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Abstract
General methods have been developed for esti-
mating causal effects from observational data un-
der causal assumptions encoded in the form of
a causal graph. Most of this literature assumes
that the underlying causal graph is completely
specified. However, only observational data is
available in most practical settings, which means
that one can learn at most a Markov equivalence
class (MEC) of the underlying causal graph. In
this paper, we study the problem of causal es-
timation from a MEC represented by a partial
ancestral graph (PAG), which is learnable from
observational data. We develop a general estima-
tor for any identifiable causal effects in a PAG.
The result fills a gap for an end-to-end solution to
causal inference from observational data to effects
estimation. Specifically, we develop a complete
identification algorithm that derives an influence
function for any identifiable causal effects from
PAGs. We then construct a double/debiased ma-
chine learning (DML) estimator that is robust to
model misspecification and biases in nuisance
function estimation, permitting the use of modern
machine learning techniques. Simulation results
corroborate with the theory.

1. Introduction
Inferring causal effects from observational data is a fun-
damental task in machine learning and various empirical
sciences. There exists a growing literature studying the con-
ditions under which causal conclusions can be drawn from
non-experimental data (Pearl, 2000; Bareinboim & Pearl,
2016; Pearl & Mackenzie, 2018). In particular, the literature
of causal effect identification (Pearl, 2000, Def. 3.2.4) inves-
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tigates whether, given a causal graph G encoding qualitative
knowledge about the domain, an interventional distribution
P (Y = y|do(X = x)) (for short, Px(y)), representing the
causal effect of the treatment X on the outcome Y , can be
uniquely inferred from the observational distribution P (V )
(Pearl, 1995; Tian & Pearl, 2003; Huang & Valtorta, 2006;
Shpitser & Pearl, 2006; Lee & Bareinboim, 2020). There
is also a large literature on estimating causal effects from
finite samples drawn from P (V ) when the corresponding
causal estimand is in the form of covariate adjustment (or
its sequential variants) (Rosenbaum & Rubin, 1983; Pearl
& Robins, 1995; Robins et al., 2000; Bang & Robins, 2005;
Van Der Laan & Rubin, 2006; Hill, 2011), including dou-
bly robust estimators for addressing model misspecification
(Robins et al., 1994; Bang & Robins, 2005; Van Der Laan
& Rubin, 2006; Rotnitzky & Smucler, 2020; Smucler et al.,
2020; Fulcher et al., 2020). Recently, machine learning
(ML) based methods have been developed for estimating
any causal effects from finite samples whenever they are
identifiable given a causal graph (Jung et al., 2020a;b; 2021).

Despite the power of these results, their applicability is con-
tingent upon one having a causal graph, which may be hard
to manually specify. In practical settings, one may attempt
to learn the causal graph using structural learning algorithms
from the available observational data (Pearl, 2000; Spirtes
et al., 2000; Peters et al., 2017). Still, in principle, only a
Markov equivalence class (MEC) of the underlying causal
graph can be inferred from non-experimental data (Spirtes
et al., 2000; Zhang, 2008b) without assumptions about the
underlying causal mechanisms (Peters et al., 2017). There is
a growing interest in causal identification in MECs (Zhang,
2008a; Perkovic et al., 2017; Jaber et al., 2018a;b). In par-
ticular, an algorithm called IDP has recently been developed
for identifying causal effects in a MEC represented by a
partial ancestral graph (PAG) (Jaber et al., 2019), which
is both sufficient and necessary (i.e., complete). PAGs are
learnable from observational data using causal structural
learning algorithms (e.g. FCI (Zhang, 2008b)).

Even though these are quite general results, it re-
mains an open challenge to estimate the resulting
causal expressions from finite samples. For con-
creteness, consider the PAG in Fig. 1 as an exam-
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ple. The IDP algorithm identifies Px(y1, y2, y3, y4) =
P (y4|y3, y2, y1, x, r)P (y1)

∑
r P (y2, y3|x, r)P (r). The

only viable general-purpose method currently available
for estimating arbitrary causal estimands like this is the
“plug-in” estimators (Casella & Berger, 2002), which es-
timate each conditional probability in the estimand (e.g.,
P (y4|y3, y2, y1, x, r)), called nuisance functions or nui-
sances in short, often by assuming a parametric model, and
plug them into the equation. However, plug-in estimators
are vulnerable to model misspecification in that all nuisance
models need to be correctly specified for the estimator to
be consistent. They also often suffer from biases in estimat-
ing the nuisances. In recent years, it is common to learn
nuisance functions using highly flexible ML models, partic-
ularly in high-dimensional settings, including methods such
as random forests (Breiman, 2001), boosted regression trees
(Freund et al., 1996), and deep neural networks (Bengio,
2009). In practice, these ML methods inherently trade off
regularization bias with overfitting often causing acute bias
in the plug-in estimators of the target estimand such that
these estimators will not achieve desirable

√
N -consistency

(Chernozhukov et al., 2018), where N is the sample size.

We will exploit in this paper the double/debiased machine
learning (DML) framework proposed in (Chernozhukov
et al., 2018). This framework provides estimators that
achieve

√
N -consistency with respect to the target estimand

while admitting the use of highly flexible ML methods for
estimating the nuisances at a slower N−1/4 rate conver-
gence (‘debiasedness’). DML has been applied in causal
inference including in the context of the backdoor/ignorabil-
ity and instrumental variables (Robins et al., 1994; Bang &
Robins, 2005; Van Der Laan & Rubin, 2006; Dı́az & van der
Laan, 2013; Benkeser et al., 2017; Kennedy et al., 2017;
Rotnitzky & Smucler, 2020; Smucler et al., 2020; Colangelo
& Lee, 2020) and in some specific settings (Toth & van der
Laan, 2016; Rudolph & van der Laan, 2017; Fulcher et al.,
2020; Kennedy, 2020a; Bhattacharya et al., 2020). Recently,
DML has been used for estimating causal effects when the
causal graph is fully specified (Jung et al., 2021).

Our goal will be to develop a general estimator for any iden-
tifiable causal effects in PAGs (when the causal graph is
unknown). In particular, we will develop a DML estimator
for identifiable causal effects in PAGs, named DML-IDP,
by deriving their influence functions (IF) based on the semi-
parametric theory (Van der Vaart, 2000). Our results fill in a
gap for a purely data-driven, end-to-end solution to causal
effects estimation, i.e., from observational data D → PAG
G by structure learning algorithm→ identifiability of tar-
get effect Px(y) by IDP→ estimating Px(y) from D by
DML-IDP. Specifically, our contributions are as follows:

1. We develop a complete systematic procedure that de-
rives an IF for any identifiable causal effects in a PAG over

X

Y1

Y4

R

Y2

Y3v v

v

vv

Figure 1: An example PAG. Nodes representing the treat-
ment (X) and outcome (Y) are marked in blue and red
respectively. Causal effect Px(y) is identifiable. ‘v’ on
edges stands for ‘visible’ edges.

discrete endogenous variables.

2. We develop a DML estimator (DML-IDP) for any
identifiable causal effects in a PAG with discrete variables,
which enjoy debiasedness and doubly robustness against
model misspecification and biases in nuisances estimation.
Experimental studies corroborate with the theory.

The proofs are provided in Appendix B in suppl. material.

2. Preliminaries
Each variable is represented with a capital letter (V ) and
its realized value with the small letter (v). We use bold
letters (V) to denote sets of variables. We use Iv′(V) to
represent the indicator function such that Iv′(V) = 1 if and
only if V = v′; Iv′(V) = 0 otherwise. For function f(v)
and a distribution P (v), EP [f(V)] ≡

∑
v f(v)P (v), and

‖f(V)‖2 ≡
√
EP [(f(V))2]. f̂ is said to converge to f at

rate rN if ‖f̂(V)− f(V)‖2 = OP (1/rN ).

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl, 2000). Each SCM M over a set of variables
V induces a distribution P (v) and a causal graph G that
is a directed acyclic graph (DAG) with bidirected arrows
(edges). Solid-directed arrows encode functional relation-
ships between observed variables, and bidirected arrows
encode unobserved latent confounders. Within the structural
semantics, performing an intervention and setting X = x
is represented through the do-operator, do(X = x), which
encodes the operation of replacing the original equations
of X by the constant x and induces a submodel Mx and an
interventional distribution P (v|do(X = x)) ≡ Px(v).

Partial Ancestral Graphs (PAGs). Given non-
experimental data, only a Markov equivalence class (MEC)
of the underlying causal graph can be inferred which in-
cludes a set of graphs with the same conditional indepen-
dences (Zhang, 2007). A PAG provides a graphical repre-
sentation of a MEC. PAGs may contain directed (→) or
bidirected (↔) edges, representing ancestral relations, and
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edges with circles (e.g., {◦→, ◦−◦}) indicating structural
uncertainty (see Figs. 1 and 2 for example PAGs).

Given a PAG, a path between X and Y is potentially di-
rected from X to Y if there is no arrowhead {<,>} on the
path pointing towards X . Y is called a possible descendant
of X and X a possible ancestor of Y and denoted X ∈
An(Y ) if there is a potentially directed path from X to Y .
Y is called a possible child of X and denoted Y ∈ Ch(X),
and X a possible parent of Y and denoted X ∈ Pa(Y ),
if they are adjacent and the edge is not into X . By stipu-
lation, X ∈ An(X), X ∈ Pa(X), and X ∈ Ch(X). For
a set of nodes X, we have Pa(X) =

⋃
X∈X Pa(X) and

Ch(X) =
⋃
X∈X Ch(X). If the edge marks on a path

between X and Y are all circles, we call the path a circle
path. We refer to the closure of nodes connected with circle
paths as a bucket. Nodes V in a PAG G are partitioned
into a unique set of buckets V =

⋃n
i=1 Bi. There exists

a topological order over buckets B1 ≺ · · · ≺ Bn that de-
fines a partial order over V, which is valid in all the causal
graphs in the MEC. This is named a partial topological
order (PTO) and could be assigned by (Jaber et al., 2018a,
Algo. 2). Given a PTO ≺ and a set C ⊆ V, we denote
preC(Bi) ≡ (

⋃
j<iBj)∩C and use pre(Bi) ≡ preV(Bi).

An inducing path is a path on which every node Vi (except
for the endpoints) is a collider on the path and every collider
is an ancestor of an endpoint. A directed edge X → Y in a
PAG is visible and denoted X v→ Y if there exists no causal
graph in the corresponding MEC where there is an inducing
path between X and Y that is into X . Given a PAG G and a
set C ⊆ V, G(C) denotes the subgraph composed of nodes
C and edges therein.

Causal Effect Identification. Given a DAG G over V, an
effect Px(y) where X,Y ⊆ V is identifiable if Px(y) is
computable from the distribution P (v) in any SCM that
induces G (Pearl, 2000, p. 77). One key notion is called
confounded components (for short, C-component) : clo-
sures of nodes connected with a path composed solely of
bi-directed edges Vi ↔ Vj (Tian & Pearl, 2002).

Given a PAG G over V, a query Px(y) is identifiable if and
only if Px(y) is identifiable with the same expression in
every DAG in the MEC represented by the PAG G. A com-
plete identification algorithm in PAGs called IDP has been
developed (Jaber et al., 2019) (also presented in Appendix A
for convenience) based on possible C-component (PC-
component) and definite C-component (DC-component):

Definition 1 (PC & DC-component (Jaber et al., 2018a)).
In a PAG (or its subgraph), two nodes are in the same PC-
component if there is a path between them s.t. (1) all non-
endpoint nodes along the path are colliders, and (2) none
of the edges is visible. Two nodes are in the same DC-
component if they are connected with a bi-directed path.

For a set of variables X, we will use C(X) to denote the
union of the PC-components that contain variables in X.
For any C ⊆ V, the quantity Q [C] ≡ Pv\c(c), called a
C-factor, is defined as the distribution of C under an inter-
vention on V\C. IDP algorithm is based on the following
results for identification and decomposition of C-factors.

Proposition 1 (Jaber et al., 2018b). LetG be a PAG over V,
T = ∪mi=1Bi be the union of a set of buckets, and X ⊆ T
be a bucket. Given Pv\t (i.e., Q [T]) and a PTO B1 ≺
· · · ≺ Bm with respect to G(T), Q [T\X] is identifiable if
and only if C(X) ∩ Ch(X) ⊆ X in G(T). If identifiable,

Q [T\X] =
Pv\t

QSX

∑
x

QSX
,

where QSX
≡
∏
i|Bi⊆SX

Pv\t(bi|preT(bi)) and SX =⋃
X∈X SX with SX being the DC-component of X in

G(T).

Definition 2 (Region RC
A (Jaber et al., 2019)). Given a

PAG G over V and A ⊆ C ⊆ V, the region of A w.r.t.
C, denoted RC

A, is the union of the buckets in G(C) that
contain nodes in the PC-component C(A) of A in G(C).

Proposition 2 (Jaber et al., 2019). Given a PAG G over V
and a set C ⊆ V, Q [C] can be decomposed as Q [C] =
Q[RA]·Q[RC\RA ]
Q[RA∩RC\RA ]

for any A ⊆ C, whereR(·) = RC
(·).

Semiparametric Theory. We aim to estimate a target
estimand ψ ≡ Ψ(P ) that is a functional of P (V) (e.g.,
Ψ (P ) =

∑
z P (y|x, z)P (z)) from finite samples D =

{V(i)}Ni=1 drawn from P . Let a parametric submodel
Pt ≡ P (v)(1 + tg(v)) for any t ∈ R and bounded mean-
zero function g(·) over random variables V. If a func-
tional Ψ(Pt) is pathwise (formally, Gâteaux) differentiable
at t = 0, then there exists a function φ(V;ψ, η) (shortly
φ), called an influence function (IF) for ψ, where η = η(P )
stands for the set of nuisance functions comprising φ, sat-
isfying EP [φ] = 0, EP

[
φ2
]
< ∞, and ∂

∂tΨ(Pt)|t=0 =
EP [φ(V;ψ, η)St(V; t = 0)] where St(v; t = 0) ≡
∂
∂t logPt(v)|t=0 is the score function (Van der Vaart, 2000,
Chap. 25). Given an IF φ, a Regular and Asymptotic
Linear (RAL) estimator TN can be constructed satisfying
TN − ψ = 1

N

∑N
i=1 φ(V(i);ψ, η) + oP (N−1/2). When

the IF can be decomposed as φ(V;ψ, η) = V(V; η) − ψ
for some function V(V; η), called the uncentered influ-
ence function (UIF), the corresponding RAL estimator is
TN = 1

N

∑N
i=1 V(V(i), η̂) where η̂ denotes nuisances es-

timated from sample D (Kennedy, 2020a). We will fo-
cus on deriving UIFs in this paper. Once we have a UIF
the corresponding IF could be expressed as φ(V;ψ, η) =
V(V; η)− EP [V(V; η)].

We make the following assumptions throughout the paper,
which ascertain that the estimands will be pathwise differ-
entiable.
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Assumption 1 (Discreteness of variables). The set of vari-
ables V in the PAG are discrete.

