plane L spanned by
x1 and z0. Thus, we can represent x1 as

x1 = cosϕ · z0 + sinϕ · z0,⊥ ∈ L.

For any θ ∈ [ϕ, π], we construct x2 as

x2 := cos θ · z0 + sin θ · z0,⊥ ∈ L.

In order to show CV0
−x1,z0

⊆ CV0
−x2,z0

, we only need to prove any j ∈ CV0
−x1,z0

must in CV0
−x2,z0

. For any V0[j], j =

1, 2, · · · , p, define the angle θj ∈ [0, 2π] as the angle between z0 and V0[j]’s projected component vj on L10, i.e.,

vj = cos θj · z0 + sin θj · z0,⊥ ∈ L.

By the proof of Lemma 17, we know that j ∈ CV0
−x1,z0

if and only if θj ∈ (−π2 ,
π
2 ) ∩ (π + ϕ− π

2 , π + ϕ+ π
2 ) (mod 2π).

Similarly, j ∈ CV0
−x2,z0

if and only if θj ∈ (−π2 ,
π
2 )∩ (π + θ− π

2 , π + θ+ π
2 ) (mod 2π). Because ϕ ∈ [0, π] and θ ∈ [ϕ, π],

we have

(−π
2
,
π

2
) ∩ (π + ϕ− π

2
, π + ϕ+

π

2
) ⊆ (−π

2
,
π

2
) ∩ (π + θ − π

2
, π + θ +

π

2
) (mod 2π).

Thus, whenever j ∈ CV0
−x1,z0

, we must have j ∈ CV0
−x2,z0

. Therefore, we conclude that CV0
−x1,z0

∈ CV0
−x2,z0

. Using a similar
method, we can also show that CV0

x1,−z0
⊆ CV0

x2,−z0
. The result of this lemma thus follows.

10Note that such an angle θj is well defined as long as V0[j] is not perpendicular to L. The reason that we do not need to worry about
those j’s such that V0[j] ⊥ L is as follows. When V0[j] ⊥ L, we then have xT1 V0[j] = xT2 V0[j] = zT0 V0[j] = 0. Thus, those j’s do
not belong to any set CV0

−x1,z0
, CV0
−x2,z0

, CV0
x1,−z0

, or CV0
x2,−z0

in Eq. (126).