Assumption 2 (Positivity of conditional probabilities).
There exists a fixed ε ∈ (0, 0.5) s.t. P (a|b) > ε for any
A,B ⊆ V.

The results can be extended to continuous cases with ad-
ditional conditions such that the corresponding influence
functions are well-defined (Robins, 2000; Neugebauer &
van der Laan, 2007; Dı́az & van der Laan, 2013; Kennedy
et al., 2017; Chernozhukov et al., 2019).

Double/Debiased Machine Learning (DML). DML meth-
ods (Chernozhukov et al., 2018) are based on two ideas: (1)
use a Neyman orthogonal score1 to estimate the target ψ,
and (2) use cross-fitting2 to construct the estimator. DML
estimators guarantee

√
N -consistency even when the esti-

mates η̂ of (possibly high-dimensional) nuisance functions
converge at a much slower N−1/4 rate (‘debiasedness’), al-
lowing the use of a broad array of modern ML methods that
do not meet certain smoothness/complexity restrictions (i.e.,
Donsker class). Neyman-orthogonal scores may coincide
with IFs - a fact we exploit in this paper.

3. IFs for Canonical Expressions
Before deriving IFs for any identifiable causal effects in
PAGs, in this section, we derive IFs for two typical func-
tionals that often appear in the expressions of causal effects,
called here canonical expressions.

3.1. Canonical expression 1

Definition 3 (Canonical expression 1 (CE-1)). Let T =
{B1 < · · · < Bn} be a set of ordered sets3. Let C ⊆ T
be a subset composed of Bi ∈ T and A be a subset of
variables contained in C. A quantity Q is said to be (in
the form of) a canonical expression 1 (CE-1) if it is in the
following form:

Q =
∑
a

∏
Bi∈C

P (bi|preT(bi)). (1)

For concreteness, we show the causal effect Px(y) (for
X = {X1, X2}) in the PAG in Fig. 2a can be expressed as
a CE-1 as follows:

Given a PTO V = {C ≺ B ≺ A ≺ X1 ≺ Z ≺ X2 ≺ Y },
1A Neyman orthogonal score is a function φ satisfying

EP [φ(V;ψ, η∗)] = 0 and ∂
∂η

EP [φ(V;ψ, η)]|η=η∗ = 0, where
η∗ denotes the true nuisance.

2The cross-fitting technique uses distinct sets of samples in
model training and estimator’s evaluation.

3We use W = {B1 < · · · < Bk} to denote a set of
ordered sets W = {B1, · · · ,Bk} or a union of ordered sets
W = ∪ki=1Bi depending on the context.

we have Q[V \X2] is identifiable from Q[V] = P (V) by
Prop. 1 as X2 is a bucket satisfying C(X2) ∩ Ch(X2) =
{X2} and SX2 = {X2}, and we obtain Q[V \ X2] =
Px2

(v \ x2) as follow:

Q[V \X2] =
P (v)

P (x2|pre(x2))
= P (y|pre(y))P (pre(x2)).

For T ≡ V\{X2}, Q[T \X1] is identifiable from Q[T] by
Prop. 1 as X1 is a bucket satisfying C(X1) ∩ Ch(X1) =
{X1} and SX1

= {X1}, and we obtain Q[T \ X1] =
Px1,x2(t\{x1}) as follow:

Q[T \X1] =
Px2(t)

Px2
(x1|preT(x1))

= P (y|pre(y))P (z|pre(z))P (a, b, c)

by the equality Px2
(x1|preT(x1)) = P (x1|preT(x1)). Fi-

nally, the causal effect Px(y) is given as a CE-1 as:

Px(y) =
∑
z,a,b,c

Q[T \X1]. (2)

We derive an IF for functionals in the form of CE-1 as
follows:

Lemma 1 (UIF for CE-1). Let the target estimand ψ = Q
be a CE-1 given by Eq. (1) in Def. 3. Let Y ≡ C\A,
and X ≡ T \ C ≡ {Bj1 < · · · < Bjm} where
Bjs ∈ T. Let C be partitioned with respect to X as
C =

⋃m
k=0 Ck, where Ck ≡ {Br ∈ C : jk < r <

jk+1} ≡ {Bkmin < · · · < Bkmax} with j0 ≡ 0 and
jm+1 ≡ n + 1. Let Pπ be a distribution over T given by
Pπ ≡ Ix(X)

∏
Bi∈C P (Bi|preT(Bi)). Then, V(T; η =

(ω,θ)) in the following is a UIF for ψ:

V(T; η = (ω,θ)) = θ0,1 +

m∑
k=1

Ck 6=∅

ωk (θk,1 − θk,2) , (3)

where ω ≡ {ωk| Ck 6= ∅, k ∈ {1, · · · ,m}} and θ ≡
{θ0,1} ∪ {(θk,1, θk,2)| Ck 6= ∅, k ∈ {1, · · · ,m}} are
nuisances given by

ωk ≡
k∏
r=1

Ibjr (Bjr )

P (Bjr |preT(Bjr ))
,

θk,1 ≡ EPπ [Iy(Y)|Bkmax , preT(Bkmax)] ,

θk,2 ≡ EPπ [Iy(Y)|preT(Bkmin)] ,

where θ0,1 = EPπ [Iy(Y)] if C0 = ∅.

For concreteness, we apply Lemma 1 to derive a UIF for
ψ ≡ Px1,x2(y) in Fig. 2a which is identified as a CE-1 given
in Eq. (2).
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Illustration 1 (UIF for Px1,x2
(y) in Fig. 2a). Let T =

{C ≺ B ≺ A ≺ X1 ≺ Z ≺ X2 ≺ Y }, C = {C ≺
B ≺ A ≺ Z ≺ Y }, and X = {X1 ≺ X2}. We have
C0 = {C ≺ B ≺ A}, C1 = {Z}, and C2 = {Y }. Then
Lemma 1 gives a UIF for ψ as

VPx(y) = θ0,1 + ω1 (θ1,1 − θ1,2) + ω2 (θ2,1 − θ2,2) , (4)

where

ω1 = Ix1(X1)/P (X1|pre(X1))

ω2 = Ix1,x2(X1, X2)/P (X1|pre(X1))P (X2|pre(X2)),

and for

Pπ ≡ Ix1,x2
(X1, X2)P (A,B,C)P (Z|pre(Z))P (Y |pre(Y )),

θ0,1 = EPπ [Iy(Y )|pre(X1)], θ1,1 = EPπ [Iy(Y )|pre(X2)],
θ1,2 = EPπ [Iy(Y )|pre(Z)]; and θ2,1 = EPπ [Iy(Y )|T] =
Iy(Y ) and θ2,2 = EPπ [Iy(Y )|pre(Y )].

3.2. Canonical expression 2

Definition 4 (Canonical expression 2 (CE-2)). Let Q1

and Q2 be two CE-1s, then the quantity Q =∑
z (Q1 ×Q2) for some Z ⊆ V is said to be (in the form

of) a canonical expression 2 (CE-2).

A broad class of causal effects are identified as a CE-2,
including all joint interventional distributions (Px(v)) when
X is singleton (Jaber et al., 2018b, Thm. 1), as well as in
the following scenario which follows from Prop. 1:
Corollary 1. Let a PTO in PAG G over V be B1 ≺ · · · ≺
Bm. Let X,Y ⊂ V with X being a bucket. If C(X) ∩
Ch(X) ⊆ X, then Px(y) is identifiable and given by

Px(y) =
∑

v\(x∪y)

QV\SX
×QSX\X, (5)

where QV\SX
≡
∏

Bi⊆V\SX
P (bi|pre(bi)), QSX\X ≡∑

x

∏
Bi⊆SX

P (bi|pre(bi)), and SX =
⋃
X∈X SX with

SX being the DC-component of X .

Eq. (5) is a CE-2 where QV\SX
and QSX\X are CE-1s. As

a concrete example, consider the PAG in Fig. 2b with a PTO
V = {C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5}. Since
X is a bucket and satisfies C(X) ∩ Ch(X) = {X} with
C(X) = {X,C, Y1, Y4, Y3} and Ch(X) = {X,Y2}, the
causal effectPx(y) where Y = {Y1, · · · , Y5} is identifiable
by Coro. 1 and given by

Px(y) =
∑
c

QV\SXQSX\X , (6)

where SX = {X,Y1, Y3, Y4}, V\SX = {C, Y2, Y5},
QV\SX ≡ P (y5|pre(y5))P (y2|pre(y2))P (c), and
QSX\X ≡

∑
x′ P (y3, y4|y1, y2, x

′, c)P (y1, x
′|c).

We derive an IF for CE-2 as follows:

A

B C

X1 Z

X2

Y

vv

v

v
v

(a)

C Y1

X

Y2 Y3

Y4 Y5

v

v

v

v
v

(b)

Figure 2: Example PAGs. Causal effects Px(y) are identifi-
able and given by (a) CE-1, (b) CE-2.

Lemma 2 (UIF for CE-2). Let the target estimand ψ = Q
be a CE-2 given in Def. 4. Let Vi be a UIF for the CE-1 Qi
given in Lemma 1 and µi ≡ EP [Vi] for i ∈ {1, 2}. Then,
V(V; η) below is a UIF for ψ:

V(V; η) =
∑
z

(V1µ2 + (V2 − µ2)µ1). (7)

Lemma 2 provides a UIF for any causal effects that are
identifiable by Coro. 1. For a concrete example, we will
use Lemma 2 to derive a UIF for ψ ≡ Px(y) in Fig. 2b
identified by Coro. 1 as given in Eq. (6).

Illustration 2 (UIF for Px(y) in Fig. 2b). A UIF for Px(y)
in Eq. (6) is given by Lemma 2 as

VPx(y) =
∑
c

(
VV\SX

µSX\X + (VSX\X − µSX\X)µV\SX

)
,

(8)

where VV\SX
is a UIF for QV\SX and, by Lemma 1, is

given with V = {C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5} as

VV\SX
= θa0,1 + ωa1 (θa1,1 − θa1,2) + ωa2 (θa2,1 − θa2,2),

where

ωa1 = Ix,y1(X,Y1)/P (X|C)P (Y1|X,C)

ωa2 = ωa1 × Iy3,y4(Y3, Y4)/ (P (Y3|pre(Y3))P (Y4|pre(Y4))) ,

and for

Pπa ≡ Ix,y1,y3,y4(X,Y1, Y3, Y4)P (C)

× P (Y2|pre(Y2))P (Y5|pre(Y5)),

and Ia ≡ Ic,y2,y5(C, Y2, Y5), θa0,1 = EPπa [Ia|C], θa1,1 =
EPπa [Ia|Y2, pre(Y2)], θa1,2 = EPπa [Ia|pre(Y2)], θa2,1 = Ia,
and θa2,2 = EPπa [Ia|pre(Y5)].

Also, VSX\X is a UIF for QSX\X given by Lemma 1 as

VSX\X = θb0,1 + ωb1(θb1,1 − θb1,2) + ωb2(θb2,1 − θb2,2),
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where

ωb1 = Ic(C)/P (C)

ωb2 = ωb1 × Iy2(Y2)/P (Y2|pre(Y2)),

and for

Pπb ≡ Ic,y2(C, Y2)P (Y3, Y4|pre(Y3))P (X,Y1|C),

and Ib ≡ Iy1,y3,y4(Y1, Y3, Y4), θb0,1 = EP
πb

[Ib], θb1,1 =

EP
πb

[Ib|Y1, pre(Y1)], θb1,2 = EP
πb

[Ib|pre(X)], θb2,1 = Ib,
and θb2,2 = EPπ2 [Ib|pre(Y3)].

Finally µV\SX
≡ EP [VV\SX

], and µSX\X ≡ EP [VSX\X].
Refer Appendix A for derivation details.

4. IFs for Causal Estimands
In this section, we derive IFs for any identifiable causal ef-
fects in PAGs, armed with IFs for the canonical expressions
discussed in the previous section. We develop a complete
algorithm for deriving IFs by recursively deriving IFs of
C-factors Q[·] inspired by IDP algorithm (Jaber et al., 2019)
which recursively identifies C-factors by repeated applica-
tion of Prop. 1 or 2. We will first develop basic results for
deriving IFs of C-factors corresponding to Prop. 1 and 2.

Prop. 1 computesQ [T\X] in terms of givenQ [T]. We first
rewrite Prop. 1 in a form more amenable for the purpose of
deriving IFs:

Lemma 3. Let G be a PAG over V, T = ∪mi=1Bi be the
union of a set of buckets, and X ⊆ T be a bucket. Given
Q[T] and a PTO B1 ≺ · · · ≺ Bm with respect to G(T),
Q [T\X] is identifiable if and only if C(X) ∩ Ch(X) ⊆ X
in G(T). When Q [T\X] is identifiable, letting SX =⋃
X∈X SX with SX being the DC-component of X in

G(T), then SX consists of a union of buckets. Denot-
ing SX = {Bj1 , · · · ,Bjp} and T\SX = {Bi1 , · · · ,Biq},
Q [T\X] is given by

Q [T\X] = QT\SX
×QSX\X, (9)

where QT\SX
≡
∏

Bir∈T\SX
Pv\t(bir |preT(bir )), and

QSX\X ≡
∑

x

∏
Bjs∈SX

Pv\t(bjs |preT(bjs)).

For any W ⊆ V, we will use φQ[W] to denote an IF for
the C-factor Q[W], VQ[W] the corresponding UIF, and
µQ[W] ≡ EP [VQ[W]]. We derive an IF for Q [T\X] that is
identified by Lemma 3 in terms of VQ[T] as follows:

Lemma 4 (IF of C-factors). Suppose ψ ≡ Q [T\X] is
identifiable via Lemma 3 and given by Eq. (9). Then, given
VQ[T], V ≡ VQ[T\X] below is a UIF for ψ:

V = VSX\XµVT\SX
+ (VT\SX

− µVT\SX
)µSX\X, (10)

Algorithm 1 IFP(x,y, G(V), P )

1: Input: Two disjoint sets X,Y ⊆ V; A PAG G over V;
A distribution P (v).

2: Output: Expression for UIF VPx(y) or FAIL.
3: Let D = An(Y)G(V\X).
4: VPx(y) =

∑
d\y DERIVEUIF

(
D,V, P (V),VQ[V] = Iv(V)

)
5: function DERIVEUIF (C,T, Q = Q [T] ,V = VQ)
6: if C = ∅, then return 1.
7: if C = T, then return V .

{B denotes a bucket in G(T); C(B) the PC-
component of B in G(T), andR(·) ≡ RC

(·).}
8: if ∃B ⊆ T\C s.t. C(B) ∩ Ch(B) ⊆ B, then
9: Compute Q [T\B] from Q via Lemma 3.

10: if Q [T\B] is expressible as CE-1,
then, Compute VQ[T\B] via Lemma 1.

11: else if Q [T\B] is expressible as CE-2,
then, Compute VQ[T\B] via Lemma 2.

12: else, Compute VQ[T\B] via Lemma 4.
13: return DERIVEUIF

(
C,T\B, Q [T\B] ,VQ[T\B]

)
.

14: else if ∃B ⊆ C s.t. RB 6= C, then
15: return (a) + (b)− (c), where

{ Let UIF(W) = DERIVEUIF(W,T, Q,V); IF(W) =

UIF(W)− EP [UIF(W)]; ID(W) = EP [UIF(W)]}
(a) =

UIF(RB)·ID(RC\RB
)

ID(RB∩RC\RB
)

; (b) =
IF(RC\RB

)·ID(RB)

ID(RB∩RC\RB
)

;

(c) =
ID(RB)·ID(RC\RB

)

ID(RB∩RC\RB
)
·

IF(RB∩RC\RB
)

ID(RB∩RC\RB
)
.

16: else return FAIL.
17: end function

where (VSX\X,VT\SX
) are UIFs for (QSX\X,QT\SX

) re-
spectively, given by

VSX\X ≡
∑
x

(Vj1
p∏
k=2

µjk +

p∑
k=2

φjk

p∏
`=1, 6̀=k

µj`),

VT\SX
≡ Vi1

q∏
r=2

µir +

q∑
r=2

φir

q∏
`=1, 6̀=r

µi` ,

where, for c ∈ {1, 2, · · · ,m}, Vc ≡
∑

t\{bc,preT(bc)} VQ[T]∑
t\preT(bc)

µQ[T]
−∑

t\{bc,preT(bc)} µQ[T]∑
t\preT(bc)

µQ[T]
·
∑

t\preT(bc)
φQ[T]∑

t\preT(bc)
µQ[T]

, µc ≡ EP [Vc], and

φc ≡ Vc − µc.

The following lemma derives an IF for the C-factor Q[C]
from the IFs of C-factors over some subsets of C, corre-
sponding to the C-factor decomposition in Prop. 2.

Lemma 5 (Decomposition of IFs). For A ⊆ C ⊆ V,

VQ[C] = (a) + (b)− (c), (11)

where (a) =
VQ[RA]·µQ[RC\RA

]

µQ[RA∩RC\RA
]

, (b) =
µQ[RA]·φQ[RC\RA

]

µQ[RA∩RC\RA
]

,

(c) =
µQ[RA]·µQ[RC\RA

]

µQ[RA∩RC\RA
]
·
φQ[RA∩RC\RA

]

µQ[RA∩RC\RA
]

withR(·) = RC
(·).
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Finally, we develop a systematic procedure named IFP (In-
fluence Function for PAGs), given in Algo. 1, that derives
a UIF for any identifiable causal effect in PAGs. IFP recur-
sively applies Lemmas 4 and 5 until all neededC-factors are
in CE-1 or CE-2 form, whose UIFs are given by Lemma 1
and 2, respectively, initially equipped with a UIF for P (v),
VQ[V] = Iv(V).

Theorem 1 (Completeness of IFP). Procedure IFP
(Algo. 1) derives a UIF for any identifiable Px(y) in a
PAG G over V in O(|V|4) time, where |V| is the number
of variables. IFP returns FAIL if Px(y) is not identifiable.

For concreteness, we demonstrate the application of
IFP by deriving a UIF for ψ = Px(y), where Y ≡
{Y1, Y2, Y3, Y4}, in the PAG in Fig. 1.
Illustration 3 (UIF for Px(y) in Fig. 1 by IFP).
We start with D ≡ Y (Line 3) and VPx(y) =
DERIVEUIF(D,V, P (V),VQ[V] = Iv(V)) (Line 4).
DERIVEUIF() reaches line 14, where B0 ≡ {Y2} satisfies
the condition withRB0

= {Y2, Y3}, RD\RB0
= {Y1, Y4},

and RB0
∩ RD\RB0

= ∅. Then, line 15 gives (using
ID(∅) = 1 and IF(∅) = 0)

VPx(y) = UIF(RB0) · ID(RD\RB0
) + IF(RD\RB0

) · ID(RB0).

Next we show a sketch derivation of UIF(RB0
) and

UIF(RD\RB0
). Refer Appendix A for details. First,

UIF(RB0
) = DERIVEUIF(RB0

,V, P (V), Iv(V)).

UIF(RB0
) is derived by repeating Lines 8, 9, 10,

and 13 as follows: Starting with B = Y4 at
Line 8, let T = V \ B = {Y1, R,X, Y2, Y3},
compute Q[T] (Line 9) and VQ[T] (Line 10), call
DERIVEUIF(RB0 ,T, Q[T],VQ[T]) (Line 13). Then repeat
the above by calling DERIVEUIF(RB0

,T, Q[T],VQ[T])
three more times with B = Y1 at line 8, T =
{R,X, Y2, Y3}; B = X at line 8, T = {R, Y2, Y3};
and B = R at line 8, T = {Y2, Y3}. Finally we ob-
tain Q[RB0 ] = Q[Y2, Y3] =

∑
r P (y2, y3|x, r)P (r), and

UIF(RB0) = VQ[RB0
] is given by Lemma 1 as

UIF(RB0
) = θa0,1 + ωa1 (θa1,1 − θa2,1)

where ωa1 = Ix(X)
P (X|R) ; and for Pπa =

Ix(X)P (Y2, Y3|X,R)P (R), θa0,1 = EPπa [Ia|R],
θa1,1 = Ia, and θa1,2 = EPπa [Ia|X,R] where
Ia ≡ Iy2,y3(Y2, Y3).

Next, with a similar matter,

UIF(RD\RB0
) = DERIVEUIF(RD\RB0

,V, P (V), Iv(V))

= θb0,1 + ωb1(θb1,1 − θb2,1),

where ωb1 =
Ir,x,y2,y3 (R,X,Y2,Y3)

P (R,X,Y2,Y3|Y1) ; and for Pπb =

Ir,x,y2,y3(R,X, Y2, Y3)P (Y4|pre(Y4))P (Y1), θb0,1 =

EP
πb

[Ib|Y1], θa1,1 = Ib, and θb1,2 = EP
πb

[Ib|pre(Y4)]

where Ib ≡ Iy1,y4(Y1, Y4).

For reference, Px(y) is identified as

Px(y) = Q[Y] = Q[Y2, Y3]Q[Y1, Y4], (12)

where Q[Y2, Y3] =
∑
r P (y2, y3|x, r)P (r) and

Q[Y1, Y4] = P (y4|pre(y4))P (y1).

5. DML Estimators
In this section, we construct DML estimators for causal
effects Px(y) from finite samples D = {V(i)}Ni=1 based on
the UIF VPx(y)(V; η) derived by IFP algorithm. The result-
ing DML estimators have nice properties of debiasedness,
as well as doubly robustness in the sense that an estimator
TN composed of the nuisances η = (η0, η1) is said to be
doubly robust if TN is consistent whenever either η0 or η1

are consistent.

First we show that IFs derived by IFP are a Neyman orthog-
onal score, which is needed for the DML method.

Proposition 3. Let Px(y) be identified as Px(y) = ψ ≡
Ψ(P ). Then, the IF φPx(y) = VPx(y) − EP [VPx(y)], where
VPx(y) is derived by Algo. 1 IFP, is a Neyman orthogonal
score for ψ.

A DML estimator for Px(y), named DML-IDP (DML esti-
mator for IDentifiable causal effects in PAGs), is constructed
according to (Chernozhukov et al., 2018) as follows:

Definition 5 (Double/Debiased Machine Learning esti-
mator for identifiable causal effects (DML-IDP)). Let
VPx(y)(V; η) be the UIF given by Algo. 1 IFP for the target
functional ψ = Px(y). Let D = {V(i)}Ni=1 denote samples
drawn from P (v). Then, the DML-IDP estimator TN for
ψ = Px(y) is constructed as follows:
(1) Split D randomly into two halves: D0 and D1;
(2) For p ∈ {0, 1}, use Dp to construct models for η̂p, the
nuisance functions estimated from samples Dp; and
(3) TN ≡

∑
p∈{0,1}

2
N

∑
V(i)∈Dp VPx(y)(V(i), η̂1−p).

To witness the robustness properties of DML-IDP, we first
note that the nuisances in VPx(y)(V; η) returned by IFP
consist of the nuisances of UIFs for CE-1:

Lemma 6 (Nuisances of UIFs). The UIF VPx(y)(V; η) re-
turned by Algo. 1 IFP is an arithmetic combination (ra-
tio, multiplication, and marginalization) of UIFs for func-
tionals in the form of CE-1, denoted as VPx(y)(V; η =

{ωj ,θj}`j=1) = A
(
{Vj(ωj ,θj)}`j=1

)
where Vj(ωj ,θj)

denotes a UIF given by Lemma 1 with ωj = {ωj,k}
mj
k=1 and

θj = {θj,0,1} ∪ {θj,k,1, θj,k,2}
mj
k=1 being nuisances for Vj ,

and A(·) an arithmetic function.

For example, the UIF for Px(y) in Fig. 2b given by Eq. (8)
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is a function of UIFs VV\SX
and VSX\X both of which are

given by Lemma 1 as shown in Illustration 2.

We show that DML-IDP estimators attain debiasedness and
doubly robustness, the main result of this section:

Theorem 2 (Properties of DML-IDP). Let TN be the
DML-IDP estimator of Px(y) defined in Def. 5 constructed
based on the UIF VPx(y)(V; η = {ωj ,θj}`j=1) where
ωj = {ωj,k}

mj
k=1 and θj = {θj,0,1}∪{θj,k,1, θj,k,2}

mj
k=1 are

nuisances as specified in Lemma 6. Suppose TN is bounded
from above by some constant C ∈ R; i.e., TN < C < ∞.
Then,

1. Debiasedness: TN is
√
N -consistent and asymptoti-

cally normal if estimates for all nuisances converge to the
true nuisances at least at rate oP (N−1/4).

2. Doubly robustness: TN is consistent if, for every
j = 1, · · · , ` and k = 1, · · · ,mj , either estimates ω̂j,k
or (θ̂j,k−1,1, θ̂j,k,2) converge to the true nuisances at rate
oP (1).

By Thm. 2, DML-IDP estimators attain root-N consistency
even when nuisances converge much slower at fourth-root-
N rate or when some nuisances are misspecified. These
properties allow one to employ flexible ML models (e.g.,
neural nets) that do not meet certain complexity restrictions
(e.g., Donsker condition) for estimating nuisances in es-
timating causal effects (Klaassen, 1987; Robins & Ritov,
1997; Robins et al., 2008; Zheng & van der Laan, 2011;
Chernozhukov et al., 2018). In contrast, plug-in estima-
tors may fail to achieve

√
N -consistency if estimates for

nuisances converges at oP (N−1/4) and are vulnerable to
model misspecification.

For concreteness, we compare DML-IDP with plug-in esti-
mators in the following examples (Refer to Appendix A for
detailed derivations).

Illustration 4 (DML-IDP vs. Plug-in (PI) estimators for
Px(y) in Fig. (2a,2b,1)). By Thm. 2, DML-IDP estimator
for Px1,x2

(y) in Fig. (2a) is consistent if estimates for either
the following converges:

{P (vi|pre(vi))}Vi∈{X1,X2} ∨ {P (vi|pre(vi))}Vi∈{X1,Y }

∨ {P (vi|pre(vi))}Vi∈{Z,Y },

while PI using Eq. (2) is consistent if estimates for
{P (y|pre(y)), P (z|pre(z)), P (a|b, c), P (b|c), P (c)} con-
verge, where the variables are ordered as V = {C ≺
B ≺ A ≺ X1 ≺ Z ≺ X2 ≺ Y }.

DML-IDP estimator for Px(y1, y2, y3, y4, y5) in Fig. (2b)
is consistent if estimates

{P (vi|pre(vi)}Vi∈{X,Y1,Y3,Y4} ∨ {P (vi|pre(vi)}Vi∈{X,Y1,Y5}

∨ {P (vi|pre(vi)}Vi∈{Y2,Y5},

and

{P (vi|pre(vi))}Vi∈{C,Y2} ∨ {P (vi|pre(vi))}Vi∈{C,Y3,Y4}

∨ {P (vi|pre(vi)}Vi∈{X,Y1,Y3,Y4}

converge, while PI using Eq. (6) is consistent if estimates
for {P (vi|pre(vi))}Vi∈V converge, where the order over V
is C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5.

DML-IDP for Px(y1, y2, y3, y4) in Fig. (1) is consistent if
estimates for

{P (x|r)} ∨ {P (y2|x, r), P (y3|y2, x, r)},

and

{P (vi|pre(vi))}Vi∈{R,X,Y2,Y3} ∨ {P (y4|pre(y4))}

converge, while PI using Eq. (12) is consistent if estimates
for

{P (y2|x, r), P (y3|y2, x, r), P (r), P (y4|pre(y4)), P (y1)}

converge, where the order over V is Y1 ≺ R ≺ X ≺ Y2 ≺
Y3 ≺ Y4.

6. Experiments
6.1. Experiments Setup

We evaluate DML-IDP for estimating Px(y) in
Fig. (2a,2b,1). We specify an SCM M for each PAG and
generate datasets D from M . Details of the models and
the data generating process are described in Appendix C.
Throughout the experiments, the target causal effect is
µ(x) ≡ Px(Y = 1), with ground-truth pre-computed. We
compare DML-IDP with plug-in estimator (PI), the only
available general-purpose estimator working for arbitrary
causal functionals. Nuisance functions are estimated using
standard techniques available in the literature (refer to
Appendix C for details), e.g., conditional probabilities are
estimated using a gradient boosting model XGBoost (Chen
& Guestrin, 2016), which is known to be flexible.

Accuracy Measure Given a data set D with N sam-
ples, let µ̂DML(x) and µ̂PI(x) be the estimated Px(Y =
1) using DML-IDP and PI estimators. For each µ̂ ∈
{µ̂DML(x), µ̂PI(x)}, we compute the average absolute er-
ror (AAE) as |µ(x)− µ̂(x)| averaged over x. We generate
100 datasets for each sample size N . We call the mean of
the 100 AAEs the mean average absolute error, or MAAE,
and its plot vs. the sample size N , the MAAE plot.

Simulation Strategy To show debiasedness (‘DB’) prop-
erty, we add a ‘converging noise’ ε, decaying at a N−α

rate (i.e., ε ∼ Normal(N−α, N−2α)) for α = 1/4, to the
estimated nuisance values to control the convergence rate
of the estimators for nuisances, following the technique in
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Figure 3: MAAE Plots for (Top) Fig. 2a, (Middle) Fig. 2b, and (Bottom) Fig. 1, under scenarios ‘Debiasedness’ (‘DB’) and
‘Doubly Robustness’ (‘DR-1’ and ‘DR-2’). The solid lines represent MAAEs and shades represent one standard deviation.

(Kennedy, 2020b). We simulate a misspecified model for
nuisance functions of the form P (vi|·) by replacing sam-
ples for Vi with randomly generated samples V ′i , training
the model P̂ (v′i|·), and using this misspecified nuisance
in computing the target functional, following (Kang et al.,
2007).

6.2. Experimental Results

Debiasedness (DB) The MAAE plots for the debiasedness
experiments for Fig. (2a,2b,1) are shown in the first col-
umn of Fig. 3. DML-IDP shows the debiasedness property
against the converging noise decaying at N−1/4 rates, while
PI converges much slower for all three examples.

Doubly robustness (DR) The MAAE plots for the dou-
bly robustness experiments are shown in the 2nd and 3rd
columns of Fig. 3. Two misspecification scenarios are simu-
lated for each example based on the results in Illustration 4.
For Fig. 2a, nuisances {P̂ (vi|pre(vi))} for Vi ∈ {Y, Z} in
‘DR-1’ and for Vi ∈ {Z,X2} in ‘DR-2’ are misspecified.
For Fig. 2b, nuisances {P̂ (vi|pre(vi))} for Vi ∈ {Y2, Y5}
in ‘DR-1’ and for Vi ∈ {X,Y1, Y3, Y4} in ‘DR-2’ are mis-
specified. For Fig. 1, nuisances P̂ (y4|pre(y4)) in ‘DR-1’
and {P̂ (y2|x, r), P̂ (y3|y2, x, r)} in ‘DR-2’ are misspeci-
fied. The results in all the scenarios support the doubly
robustness of DML-IDP, whereas PI may fail to converge
when misspecification is present.

7. Conclusions
We derived influence functions (Algo. 1, Thm. 1) and de-
veloped DML estimators named DML-IDP (Def. 5) for any
causal effects identifiable given a Markov equivalence class
of causal graphs represented as a PAG. DML-IDP estima-
tors are guaranteed to have the property of debiasedness
and doubly robustness (Thm. 2). Our experimental results
demonstrate that these estimators are significantly more ro-
bust against model misspecification and slow convergence
rate in learning nuisances compared to the only alternative
estimator available in the literature, a plug-in estimator. We
hope the new machinery developed here will allow more
reliable and robust causal effect estimates by integrating
modern ML methods that are capable of handling complex,
high-dimensional data with causal learning and identifica-
tion theory, paving the way towards a robust, data-driven,
and end-to-end solution to causal effect estimation.
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Appendix – Estimating Identifiable Causal Effects on Markov Equivalence
Class through Double Machine Learning

A. Details
A.1. Background Results

Partial topological order (PTO) is a useful notion in PAGs which specifies a topological order over buckets and defines a
partial order over the variables that is valid in all the causal graphs in the MEC represented by the PAG. An algorithm for
assigning a valid PTO in a PAG has been developed in (Jaber et al., 2018a), presented in the following as Algo. A.1 for
convenience.

Algorithm A.1 PTO(G(V)) (Jaber et al., 2018a)

1: Input: A PAG G over V,
2: Output: Partial topological order (PTO) over V in G.
3: Create a singleton bucket Bi such that Bi = Vi ∈ V.
4: Merge buckets Bi and Bj if there is a circle edge between them; i.e., Bi 3 X ◦−◦ Y ∈ Bj .
5: while A set of buckets B is not empty do
6: Extract Bi with only arrowheads incident on it; and
7: Remove edges between Bi and other buckets.
8: end while
9: Assign a partial order B1 ≺ · · ·Bm in reverse order of bucket extraction; i.e., B1 is the last extracted bucket.

A complete algorithm for identifying causal effects in PAGs called IDP has been developed in (Jaber et al., 2019), presented
in the following for convenience.

Algorithm A.2 IDP(x,y, G(V), P ) (Jaber et al., 2019)

1: Input: Two disjoint sets X,Y ⊆ V; A PAG G over V; A distribution P (v),
2: Output: Expression for Px(y) or FAIL,
3: Let D = An(Y)G(V\X).
4: Px(y) =

∑
d\y IDENTIFY (D,V, P (V))

5: function IDENTIFY (C,T, Q = Q [T])
6: if C = ∅, then return 1.
7: if C = T, then return Q.

{In G(T), let B denote a bucket, C(B) denote the PC-component of B, andR(·) = RC
(·) }

8: if ∃B ⊆ T\C s.t. C(B) ∩ Ch(B) ⊆ B, then
9: Compute Q [T\B] from Q via Prop. 1.

10: return IDENTIFY (C,T\B, Q [T\B]).
11: else if ∃B ⊆ C s.t. RB 6= C, then
12: return IDENTIFY(RB,T,Q)·IDENTIFY(RC\RB

,T,Q)
IDENTIFY(RB∩RC\RB

,T,Q)
.

13: else return FAIL.
14: end function

A.2. Detailed Description of Illustrations

In this section, we provide a detailed description for Illustrations (2,3,4). For convenience, we restate our proposed Alg. 1
IFP for deriving UIFs of causal effect in PAGs as Algo. A.3.

Illustration 2 (UIF for Px(y) in Fig. 2b). We will use Lemma 2 to derive a UIF for ψ ≡ Px(y) in Fig. 2b identified by
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Algorithm A.3 IFP(x,y, G(V), P ) (Restated Alg. 1)

1: Input: Two disjoint sets X,Y ⊆ V; A PAG G over V; A distribution P (v).
2: Output: Expression for UIF VPx(y) or FAIL.
3: Let D = An(Y)G(V\X).
4: VPx(y) =

∑
d\y DERIVEUIF

(
D,V, P (V),VQ[V] = Iv(V)

)
5: function DERIVEUIF (C,T, Q = Q [T] ,V = VQ)
6: if C = ∅, then return 1.
7: if C = T, then return V .

{B denotes a bucket in G(T); C(B) the PC-component of B in G(T), andR(·) ≡ RC
(·).}

8: if ∃B ⊆ T\C s.t. C(B) ∩ Ch(B) ⊆ B, then
9: Compute Q [T\B] from Q via Lemma 3.

10: if Q [T\B] is expressible as CE-1,
then, Compute VQ[T\B] via Lemma 1.

11: else if Q [T\B] is expressible as CE-2,
then, Compute VQ[T\B] via Lemma 2.

12: else, Compute VQ[T\B] via Lemma 4.
13: return DERIVEUIF

(
C,T\B, Q [T\B] ,VQ[T\B]

)
.

14: else if ∃B ⊆ C s.t. RB 6= C, then
15: return (a) + (b)− (c), where

{ Let UIF(W) = DERIVEUIF(W,T, Q,V); IF(W) = UIF(W)− EP [UIF(W)]; ID(W) = EP [UIF(W)]}
(a) =

UIF(RB)·ID(RC\RB
)

ID(RB∩RC\RB
)

; (b) =
IF(RC\RB

)·ID(RB)

ID(RB∩RC\RB
)

; (c) =
ID(RB)·ID(RC\RB

)

ID(RB∩RC\RB
)
·

IF(RB∩RC\RB
)

ID(RB∩RC\RB
)
.

16: else return FAIL.
17: end function

Coro. 1 as given in Eq. (6). The PAG in Fig. 2b has a PTO V = {C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5}. By Coro. 1,

Px(y) = QV\SX
×QSX\X,

where, for SX = {X,Y1, Y4, Y3}, V\SX = {C, Y2, Y5}, QV\SX
= P (y5|pre(y5))P (y2|pre(y2))P (c) and QSX\X =∑

x′ P (y3, y4|y1, y2, x
′, c)P (y1, x

′|c). Then, a UIF for Px(y) in Eq. (6) is given by Lemma 2 as

VPx(y) =
∑
c

(
VV\SX

µSX\X + (VSX\X − µSX\X)µV\SX

)
, (A.1)

where VV\SX
, VSX\X are UIFs for QV\SX

and QSX\X. QV\SX
is a CE-1, and hence, VV\SX

is given by Lemma 1 as
follows.

Let T = {B1 ≺ · · · ≺ B7} = {C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5}. That is, B1 = C,B2 = X, · · · ,B7 = Y5. Let
C = {B1 ≺ B4 ≺ B7}, X = {B2 ≺ B3 ≺ B5 ≺ B6}. Then, C0 = {B1} = {C}, C1 = ∅, C2 = {B4} = {Y2},
C3 = ∅, C4 = {B7} = {Y5}. Then,

VV\SX
= θa0,1 +

4∑
k=1

Ck 6=∅

ωak(θak,1 − θak,2) = θa0,1 + ωa2 (θa2,1 − θa2,2) + ωa4 (θa4,1 − θa4,2),

where, for Pπa ≡ Ix,y1,y3,y4(X,Y1, Y3, Y4)P (C)P (Y2|pre(Y2))P (Y5|pre(Y5)) and Ia ≡ Ic,y2,y5(C, Y2, Y5),
θa0,1 = EPπa [Ia|B0max

, preT(B0max
)] = EPπa [Ia|C] = Ic(C)P (y5|x, y1, y2, y3, y4, C), θa2,1 =

EPπa [Ia|B2max
, preT(B2max

)] = EPπa [Ia|Y2, pre(Y2)] = Ic,y2(C, Y2)P (y5|y3, y4, pre(Y3)), θa2,2 =
EPπa [Ia|preT(B2min)] = EPπa [Ia|pre(Y2)] = Ic(C)P (y5|y2, y3, y4, pre(Y2)), θa4,1 = EPπa [Ia|B4max

, preT(B4max
)] =

EPπa [Ia|Y5, pre(Y5)] = Ia, θa4,2 = EPπa [Ia|preT(B4min)] = EPπa [Ia|pre(Y5)] = Ic,y2(C, Y2)P (y5|pre(Y5)). Also,

ωa2 =
Ix,y1 (X,Y1)

P (X|C)P (Y1|X,C) and ωa4 = ωa2 ×
Iy3,y4 (Y3,Y4)

P (Y3|pre(Y3))P (Y4|pre(Y4)) . Without loss of generality, we set θak/2,1 ← θak,1,
θak/2,2 ← θak,2, and ωak/2 ← ωak for k ∈ {2, 4}.

We now derive the UIF VSX\X by Lemma 1. Let C = {B2 ≺ B3 ≺ B5 ≺ B6}, X = {B1 ≺ B4}. Then, C0 = ∅,



Estimating Identifiable Causal Effects on Markov Equivalence Class through DML

C1 = {B2,B3} = {X,Y1}, C2 = {B5,B6} = {Y3, Y4}. Then,

VSX\X = θb0,1 + ωb1(θb1,1 − θb1,2) + ωb2(θb2,1 − θb2,2),

where, for Pπb ≡ Ic,y2(C, Y2)P (Y3, Y4|pre(Y3))P (X,Y1|C) and Ib ≡ Iy1,y3,y4(Y1, Y3, Y4),
θb0,1 = EP

πb
[Ib|B0max

, preT(B0max
)] = EP

πb
[Ib] =

∑
x′ P (y3, y4|y2, y1, x

′, C)P (x′, y1|c), θb1,1 =

EP
πb

[Ib|B1max , preT(B1max)] = EP
πb

[Ib|C,X, Y1] = P (y3, y4|y2, pre(Y2))Iy1(Y1), θb1,2 = EP
πb

[Ib|preT(B1min)] =

EP
πb

[Ib|C] =
∑
x′ P (y3, y4|y2, y1, x

′, C)P (x, y1|C), θb2,1 = EP
πb

[Ib|B2max , preT(B2max)] = EP
πb

[Ib|Y4, pre(Y4)] =

Iy1,y3,y3(Y1, Y3, Y4), θb2,2 = EP
πb

[Ib|preT(B2min
)] = EP

πb
[Ib|pre(Y3)] = P (y3, y4|pre(Y3))Iy1(Y1). Also, ωb1 = Ic(C)

P (C)

and ωb2 = ωb1 ×
Iy2 (Y2)

P (Y2|pre(Y2)) .

Illustration 3 (UIF for Px(y) in Fig. 1 by IFP). We demonstrate the application of IFP by deriving a UIF for ψ = Px(y),
where Y ≡ {Y1, Y2, Y3, Y4}, in the PAG in Fig. 1. We assume a PTO V = {Y1 ≺ R ≺ X ≺ Y2 ≺ Y3 ≺ Y4} in the
following. For reference, Px(y) is identified as

Px(y) = Q[Y] = Q[Y2, Y3]Q[Y1, Y4], (A.2)

where Q[Y2, Y3] =
∑
r P (y2, y3|x, r)P (r) and Q[Y1, Y4] = P (y4|pre(y4))P (y1).

We start with D ≡ Y (Line 3) and VPx(y) = DERIVEUIF(D,V, P (V),VQ[V] = Iv(V)) (Line 4). DERIVEUIF() reaches
line 14, where B0 ≡ {Y2} satisfies the condition with RB0

= {Y2, Y3}, RD\RB0
= {Y1, Y4}, and RB0

∩RD\RB0
= ∅.

Then, line 15 gives (using ID(∅) = 1 and IF(∅) = 0)

VPx(y) = UIF(RB0
) · ID(RD\RB0

) + IF(RD\RB0
) · ID(RB0

).

Next we derive UIF(RB0) = DERIVEUIF(RB0 ,V, P (V), Iv(V)) by repeating Lines 8, 9, 10, and 13 as follows. Starting
with B = Y4 at line 8, let T = V \ B = {Y1, R,X, Y2, Y3}, We compute Q[T] by invoking line 9: for Q[SY4 ] =
P (y4|pre(y4))

Q[T] =
P (v)

Q[SY4
]
��

�
��

∑
y4

Q[SY4
] = P (t),

which is a CE-1 according to Def. 3, with C = T,A = ∅. Then, VQ[T] can be found as It(T) (Line 10). We then call
DERIVEUIF(RB0

,T, Q[T],VQ[T]).

In the 2nd round, with B← {Y1} at line 8, let T← T\{Y1} = {R,X, Y2, Y3}. We compute Q[T] by invoking line 9. For
Q[SY1

] = P (y1, r, x, y2, y3), we have

Q[T] =
P (y1, r, x, y2, y3)

P (y1, r, x, y2, y3)

∑
y1

P (y1, r, x, y2, y3) = P (r, x, y2, y3),

which is a CE-1, with C = {R,X, Y2, Y3}. Then, VQ[T] can be found as It(T) (Line 10). We then call
DERIVEUIF(RB0

,T, Q[T],VQ[T]).

In the 3rd round, with B ← X at line 8, let T ← {R, Y2, Y3}. We compute Q[T] by invoking line line 9. For Q[SX ] =
P (x|r), we have

Q[T] =
P (r, x, y2, y3)

P (x|r)
�
��

��
∑
x

P (x|r) = P (r)P (y2, y3|x, r),

which is a CE-1, with C = {R, Y2, Y3}. Then, VQ[T] can be found at line 10, as VQ[T] = θa0,1 + ωa1 (θa1,1 − θa1,2)

with Pπa = Ix(X)P (R)P (Y2, Y3|X,R), ωa1 = Ix(X)
P (X|R) , θa0,1 = EPπa [Ir,y2,y3(R, Y2, Y3)|R] = Ir(R)P (y2, y3|x,R),

θa1,1 = Ir,y2,y3(R, Y2, Y3), and θa1,2 = EPπa [Ir,y2,y3(R, Y2, Y3)|X,R] = Ir(R)P (y2, y3|X,R),
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In the 4th round, with B ← {R} at line 8, let T ← {Y2, Y3} = RB0
. We compute Q[T] by invoking line line 9. For

Q[SR] = Q[R, Y2, Y3] = P (r)P (y2, y3|x, r), we have

Q[T] = Q[RB0
] =
���

���
���P (r)P (y2, y3|x, r)

P (r)P (y2, y3|x, r)
∑
r

P (r)P (y2, y3|x, r)P (r),

which is a CE-1, with C = {R, Y2, Y3} and A = {R}. Then, VQ[T] can be found at line 10 as

VQ[RB0
] = θa0,1 + ωa1 (θa1,1 − θa1,2),

with Pπa = Ix(X)P (R)P (Y2, Y3|X,R), where ωa1 = Ix(X)
P (X|R) , θa0,1 = EPπa [Iy2,y3(Y2, Y3)|R] = P (y2, y3|x,R), θa1,1 =

Iy2,y3(Y2, Y3), θa1,2 = EPπa [Iy2,y3(Y2, Y3)|X,R] = P (y2, y3|X,R).

Let R ≡ RD\RB0
= {Y1, Y4} for notation convenience. Next we derive UIF(R) = DERIVEUIF(R,V, P (V), Iv(V)).

Starting with B = Y3 at line 8, let T = V \ B = {Y1, R,X, Y2, Y4}, We compute Q[T] by invoking line 9: for
Q[SY3 ] = P (y1, r, x, y2, y3), we have

Q[T] =
P (v)

P (y1, r, x, y2, y3)

∑
y3

P (y1, r, x, y2, y3) = P (y4|pre(y4))P (y1, r, x, y2),

which is a CE-1, with C = {Y1, R,X, Y2, Y4}. Then, VQ[T] can be found at line 10 as VQ[T] = θb0,1 + ωb1(θb1,1 − θb1,2) with

Pπb = Iy3(Y3)P (Y1, R,X, Y2)P (Y4|pre(Y4)), ωb1 =
Iy3 (Y3)

P (Y3|pre(Y3)) , θb1,1 = It(T), θb1,2 = EP
πb

[It(T)|Y3, pre(Y3)] =

P (y4|pre(Y4))It\{y4}(T\{Y4}), θb0,1 = EP
πb

[It(T)|pre(Y3)] = P (y4|y3, pre(Y3))It\{y4}(T\{Y4}). We then call
DERIVEUIF(R,T, Q[T],VQ[T]).

In the 2nd round, with B← {Y2} at line 8, let T← T\{Y2} = {Y1, R,X, Y4}. We compute Q[T] by invoking line 9. For
Q[SY2

] = P (y1, r, x, y2), we have

Q[T] =
P (y4|pre(y4))P (y1, r, x, y2)

P (y1, r, x, y2)

∑
y2

P (y1, r, x, y2) = P (y4|pre(y4))P (y1, r, x),

which is a CE-1, with C = {Y1, R,X, Y4}. Then, VQ[T] can be found at line 10 as VQ[T] = θb0,1 +

ωb1(θb1,1 − θb1,2) with Pπb = Iy2,y3(Y2, Y3)P (Y1, R,X)P (Y4|pre(Y4)), ωb1 =
Iy2,y3 (Y2,Y3)

P (Y2|pre(Y2))P (Y3|pre(Y3)) , θb1,1 =

It(T), θb1,2 = EP
πb

[It(T)|Y3, pre(Y3)] = P (y4|pre(Y4))It\{y4}(Y\{Y4}), θb0,1 = EP
πb

[It(T)|pre(Y2)] =
P (y4|y2, y3, pre(Y2))It\{y4}(Y\{Y4}). We then call DERIVEUIF(R,T, Q[T],VQ[T]).

In the 3rd round, with B ← {X} at line 8, let T ← T\{X} = {Y1, R, Y4}. We compute Q[T] by invoking line 9. For
Q[SX ] = P (y1, r, x), we have

Q[T] =
P (y4|pre(y4))P (y1, r, x)

P (y1, r, x)

∑
x

P (y1, r, x) = P (y4|pre(y4))P (y1, r),

which is a CE-1, with C = {Y1, R, Y4}. Then, VQ[T] can be found at line 10 as VQ[T] = θb0,1 +

ωb1(θb1,1 − θb1,2) with Pπb = Ix,y2,y3(X,Y2, Y3)P (Y1, R)P (Y4|pre(Y4)), ωb1 =
Ix,y2,y3 (X,Y2,Y3)

P (X|pre(X))P (Y2|pre(Y2))P (Y3|pre(Y3)) ,
θb1,1 = It(T), θb1,2 = EP

πb
[It(T)|Y3, pre(Y3)] = P (y4|pre(Y4))It\{y4}(T\{Y4}), θb0,1 = EP

πb
[It(T)|pre(X)] =

P (y4|y2, y3, x, pre(X))It\{y4}(T\{Y4}). We then call DERIVEUIF(R,T, Q[T],VQ[T]).

In the 4th round, with B ← {R} at line 8, let T ← T\{R} = {Y1, Y4}. We compute Q[T] by invoking line 9. For
Q[SR] = P (y1, r), we have

Q[T] =
P (y4|pre(y4))P (y1, r)

P (y1, r)

∑
r

P (y1, r) = P (y4|pre(y4))P (y1),

which is a CE-1, with C = {Y1, Y4}. Then, VQ[T] can be found at line 10 as

VQ[RD\RB0
] = θb0,1 + ωb1(θb1,1 − θb1,2),
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with Pπb = Ir,x,y2,y3(R,X, Y2, Y3)P (Y1)P (Y4|pre(Y4)) and Ib ≡ Iy1,y4(Y1, Y4), ωb1 =
Ir,x,y2,y3 (R,X,Y2,Y3)

P (R|pre(R))P (X|pre(X))P (Y2|pre(Y2))P (Y3|pre(Y3)) , θb0,1 = EP
πb

[Ib|Y1] = P (y4|y2, y3, x, r, pre(R))Iy1(Y1), θb1,1 = Ib,
and θb1,2 = EP

πb
[Ib|pre(Y4)] = P (y4|pre(Y4))Iy1(Y1).

Illustration 4 (DML-IDP vs. Plug-in (PI) estimators for Px(y) in Fig. (2a,2b,1)).
(Fig. 2a). Based on Illustration 1 with PTO V = {C ≺ B ≺ A ≺ X1 ≺ Z ≺ X2 ≺ Y }, we have

VPx(y) = θ0,1 + ω1 (θ1,1 − θ1,2) + ω2 (θ2,1 − θ2,2) ,

where ω1 =
Ix1 (X1)

P (X1|pre(X1)) , ω2 =
Ix1,x2 (X1,X2)

P (X1|pre(X1))P (X2|pre(X2)) ; for Pπ ≡
Ix1,x2

(X1, X2)P (A,B,C)P (Z|pre(Z))P (Y |pre(Y )), θ0,1 = EPπ [Iy(Y )|pre(X1)] =∑
z P (y|x2, z, x1, pre(X1))P (z|x1, pre(X1)), θ1,1 = EPπ [Iy(Y )|pre(X2)] = P (y|x2, pre(X2)), θ1,2 =

EPπ [Iy(Y )|pre(Z)] =
∑
z P (y|x2, z, pre(Z))P (z|pre(Z)); and θ2,1 = EPπ [Iy(Y )|T] = Iy(Y ) and

θ2,2 = EPπ [Iy(Y )|pre(Y )] = P (y|pre(Y )).

By Thm. 2, DML-IDP estimator for Px1,x2(y) is consistent if estimates for either P (x1|pre(x1)) for ω1 or∑
z P (y|pre(y))P (z|pre(z)) for (θ0,1, θ1,2); and P (x1|pre(x1))P (x2|pre(x2)) for ω2 or P (y|pre(y)) for (θ1,1, θ2,2)

converge. This implies that DML-IDP estimator is consistent if estimates for either {P (vi|pre(vi))}Vi∈{X1,X2}, or
{P (vi|pre(vi))}Vi∈{X1,Y }, or {P (vi|pre(vi))}Vi∈{Z,Y } converge. In contrast, PI using Eq. (2) is consistent if estimates
for {P (y|pre(y)), P (z|pre(z)), P (a|b, c), P (b|c), P (c)} converge.

(Fig. 2b). Based on Illustration 2 with PTO C ≺ X ≺ Y1 ≺ Y2 ≺ Y3 ≺ Y4 ≺ Y5. we have

VPx(y) =
∑
c

(
VV\SX

µSX\X + (VSX\X − µSX\X)µV\SX

)
,

where

VV\SX
= θa0,1 + ωa1 (θa1,1 − θa1,2) + ωa2 (θa2,1 − θa2,2),

for Pπa ≡ Ix,y1,y3,y4(X,Y1, Y3, Y4)P (C)P (Y2|pre(Y2))P (Y5|pre(Y5)) and Ia ≡ Ic,y2,y5(C, Y2, Y5),
θa0,1 = EPπa [Ia|B0max

, preT(B0max
)] = EPπa [Ia|C] = Ic(C)P (y5|y3, y4, y2, y1, x, C)P (y2|y1, x, C),

θa1,1 = EPπa [Ia|Y2, pre(Y2)] = Ic(C)P (y5|y3, y4, pre(Y3)), θa1,2 = EPπa [Ia|pre(Y2)] =
Ic(C)P (y5|y3, y4, y2, pre(Y2))P (y2|pre(Y2)), θa2,1 = Ia, θa2,2 = EPπa [Ia|pre(Y5)] = Ic,y2(C, Y2)P (y5|pre(Y5)).

Also, ωa1 =
Ix,y1 (X,Y1)

P (X|C)P (Y1|X,C) and ωa2 = ωa1 ×
Iy3,y4 (Y3,Y4)

P (Y3|pre(Y3))P (Y4|pre(Y4)) ; and

VSX\X = θb0,1 + ωb1(θa1,1 − θb1,2) + ωb2(θa2,1 − θb2,2),

for Pπb ≡ Ic,y2(C, Y2)P (Y3, Y4|pre(Y3))P (X,Y1|C) and Ib ≡ Iy1,y3,y4(Y1, Y3, Y4), θb0,1 = EP
πb

[Ib], θb1,1 =

EP
πb

[Ib|C,X, Y1] = Iy1(Y1)P (y3, y4|y2, pre(Y2)), θb1,2 = EP
πb

[Ib|C] =
∑
x′ P (y3, y4|y2, y1, x

′, C)P (x′, y1|C),

θb2,1 = Iy1,y3,y3(Y1, Y3, Y4), θb2,2 = EP
πb

[Ib|pre(Y3)] = Iy1,y3(Y1, Y3)P (y3, y4|pre(Y3)). Also, ωb1 = Ic(C)
P (C) and

ωb2 = ωb1 ×
Iy2 (Y2)

P (Y2|pre(Y2)) .

By Thm. 2, DML-IDP estimator for Px(y) is consistent if estimates for either P (x|pre(x))P (y1|pre(y1)) for ωa1
or P (y5|pre(y5))P (y2|pre(y2)) for (θa0,1, θ

a
1,2); and P (x|pre(x))P (y1|pre(y1))P (y3|pre(y3))P (y4|pre(y4)) for ωa2

or P (y5|pre(y5)) for (θa1,1, θ
a
2,1); and P (c) for ωb1 or

∑
x′ P (y4|pre(y4))P (y3|pre(y3))P (y1|pre(y1))P (x′|pre(x′))

for (θb0,1, θ
b
1,2); and P (c)P (y2|pre(y2)) for ωb2 or P (y4|pre(y4))P (y3|pre(y3)) for (θb1,1, θ

b
2,2) con-

verge. This implies that DML-IDP estimator is consistent if estimates {P (vi|pre(vi)}Vi∈{X,Y1,Y3,Y4}, or
{P (vi|pre(vi)}Vi∈{X,Y1,Y5}, or {P (vi|pre(vi)}Vi∈{Y2,Y5}; and {P (vi|pre(vi))}Vi∈{C,Y2}, or {P (vi|pre(vi))}Vi∈{C,Y3,Y4},
or {P (vi|pre(vi)}Vi∈{X,Y1,Y3,Y4} converge. In contrast, PI using Eq. (6) is consistent if estimates for {P (vi|pre(vi))}Vi∈V
converge.

(Fig. 1). Based on Illustration 3 with PTO Y1 ≺ R ≺ X ≺ Y2 ≺ Y3 ≺ Y4. we have

VPx(y) = VQ[RY2 ] · µQ[RY\RY2
] + (VQ[RY\RY2

] − µQ[RY\RY2
]) · µQ[RY2 )],

= VQ[Y2,Y3] · µQ[Y1,Y4] +
(
VQ[Y1,Y4] − µQ[Y1,Y4]

)
µQ[Y2,Y3],
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where Y ≡ {Y1, Y2, Y3, Y4} andRY2
is the region (Def. 2) of Y2 with respect to Y, and

VQ[Y2,Y3] = θa0,1 + ωa1 (θa1,1 − θa1,2),

with Pπa = Ix(X)P (R)P (Y2, Y3|X,R), where ωa1 = Ix(X)
P (X|R) , θa1,1 = Iy2,y3(Y2, Y3), θa1,2 = EPπa [Iy2,y3(Y2, Y3)|X,R] =

P (y2, y3|X,R), θa0,1 = EPπa [Iy2,y3(Y2, Y3)|R] = P (y2, y3|x,R), and

VQ[Y1,Y4] = θb0,1 + ωb1(θb1,1 − θb1,2),

with Pπb = Ir,x,y2,y3(R,X, Y2, Y3)P (Y1)P (Y4|pre(Y4)), ωb1 =
Ir,x,y2,y3 (R,X,Y2,Y3)

P (R|pre(R))P (X|pre(X))P (Y2|pre(Y2))P (Y3|pre(Y3)) , θb0,1 =

EP
πb

[Ib|Y1] = Iy1(Y1)P (y4|y3, y2, x, r, Y1), θb1,1 = Ib, and θb1,2 = EP
πb

[Ib|pre(Y4)] = Iy1(Y1)P (y4|pre(Y4)) where
Ib ≡ Iy1,y4(Y1, Y4).

By Thm. 2, DML-IDP for Px(y1, y2, y3, y4) is consistent if estimates for either P (x|r) for ωa1 or P (y2|x, r)P (y3|y2, x, r)
for (θa0,1, θ

a
1,2); and P (r|pre(r))P (x|pre(x))P (y2|pre(y2))P (y3|pre(y3)) for ωb1 or P (y4|pre(y4)) for (θb0,1, θ

b
1,2) converge.

This condition implies that DML-IDP estimator is consistent if estimates for P (x|r) or {P (y2|x, r), P (y3|y2, x, r)}; and
{P (vi|pre(vi))}Vi∈{R,X,Y2,Y3} or P (y4|pre(y4)) converge. In contrast, PI using Eq. (12) is consistent if estimates for
{P (y2|x, r), P (y3|y2, x, r), P (r), P (y4|pre(y4)), P (y1)} converge.

B. Proofs.
Notations. We will use Pγ to denote parametric submodel Pγ ≡ P (v)(1 + γg(v)) for any γ ∈ R and bounded mean-zero
function g(·) over random variables V. For a functional F (P ) of a joint distribution P , we will use F (Pγ) to denote the
functional with respect toPγ . We will use∇γF (Pγ) ≡ ∂

∂γF (Pγ)|γ=0. We denote Sγ(Vi|Wi; γ = 0) ≡ ∇γ logPγ(Vi|Wi).
For T ⊆ V, we use S(T) ≡ ∇γ logPγ(T). Suppose F (P ) is composed of conditional probabilities P (ai|bi). Then, we
will use∇Pγ(ai|bi)F (Pγ) ≡ (∇γPγ(ai|bi)) · ∂F (P )

∂P (ai|bi) .

Preliminaries. Once we have a UIF, the corresponding IF for ψ can be expressed as φ(V;ψ, η) = V(V; η)−EP [V(V; η)],
since EP [V(V; η)] = ψ.

B.1. Proofs for Sec. 3

Lemma S.1 (Gateaux derivative of conditional distributions). Let V be a set of ordered variables (with an order ≺),
and T ⊆ V. For Vi ∈ T, the following holds:

∇γPγ(Vi|preT(Vi)) =
(
EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

)
P (Vi|preT(Vi)).

Proof. Let Sγ(Vi|preT(Vi); γ = 0) be shortly denoted as S(Vi|preT(Vi)). Then, we first note that∇γPγ(Vi|preT(Vi)) =
S(Vi|preT(Vi))P (Vi|preT(Vi)), since

S(Vi|preT(Vi)) ≡ ∇γ logPγ(Vi|preT(Vi)) = ∇γP (Vi|preT(Vi))
∂

∂P (Vi|preT(Vi))
logP (Vi|preT(Vi))︸ ︷︷ ︸

=1/P (Vi|preT(Vi))

.

Then, it suffices to show S(Vi|preT(Vi)) =
(
EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

)
. We will use the

property that the mean of the score function is zero; i.e.,

EP (Vi|preT(Vi)) [S(Vi|preT(Vi))] =
∑
vi

(((
((((P (vi|preT(Vi))

1

(((
((((P (vi|preT(Vi))

∂Pγ(vi|preT(Vi))

∂γ
|γ=0 =

∂

∂γ

∑
vi

Pγ(Vi|preT(Vi)) = 0.

Also, from the fact that P (T) =
∏
Vi∈T P (Vi|preT(Vi)), we note S(T) =

∑
Vi∈T S(Vi|preT(Vi)).

For any Vj � Vi for (Vi, Vj) ∈ T, EP (T)[S(Vj |preT(Vj))|Vi, preT(Vi)] = EP (T)[S(Vj |preT(Vj))|preT(Vi)] = 0, by∑
vj
S(vj |preT(vj))P (vj |preT(vj)) = 0.
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For any Vj ≺ Vi, EP (T)[S(Vj |preT(Vj))|Vi, preT(Vi)] = EP (T)[S(Vj |preT(Vj))|preT(Vi)] = S(Vj |preT(Vj)) since
{Vj , preT(Vj)} ⊆ preT(Vi). Hence, EP (T)[S(Vj |preT(Vj))|Vi, preT(Vi)]− EP (T)[S(Vj |preT(Vj))|preT(Vi)] = 0.

For Vj = Vi, EP (T)[S(Vi|preT(Vi))|Vi, preT(Vi)] = S(Vi|preT(Vi)) and EP (T)[S(Vi|preT(Vi))|preT(Vi)] = 0. There-
fore,

S(Vi|preT(Vi)) =
(
EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

)
.

This completes the proof.

Lemma S.2. Let V be a set of ordered variables and T = (Z ∪X ∪Y) ⊆ V. Let WVi ≡ preT(Vi) (shortly, Wi). Let
the observational model P and the interventional model Pπ(x) over T be defined as follows:

P (T) ≡
∏

Vi∈{Z,Y}

P (vi|wi)
∏
Xj∈X

P (xj |wXj ),

Pπ(x)(T) ≡
∏

Vi∈{Z,Y}

P (vi|wi)
∏
Xj∈X

Ixj (Xj).

Let q(X) ≡
∏
Xi∈X P (Xi|WXi) and π(X) ≡

∏
Xi∈X Ixi(Xi). Let Eπ[·] be an expectation with respect to the distribution

Pπ(x). For Vi 6∈ X, the following holds:

∇γPγ(Vi|Wi) =

(
Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣ Vi,Wi

]
− Eπ

[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣Wi

])
· P (Vi|Wi).

Proof. By Lemma S.1, we have

∇γPγ(Vi|Wi) =
(
EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

)
P (Vi|preT(Vi)).

We first consider EP (T) [S(T)|Vi, preT(Vi)] and show that

Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣ Vi,Wi

]
= EP (T) [S(T)|Vi, preT(Vi)] .

The equality can be shown as follows:

Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣ Vi,Wi

]
=

∫
t

q(x)

π(x)

Pπ(wi)

P (wi)

Pπ(t)

Pπ(vi|wi)Pπ(wi)
s(t)dt

=

∫
t

1

�
��π(x)
���

�Pπ(wi)

P (wi)
q(x)Pπ(t\x)︸ ︷︷ ︸

=P (t)

��
�π(x)s(t)

1

Pπ(vi|wi)︸ ︷︷ ︸
=P (vi|wi)

��
��Pπ(wi)

dt

=

∫
t

P (t)

P (wi)P (vi|wi)
S(t)dt

= EP (T) [S(T)|Vi,Wi] ,

where we have used Pπ(vi|wi) = P (vi|wi) for Vi ∈ T\X. To witness, we have the following:

Pπ(Vi|Wi) =
Pπ(Vi,Wi)

Pπ(Wi)

=

∏
Vj∈{Vi,preT(Vi)}\X P (Vj |Wj)

∏
Xk∈{Vi,preT(Vi)}∩X Ixk(Xk)∏

Vj∈{preT(Vi)}\X P (Vj |Wj)
∏
Xk∈{preT(Vi)}∩X Ixk(Xk)

=

∏
Vj∈{Vi,preT(Vi)}\X P (Vj |Wj)

((((
(((

((((
(∏

Xk∈{preT(Vi)}∩X Ixk(Xk)∏
Vj∈{preT(Vi)}\X P (Vj |Wj)

((((
((((

((((∏
Xk∈{preT(Vi)}∩X Ixk(Xk)

= P (Vi|Wi),
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where the third equality holds since Vk 6∈ X, and the second equality holds, since

Pπ(Vi,Wi) =
∑

t\{vi,wi}

Pπ(t) =
∑

t\{vi,wi}

∏
Vi∈{Z,Y}

P (vi|wi)
∏
Xj∈X

Ixj (Xj)

=
∏

Vj∈{Vi,preT(Vi)}\X

P (vj |wj)
∏

Xk∈{Vi,preT(Vi)}∩X

Ixk(Xk),

because conditional probabilities P (vk|preT(vi)) for Vk 6∈ {Vi, preT(Vi)} and Ixp(Xp) for Xp 6∈ {Vi, preT(Vi)} are
summed out. Similarly, we have Pπ(Wi) =

∏
Vj∈{preT(Vi)}\X P (Vj |Wj)

∏
Xk∈{preT(Vi)}∩X Ixk(Xk).

We now show

Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣Wi

]
= EP (T) [S(T)|preT(Vi)] .

The equality can be shown as follows:

Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣Wi

]
=

∫
t

q(x)

π(x)

Pπ(wi)

P (wi)

Pπ(t)

Pπ(wi)
s(t)dt

=

∫
t

1

�
��π(x)
���

�Pπ(wi)

P (wi)
q(x)Pπ(t\x)︸ ︷︷ ︸

=P (t)

��
�π(x)s(t)

1

��
��Pπ(wi)

dt

=

∫
t

P (t)

P (wi)
S(t)dt

= EP (T) [S(T)|Wi] .

Therefore,

∇γPγ(Vi|Wi) =
(
EP (T) [S(T)|Vi,Wi]− EP (T) [S(T)|Wi]

)
P (Vi|Wi).

=

(
Eπ
[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣ Vi,Wi

]
− Eπ

[
q(X)

π(X)

Pπ(Wi)

P (Wi)
S(T)

∣∣∣∣Wi

])
· P (Vi|Wi).

Lemma S.3. Let V be a set of ordered variables and T = (Z ∪ X ∪ Y) ⊆ V. Let WVi ≡ preT(Vi) (shortly,
Wi). Let P (T) ≡

∏
Vi∈{Z,Y} P (vi|wi)

∏
Xj∈X P (xj |wxj ), and Pπ(x)(T) ≡

∏
Vi∈{Z,Y} P (vi|wi)

∏
Xj∈X Ixj (Xj).

Let Eπ[·] be an expectation with respect to the distribution Pπ(x)(T). Let ψ ≡ Ψ(P ) ≡ Eπ[Iy(Y)] =∑
z

∏
Yj∈Y P (yj |preT(yj))

∏
Zk∈Z P (zk|preT(zk)). Then, an influence function for ψ is given as

φ =
∑

Vk∈{Y,Z}

Pπ(Wk)

P (Wk)
{Eπ [Iy(Y)|Vk,Wk]− Eπ [Iy(Y)|Wk]} . (B.1)

where we use
∑
Vk∈{Y,Z} as a shorthand for

∑
k:Vk∈{Y,Z}.

Proof. Let π(X) ≡
∏
Xi∈X Ixi(Xi). Let q(X) ≡

∏
Xi∈X P (Xi|WXi). We will prove the following:

∇γΨ(Pγ) = EP (T)

 ∑
Vk∈{Y,Z}

Pπ(Wk)

P (Wk)
{Eπ [Iy(Y)|Vk,Wk]− Eπ [Iy(Y)|Wk]}

 · S(T)

 (B.2)

= EP (V)

 ∑
Vk∈{Y,Z}

Pπ(Wk)

P (Wk)
{Eπ [Iy(Y)|Vk,Wk]− Eπ [Iy(Y)|Wk]}

 · S(V)

 , (B.3)
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where S(T) ≡
∑
Vk∈T Sγ(Vk|Wk; γ = 0). The second equality holds as follow: Note(∑

Vk∈{Y,Z}
Pπ(Wk)
P (Wk) {Eπ [Iy(Y)|Vk,Wk]− Eπ [Iy(Y)|Wk]}

)
is only a function of T (say, f(T)). We first

note that

EP (T) [[f(T)S(T)]] =
∑
t

f(t)S(t)P (t) =
∑
v\t,t

f(t)S(t)P (t,v\t) = EP (V) [f(T)S(T)] .

Then, we will show that EP (V) [f(T)S(V\T)] = 0, where S(V\T) is a score function of P (v\t|t), namely, S(V\T) ≡∑
Vk∈V\T Sγ(Vk|preV\T(Vk),T), where Sγ(Vk|preV\T(Vk),T) is a score function of P (vk|preV\T(vk), t). We note

P (v) = P (t)P (v\t|t) =
∏
Vj∈T P (vj |preT(vj))

∏
Vk∈V\T P (vk|preV\T(vk)), and this implies that S(V) = S(T) +

S(V\T). Then, given the equality EP (V) [f(T)S(V\T)] = 0, we can show the equality in Eq. (B.3) as follow:

EP (T) [f(T)S(T)] = EP (V) [f(T)S(T)] + EP (V) [f(T)S(V\T)]

= EP (V) [f(T) (S(T) + S(V\T))]

= EP (V) [f(T)S(V)] .

We witness EP (V) [f(T)S(V\T)] = 0 as follow:

EP (V) [f(T)S(V\T)] =
∑
v

f(t)S(v\t)P (v) =
∑
t

(
∑
v\t

S(v\t)P (v\t|t)

︸ ︷︷ ︸
=0

)P (t)f(t) = 0.

The second equality implies that Eq. (B.1) is an IF for ψ. The second equality implies that Eq. (B.1) is an IF for ψ.

We now prove the first equality. Let∇Pγ(vk|wk)Ψ(Pγ) ≡ ∇γPγ(vk|wk) · ∂Ψ(P )
∂P (vk|wk) , for Vk ∈ {Y,Z}. Then,

∇γΨ(Pγ) =
∑

Vk∈{Y,Z}

∇Pγ(vk|wk)Ψ(Pγ),

by the chain rule. A closed form of ∇Pγ(vk|wk)Ψ(Pγ) is given as follows using Lemma S.2.

∇Pγ(vk|wk)Ψ(Pγ)

= ∇Pγ(vk|wk)

∑
x,y,z

Iy(Y)
∏

Vi∈{Z,Y}

P (vi|w)
∏
Xj∈X

Ixj (Xj)

=
∑
x,y,z

Iy(Y)

(
Eπ
[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
− Eπ

[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

])
Pπ (z,x,y) ,

= Eπ
[
Iy(Y)

(
Eπ
[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
− Eπ

[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

])]
.

Note

Eπ
[
Iy(Y)Eπ

[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]]
= Eπ

[
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
· S(T)

]
,

and

Eπ
[
Iy(Y)Eπ

[
S(T)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

]]
= Eπ

[
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

]
· S(T)

]
.
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To witness, let f(X,Wk) ≡ q(X)
π(X)

Pπ(Wi)
P (Wi)

. Then,

Eπ [Iy(Y)Eπ [S(T)f(X,Wk)|Vk,Wk]]

=
∑

z′,x′,y′

Iy(y′)Eπ [S(T)f(X,Wk)|v′k,w′k]
∏

Vi∈{Z,Y}

P (v′i|w′i)
∏
Xj∈X

Ixj (x
′
j)

=
∑

z′,x′,y′

Iy(y′)

 ∑
z′′,x′′,y′′\{v′k,w

′
k}

S(t′′)f(x′′,w′k)
Pπ(z′′,x′′,y′′)

Pπ(v′k,w
′
k)

 ∏
Vi∈{Z,Y}

P (v′i|w′i)
∏
Xj∈X

Ixj (x
′
j)

=
∑

z′,x′,y′\{v′k,w
′
k}

Iy(y′)

 ∑
z′′,x′′,y′′

S(t′′)f(x′′,w′k)
Pπ(z′′,x′′,y′′)

���
��Pπ(v′k,w
′
k) �

���
�

Pπ(v′k,w
′
k)

 Pπ(t′)

Pπ(v′k,w
′
k)

=
∑

z′′,x′′,y′′

 ∑
z′,x′,y′\{v′k,w

′
k}

Iy(y′)f(x′′,w′k)
Pπ(t′)

Pπ(v′k,w
′
k)

S(t′′)Pπ(t′′)

= Eπ
[
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
· S(T)

]
.

Also,

Eπ [Iy(Y)Eπ [S(T)f(X,Wk)|Wk]]

=
∑

z′,x′,y′

Iy(y′)Eπ [S(T)f(X,Wk)|w′k]
∏

Vi∈{Z,Y}

P (v′i|w′i)
∏
Xj∈X

Ixj (x
′
j)

=
∑

z′,x′,y′

Iy(y′)

 ∑
z′′,x′′,y′′\{w′k}

S(t′′)f(x′′,w′k)
Pπ(z′′,x′′,y′′)

Pπ(w′k)

 ∏
Vi∈{Z,Y}

P (v′i|w′i)
∏
Xj∈X

Ixj (x
′
j)

=
∑

z′,x′,y′\{w′k}

Iy(y′)

 ∑
z′′,x′′,y′′

S(t′′)f(x′′,w′k)
Pπ(z′′,x′′,y′′)

���
�Pπ(w′k)

��
��Pπ(w′k)

 Pπ(t′)

Pπ(w′k)

=
∑

z′′,x′′,y′′

 ∑
z′,x′,y′\{w′k}

Iy(y′)f(x′′,w′k)
Pπ(t′)

Pπ(w′k)

S(t′′)Pπ(t′′)

= Eπ
[
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

]
· S(T)

]
.

Then, for Vk ∈ {Y,Z},

∇Pγ(vk|wk)Ψ(P ) = Eπ
[(

Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
− Eπ

[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

])
· S(T)

]
= EP (T)

[
Pπ(T)

P (T)

(
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
− Eπ

[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

])
· S(T)

]
= EP (T)

[
π(X)

q(X)

(
Eπ
[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣ Vk,Wk

]
− Eπ

[
Iy(Y)

q(X)

π(X)

Pπ(Wi)

P (Wi)

∣∣∣∣Wk

])
· S(T)

]
= EP (T)

[
Pπ(Wk)

P (Wk)
{Eπ [Iy(Y)|Vk,Wk]− Eπ [Iy(Y)|Wk]} · S(T)

]
.

This proves Eq. (B.2).

Lemma B.1 (UIF for CE-1 (Restated Lemma 1)). Let a target estimand ψ = Q be a CE-1 given by Eq. (1) in Def. 3.
Let Y ≡ C\A, and X ≡ T \ C ≡ {Bj1 < · · · < Bjm} where Bjs ∈ T. Let C be partitioned with respect to X as
C =

⋃m
k=0 Ck, where Ck ≡ {Br ∈ C : jk < r < jk+1} ≡ {Bkmin < · · · < Bkmax} with j0 ≡ 0 and jm+1 ≡ n+ 1. Let
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Pπ be a distribution over T given by Pπ ≡ Ix(X)
∏

Bi∈C P (Bi|preT(Bi)). Then, V(T; η = (ω,θ)) in the following is a
UIF for ψ:

V(T; η = (ω,θ)) = θ0,1 +

m∑
k=1

Ck 6=∅

ωk (θk,1 − θk,2) , (B.4)

where ω ≡ {ωk| Ck 6= ∅, k ∈ {1, · · · ,m}} and θ ≡ {θ0,1} ∪ {(θk,1, θk,2)| Ck 6= ∅, k ∈ {1, · · · ,m}} are nuisances

given by ωk ≡
∏k
r=1

Ibjr
(Bjr )

P (Bjr |preT(Bjr )) , θk,1 ≡ EPπ [Iy(Y)|Bkmax , preT(Bkmax)], θk,2 ≡ EPπ [Iy(Y)|preT(Bkmin)] where
θ0,1 = EPπ [Iy(Y)] if C0 = ∅.

Proof. We first note that Lemma S.3 holds when each Vk ∈ T is a bucket instead of being a singleton, with the definition
Wk ≡ preT(Bk). By the proof of Lemma S.3, an IF for ψ could be written as

φ =
∑

k:Bk∈C

Pπ(Wk)

P (Wk)
{Eπ[Iy(Y)|Bk,Wk]− Eπ[Iy(Y)|Wk]} .

Using that Pπ(Bj |Wj)
P (Bj |Wj)

= 1 if Bj ∈ C, and Pπ(Bj |Wj)
P (Bj |Wj)

=
Ibj (Bj)

P (Bj |Wj)
if Bj ∈ X, we rewrite the IF as

φ =
∑

i:Bi∈C

Pπ(Wi)

P (Wi)
{Eπ[Iy(Y)|Bi,Wi]− Eπ[Iy(Y)|Wi]}

=
∑

r:Br∈C0

{Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]}+

m∑
k=1

Ck 6=∅

∑
r:Br∈Ck

Pπ(Wr)

P (Wr)
{Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]} ,

(B.5)

where the second equality holds since Pπ(Wr)
P (Wr) = 1 for Br ∈ C0.

We first simplify the second term of Eq. (B.5):
m∑
k=1

Ck 6=∅

∑
r:Br∈Ck

Pπ(Wr)

P (Wr)
{Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]}

=

m∑
k=1

Ck 6=∅

∑
r:Br∈Ck

((((
(((

((((
((((∏

Ba∈preT(Br)\X Pπ(Ba|preT(Ba))
∏

Bc∈preT (Br)∩X Ibc(Bc)

((((
((((

(((
((((∏

Ba∈preT(Br)\X P (Ba|preT(Ba))
∏

Bc∈preT (Br)∩X P (Bc|preT(Bc))
{Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]}

=

m∑
k=1

Ck 6=∅

∑
r:Br∈Ck

 ∏
Bc∈preT (Br)∩X

Ibc(Bc)

P (Bc|preT(Bc))

 {Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]}

=

m∑
k=1

Ck 6=∅

 ∏
jp={1,··· ,jk}

Ibjp (Bjp)

P (Bjp |Wjp)

 ∑
r|Br∈Ck

({Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]})

=

m∑
k=1

Ck 6=∅

(
k∏
p=1

Ibjp (Bjp)

P (Bjp |Wjp)

)
︸ ︷︷ ︸

=ωk

∑
r|Br∈Ck

({Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]})

=

m∑
k=1

Ck 6=∅

ωk {Eπ[Iy(Y)|Bkmax ,Wkmax ]− Eπ[Iy(Y)|Wkmin ]}︸ ︷︷ ︸
=θk,1−θk,2

=

m∑
k=1

Ck 6=∅

ωk(θk,1 − θk,2).
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Then, we consider the first term of Eq. (B.5).∑
r:Br∈C0

{Eπ[Iy(Y)|Br,Wr]− Eπ[Iy(Y)|Wr]} = Eπ[Iy(Y)|B0max ,W0max ]︸ ︷︷ ︸
=θ0,1

−Eπ[Iy(Y)|W0min ]︸ ︷︷ ︸
=θ0,2

(B.6)

= θ0,1 − ψ, (B.7)

where the second equality holds since θ0,2 = Eπ[Iy(Y)|W0min
] = Eπ[Iy(Y)] = ψ. That is,

φ = θ0,1 − ψ +

m∑
k=1

Ck 6=∅

ωk(θk,1 − θk,2). (B.8)

Then, the UIF is given as Eq. (B.4). This completes the proof.

Lemma S.4. Let G be a PAG over V and T be the union of a set of buckets in G. Let X be a bucket in T. Let
SX ≡

⋃
Xi∈X SXi where SXi denote the DC-component of Xi in G(T). Then, for a bucket Bi in T, Bi 6⊆ SX if and only

if Bi ⊆ T\SX.

Proof. We will consider G = G(T). We first prove Bi 6⊆ SX =⇒ Bi ⊆ T\SX. Bi 6⊆ SX means that there exists a node
Vk ∈ Bi such that Vk 6∈ SX. As a contradictory claim, suppose Bi 6⊆ SX 6=⇒ Bi ⊆ V\SX. That is, there exists Vj ∈ Bi

such that Vj 6= Vk and Vj ∈ SXp for some Xp ∈ X. If
∣∣SXp ∣∣ > 1, then there exists a node C ∈ SXp such that C ↔ Vj .

Since Vj and Vk are in the same bucket, there is a circle path (a path composing ◦−◦) between Vj and Vk. By (Zhang, 2006,
Lemma 3.3.2), this implies that C ↔ Vk (i.e., Vk ∈ SXp), which contradicts that Vk 6∈ SX. If

∣∣SXp ∣∣ = 1 (i.e., Xp = Vj),
then this implies that X = Bi, since both X and Bi are a bucket. Then this contradicts with Bi 6⊆ SX. Therefore, there
exists no Vj ∈ Bi such that Vj ∈ SXp , when there exists Vk ∈ Bi such that Vk 6∈ SX.

We now prove Bi ⊆ SX =⇒ Bi 6⊆ T\SX. This is immediate, since SX ∩ (T\SX) = ∅. This completes the proof.

Corollary B.1 (Restated Coro. 1). Let a PTO in PAG G over V be B1 ≺ · · · ≺ Bm. Let X,Y ⊂ V with X being a
bucket. Then, if C(X) ∩ Ch(X) ⊆ X, Px(y) is identifiable and given by

Px(y) =
∑

v\(x∪y)

QV\SX
×QSX\X, (B.9)

where QV\SX
≡
∏

Bi⊆V\SX
P (bi|pre(bi)), QSX\X ≡

∑
x

∏
Bi⊆SX

P (bi|pre(bi)), and SX =
⋃
X∈X SX with SX

being the DC-component of X .

Proof. By Prop. 1 with T = V, it suffices to show that Pv\t(t)∏
Bi⊆SX

Pv\t(bi|pret(bi))
=
∏

Bi⊆T\SX
Pv\t(bi|preT(bi)), which

is equivalent to show
∏

Bi 6⊆SX
Pv\t(bi|preT(bi)) =

∏
Bi⊆T\SX

Pv\t(bi|preT(bi)). To witness the equality, a sufficient
condition is that Bi 6⊆ SX ⇔ Bi ⊆ T\SX. This holds by Lemma S.4.

Definition B.1 (Restated Def. 4)). Let Q1 and Q2 be two CE-1s, then the quantity Q =
∑

z (Q1 ×Q2) is said to be (in
the form of) a canonical expression 2 (CE-2).

Lemma B.2 (Restated Lemma 2). Let a target estimand ψ = Q be a CE-2 given in Def. 4. Let Vi be a UIF for the CE-1
Qi given in Lemma 1 and µi ≡ EP [Vi] for i ∈ {1, 2}. Then, V(V; η) below is a UIF for ψ:

V(V; η) =
∑
z

(V1µ2 + (V2 − µ2)µ1).

Proof. Let Vi, φi denote a UIF and an IF forQi = Qi(P ) for i ∈ {1, 2}. Let Ψ(Pγ) ≡
∑

z (Q1(γ)×Q2(γ)) whereQi(γ)
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are Qi(P ) with respect to Pγ (i.e., written w.r.t. Pγ(bi|preT(bi))) for i = 1, 2. Note Qi = Qi(γ = 0) = Qi(P ). Then,

∇γΨ(Pγ) ≡
∑
z

{(∇γ(Q1(γ))Q2 +Q1∇γ(Q2(γ))}

=
∑
z

{EP [φ1 · S(V)]Q2 + EP [φ2 · S(V)]Q1}

= EP

[
(
∑
z

(φ1Q2 + φ2Q1)) · S(V)

]

= EP

[
(
∑
z

((V1 −Q1)Q2 + (V2 −Q2)Q1)) · S(V)

]

= EP

[(∑
z

(V1Q2 + (V2 −Q2)Q1)− ψ

)
· S(V)

]

where the second equality holds by the definition of an IF, the fourth by the definition of a UIF. This implies that∑
z(V1Q2 + (V2 −Q2)Q1)− ψ is an IF, and

∑
z(V1Q2 + (V2 −Q2)Q1) is a UIF. Since φ2 = V2 −Q2 = V2 − µ2 and

Qi = EP [Vi] for i = 1, 2, this completes the proof.

B.2. Proofs for Sec. 4

Lemma B.3 (Restated Lemma 3). Let G be a PAG over V, T = ∪mi=1Bi be the union of a set of buckets, and X ⊆ T
be a bucket. Given Q[T] and a PTO B1 ≺ · · · ≺ Bm with respect to G(T), Q [T\X] is identifiable if and only if
C(X) ∩ Ch(X) ⊆ X in G(T). When Q [T\X] is identifiable, letting SX =

⋃
X∈X SX with SX being the DC-component

of X in G(T), then SX consists of a union of buckets. Denoting SX = {Bj1 , · · · ,Bjp} and T\SX = {Bi1 , · · · ,Biq},
Q [T\X] is given by

Q [T\X] = QT\SX
×QSX\X, (B.10)

where QT\SX
≡
∏

Bir∈T\SX
Pv\t(bir |preT(bir )), and QSX\X ≡

∑
x

∏
Bjs∈SX

Pv\t(bjs |preT(bjs)).

Proof. By Prop. 1 and Pv\t(t)∏
Bi⊆SX

Pv\t(bi|pret(bi))
=
∏

Bi⊆T\SX
Pv\t(bi|preT(bi)) which has been shown in the proof of

Coro. 1, we have

Q [T\X] = Q′T\SX
×Q′SX\X,

where Q′T\SX
≡
∏

Bir⊆T\SX
Pv\t(bir |preT(bir )), and Q′SX\X ≡

∑
x

∏
Bjs⊆SX

Pv\t(bjs |preT(bjs)). Then, it suf-
fices to show that SX is a union of buckets. Suppose SX is not a union of buckets. That is, there is some Bk ∈ T and two
variables (V1, V2) ∈ Bk such that V1 ∈ SX but V2 ∈ T\SX. But this case doesn’t exist by Lemma S.4. This shows that SX

is a union of buckets, and completes the proof.

Lemma S.5. Let T = {B1 < · · · < Bm} ⊆ V. Let C ≡ {Bc1 , · · · ,Bcn} where Bcr ∈ T. Let Ψ(P ) ≡∏n
r=1 Pv\t(bcr |preT(bcr )). Let VQ[T], φQ[T] denote a UIF and an IF for Q[T]. Let µQ[T] ≡ EP [VQ[T]]. For Bcr ∈ C,

let T1
r ≡ T\{Bcr , preT(Bcr )} and T2

r ≡ T\preT(Bcr ). Then, an IF φ and a UIF V for Ψ(P ) is given as follows:

φ =

n∑
r=1

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )).

V =

(
n∏
s=2

µPv\t(bcs |preT(bcs ))

)
VPv\t(bc1 |preT(bc1 )) +

n∑
r=2

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )),
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where

φPv\t(bcr |preT(bcr )) =
1∑

t2cr
µQ[T]

∑
t1cr

φQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T]

VPv\t(bcr |preT(bcr )) =
1∑

t2cr
µQ[T]

∑
t1cr

VQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T],

and µPv\t(bcr |preT(bcr )) ≡ EP [VPv\t(bcr |preT(bcr ))].

Proof. Let VPv\t(bcr |preT(bcr )), φPv\t(bcr |preT(bcr )) for Bcr ∈ C denote an IF and a UIF for Pv\t(bcr |preT(bcr )). Let
µPv\t(bcr |preT(bcr )) ≡ EP [VPv\t(bcr |preT(bcr ))]. We derive an IF for Ψ(P ), denoted φ, by taking a derivative of Ψ(Pγ):

∇γΨ(Pγ) = ∇γ
n∏
r=1

Pγ,v\t(bcr |preT(bcr ))

=

n∑
r=1

(
∇γPγ,v\t(bcr |preT(bcr ))

) n∏
s=1
s 6=r

Pv\t(bcs |preT(bcs))

=

n∑
r=1

n∏
s=1
s 6=r

Pv\t(bcs |preT(bcs))EP [φPv\t(bcr |preT(bcr )) · S(V)]

= EP




n∑
r=1

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr ))

 · S(V)

 ,
implying that an IF φ is given as

φ =

n∑
r=1

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )).

We derive the UIF by rewriting the IF:

φ =

n∑
r=2

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )) +

(
n∏
s=2

µPv\t(bcs |preT(bcs ))

)(
VPv\t(bc1 |preT(bc1 )) − µPv\t(bc1 |preT(bc1 ))

)

=

n∑
r=2

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )) +

(
n∏
s=2

µPv\t(bcs |preT(bcs ))

)
VPv\t(bc1 |preT(bc1 )) −Ψ(P ),

since
∏n
s=1 µPv\t(bcs |preT(bcs )) =

∏n
s=1 Pv\t(bcs |preT(bcs)) = Ψ(P ). This implies that

V =

(
n∏
s=2

µPv\t(bcs |preT(bcs ))

)
VPv\t(bc1 |preT(bc1 )) +

n∑
r=2

 n∏
s=1
s 6=r

µPv\t(bcs |preT(bcs ))

φPv\t(bcr |preT(bcr )).

We now derive φPv\t(bcr |preT(bcr )) and VPv\t(bcr |preT(bcr )). We derive φPv\t(bcr |preT(bcr )) by taking derivative
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∇γPγ,v\t(bcr |preT(bcr )). Recall for Bcr ∈ C, T1
cr ≡ T\{Bcr , preT(Bcr )} and T2

cr ≡ T\preT(Bcr ).

∇γPγ,v\t(bcr |preT(bcr )) = ∇γ

∑
t1cr

Q[T](γ)∑
t2cr

Q[T](γ)

=
1∑

t2cr
Q[T]

∑
t1cr

∇γQ[T](γ)−

∑
t1cr

Q[T]∑
t2cr

Q[T]

1∑
t2cr

Q[T]

∑
t2cr

∇γQ[T](γ)

=
1∑

t2cr
Q[T]

∑
t1cr

EP [φQ[T] · S(V)]−

∑
t1cr

Q[T]∑
t2cr

Q[T]

1∑
t2cr

Q[T]

∑
t2cr

EP [φQ[T] · S(V)]

= EP

 1∑
t2cr

Q[T]

∑
t1cr

φQ[T] −

∑
t1cr

Q[T]∑
t2cr

Q[T]

1∑
t2cr

Q[T]

∑
t2cr

φQ[T]

 · S(V)


= EP

 1∑
t2cr

µQ[T]

∑
t1cr

φQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T]

 · S(V)

 ,
implying that

φPv\t(bcr |preT(bcr )) =
1∑

t2cr
µQ[T]

∑
t1cr

φQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T].

By rewriting,

φPv\t(bcr |preT(bcr )) =
1∑

t2cr
µQ[T]

∑
t1cr

(
VQ[T] − µQ[T]

)
−

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T]

=
1∑

t2cr
µQ[T]

∑
t1cr

VQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]︸ ︷︷ ︸
=Pv\t(bcr |preT(bcr ))

,

we derive

VPv\t(bcr |preT(bcr )) =
1∑

t2cr
µQ[T]

∑
t1cr

VQ[T] −

∑
t1cr

µQ[T]∑
t2cr

µQ[T]

1∑
t2cr

µQ[T]

∑
t2cr

φQ[T].

Lemma B.4 (Restated Lemma 4). Suppose ψ ≡ Q [T\X] is identifiable via Lemma 3 and given by Eq. (9). Then, given
VQ[T], V ≡ VQ[T\X] below is a UIF for ψ:

V = VSX\XµVT\SX
+ (VT\SX

− µVT\SX
)µSX\X, (B.11)

where (VSX\X,VT\SX
) are UIFs for (QSX\X,QT\SX

) respectively, given by

VSX\X ≡
∑
x

(Vj1
p∏
k=2

µjk +

p∑
k=2

φjk

p∏
`=1, 6̀=k

µj`), (B.12)

VT\SX
≡ Vi1

q∏
r=2

µir +

q∑
r=2

φir

q∏
`=1, 6̀=r

µi` , (B.13)

where, for c ∈ {1, 2, · · · ,m}, Vc ≡
∑

t\{bc,preT(bc)} VQ[T]∑
t\preT(bc)

µQ[T]
−

∑
t\{bc,preT(bc)} µQ[T]∑

t\preT(bc)
µQ[T]

·
∑

t\preT(bc)
φQ[T]∑

t\preT(bc)
µQ[T]

, µc ≡ EP [Vc], and

φc ≡ Vc − µc.
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Proof. We invoke the notation SX = {Bj1 , · · · ,Bjp} and T\SX = {Bi1 , · · · ,Biq} from Lemma 3. We first derive
an IF for QSX\X. Let φSX

denote an IF for QSX
. Since ∇γQSX\X(γ) =

∑
x∇γQSX

(γ) =
∑

x EP [φSX
· S(V)] =

EP [(
∑

x φSX
) · S(V)], an IF for QSX\X is given as φSX\X =

∑
x φSX

, with its corresponding UIF VSX\X =
∑

x VSX
.

Since QSX
=
∏p
s=1 Pv\t(bjs |preT(Bjs)), a UIF VSX

is given by Lemma S.5 as

VSX
≡ Vj1

p∏
k=2

µjk +

p∑
k=2

φjk

p∏
`=1, 6̀=k

µj` .

Then an UIF for QSX\X is given in Eq. (B.12).

Also, since QT\SX
=
∏q
s=1 Pv\t(bis |preT(Bis)), a UIF for QT\SX

are given by Lemma S.5 as

VT\SX
≡ Vi1

q∏
k=2

µik +

q∑
k=2

φik

q∏
`=1, 6̀=k

µi` ,

which is equal to Eq. (B.13).

Next we derive an IF for Q[T\X]. The derivative ∇γQ[T\X](γ) is given as follows:

∇γQ[T\X](γ) = ∇γ
(
QT\SX

(γ) · QSX\X(γ)
)

= ∇γQT\SX
(γ) · QSX\X +∇γQSX\X(γ)QT\SX

= EP
[
φT\SX

· S(V)
]
· QSX\X + EP [φSX\X · S(V)]QT\SX

= EP
[{
φT\SX

· QSX\X + φSX\X · QT\SX

}
· S(V)

]
,

implying that an IF and a UIF for Q[T\X] is

φQ[T\X] = φT\SX
· QSX\X + φSX\X · QT\SX

= (VT\SX
− µT\SX

) · QSX\X + φSX\X · QT\SX

= (VT\SX
− µT\SX

) · QSX\X + VSX\X · QT\SX
−Q[T\X]

= (VT\SX
− µT\SX

) · µSX\X + VSX\X · µT\SX
−Q[T\X]

VQ[T\X] = (VT\SX
− µT\SX

) · µSX\X + VSX\X · µT\SX

which completes the proof.

Lemma B.5 (Restated Lemma 5). For A ⊆ C ⊆ V,

VQ[C] = (a) + (b)− (c),

where (a) =
VQ[RA]·µQ[RC\RA

]

µQ[RA∩RC\RA
]

, (b) =
µQ[RA]·φQ[RC\RA

]

µQ[RA∩RC\RA
]

, (c) =
µQ[RA]·µQ[RC\RA

]

µQ[RA∩RC\RA
]
·
φQ[RA∩RC\RA

]

µQ[RA∩RC\RA
]

withR(·) = RC
(·).

Proof. We have Q [C] =
Q[RA]·Q[RC\RA

]

Q[RA∩RC\RA
] by Prop. 2. We derive an IF for Q [C] by computing the following derivative

∇γQ [C] (γ)

=
∇γQ[RA](γ) ·Q[RC\RA

]

Q[RA ∩RC\RA
]

+
Q[RA] · ∇γQ[RC\RA

](γ)

Q[RA ∩RC\RA
]

−
Q[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

∇γQ[RA ∩RC\RA
](γ)

Q[RA ∩RC\RA
]

= EP

[{
φQ[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

+
Q[RA] · φQ[RC\RA

]

Q[RA ∩RC\RA
]
−
Q[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

φQ[RA∩RC\RA
]

Q[RA ∩RC\RA
]

}
· S(V)

]
,

which implies that an IF for Q [C] is given by

φQ[C] =
(VQ[RA] −Q[RA]) ·Q[RC\RA

]

Q[RA ∩RC\RA
]

+
Q[RA] · φQ[RC\RA

]

Q[RA ∩RC\RA
]
−
Q[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

φQ[RA∩RC\RA
]

Q[RA ∩RC\RA
]

=
VQ[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

+
Q[RA] · φQ[RC\RA

]

Q[RA ∩RC\RA
]
−
Q[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

φQ[RA∩RC\RA
]

Q[RA ∩RC\RA
]
−Q[C],
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and its corresponding UIF for Q [C] is given by

VQ[C] =
VQ[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

+
Q[RA] · φQ[RC\RA

]

Q[RA ∩RC\RA
]
−
Q[RA] ·Q[RC\RA

]

Q[RA ∩RC\RA
]

φQ[RA∩RC\RA
]

Q[RA ∩RC\RA
]
.

Lemma S.6. Algo. 1 IFP derives a UIF for any identifiable Px(y) in a PAG G over V in O(|V|4) time where |V| denotes
the number of variables.

Proof. Line 3 takes O(|V|2). We now derive the complexity for line 4, DERIVEUIF
(
D,V, P (V),VQ[V] = Iv(V)

)
.

Let T be the input of DERIVEUIF. Let N ≡ |T|. Suppose running DERIVEUIF(C,T, Q[T],VQ[T]) takes T (N) time.
To check the condition in line 8, for each bucket in T (possibly N buckets), one checks the graphical condition (O(N2)).
Therefore, it takes O(N3) to run line 8. Line 9-12 take O(N2) since it takes O(N2) to identify the DC-component for
deriving Q[T\B]. The recursive call with DERIVEUIF(C,T\B, Q[T\B],VQ[T\B]) takes at most T (N − 1). If line 15 is
called, then it takes T (N −M) + T (M) where M ≡ |RB|. That is,

T (N) =

{
T (N − 1) +O(N3); or
T (N −M) + T (M) +O(N3).

(B.14)

For sufficiently large N > C for some constant C, let O(N3) ≤ a · N3 and assume T (N) ≤ aN4 for some constants
a > 0 (If this holds, this means that T (N) = O(N4)). First, consider T (N − 1) +O(N3). For some sufficiently large N ,

T (N − 1) +O(N3) ≤ a(N − 1)4 + aN3

= a(N4 − 4N3 + 6N2 − 4N + 1) + aN3

= a
(
N4 − 3N3 + 6N2 − 4N + 1

)
≤ a ·N4.

T (N −M) + T (M) +O(N3) ≤ a(N −M)4 + aM4 + aN3

≤ a
(
N4 − (4M − 1)N3 + 6N2M2 − 4NM3 + 2M4

)
≤ aN4.

This implies that T (N) = O(N4), i.e., DERIVEUIF(D,T, Q [T] ,VQ[T]) runs in O(N4). That is, line 4
(DERIVEUIF

(
D,V, P (V),VQ[V] = Iv(V)

)
) runs in O(|V|4). Therefore, Algo. 1 IFP runs in O(|V|4).

Theorem B.1 (Restated Thm. 1). Algo. 1 IFP derives a UIF for any identifiable Px(y) in a PAG G over V in O(|V|4) time
where |V| denotes the number of variables. IFP returns FAIL if Px(y) is not identifiable.

Proof. Soundness of IFP follows from Lemmas (1 - 5) and the soundness of the IDP (Algo. A.2) (Jaber et al., 2019).
Completeness follows from the completeness of IDP, since IFP fails if and only if IDP fails given that IDP and IFP share the
same failure conditions. Finally, IFP runs in O(|V|4) by Lemma S.6.

B.3. Proofs for Sec. 5

Assumption. In analyzing the properties of estimators TN , we assume strict boundedness for nuisances (ωj,k, θj,k,i) ∈ η
and their estimates (ω̂j,k, θ̂j,k,i) ∈ η̂: there exist constants M1,M2 > 0 such that M1 < (ωj,k, θj,k,i) < M2 and
M1 < (ω̂j,k, θ̂j,k,i) < M2.

Lemma B.6 (Restated Lemma 6). The UIF VPx(y)(V; η) returned by Algo. 1 IFP is an arithmetic combination (ratio,
multiplication, and marginalization) of UIFs for functionals in the form of CE-1, denoted as VPx(y)(V; η = {ωj ,θj}`j=1) =

A
(
{Vj(ωj ,θj)}`j=1

)
where Vj(ωj ,θj) denotes a UIF given by Lemma 1 with ωj = {ωj,k}

mj
k=1 and θj = {θj,0,1} ∪

{θj,k,1, θj,k,2}
mj
k=1 being nuisances for Vj , and A(·) an arithmetic function.
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Proof. IFP recursively calls DERIVEUIF, initially equipped with a UIF for P (v) which is a special case of CE-1. We show
that DERIVEUIF always returns an arithmetic function of the UIFs for CE-1. Suppose VQ[T] in DERIVEUIF is given as an
arithmetic function of UIFs for CE-1. Let B be a bucket satisfying line 8 of IFP in Algo. 1. Then, the UIF for Q[T\B],
denoted VQ[T\B], is given either by Lemma 1 (as a UIF for CE-1), or Lemma 2 (as a function of UIFs for CE-1), or by
Lemma 4 (Eq. (B.11,B.12,B.13)) as a function of VQ[T] (and φQ[T], µQ[T]) which is a function of UIFs for CE-1. If Line
15 is invoked, then the output is expressed as an arithmetic function of the outputs of several DERIVEUIF calls which are
functions of UIFs for CE-1.

Lemma S.7. Let Px(y) be identified as Px(y) = ψ ≡ Ψ(P ). Let D be the set of variables defined in line 3 of Algo. 1.
Then, the IF for ψ given by Algo. 1 is in the form of a linear combination of IFs for CE-1, denoted as

φPx(y) =
∑
d\y

∑̀
j=1

fj
∑
hj

φj(ωj ,θj),

where Hj ⊆ V are sets of variables, fj > 0 are constants, and φj(ωj ,θj) are IFs for CE-1.

Proof. Let φQ[D] denote the IF for Q[D]. It suffices to show that φQ[D] is in the form φQ[D] =
∑`
j=1 fj

∑
hj
φj(ωj ,θj)

since φPx(y) =
∑

d\y φQ[D]. It is obvious that φQ[D] is given as a linear combination of IFs for CE-1 if Q[D] is in CE-1 or
CE-2.

First assume Line 8 in IFP is invoked. φQ[T\X] is obviously a linear combination of IFs for CE-1 if Line 10 or 11 is
invoked. Next, we focus on the case of Line 12. Let T ⊆ V be a set of nodes defined in Lemma 3. We invoke the notation
SX = {Bj1 , · · · ,Bjp} and T\SX = {Bi1 , · · · ,Biq} from Lemma 3. For Bir ∈ T\SX, let T1

ir
≡ T\{Bir , preT(Bir )}

and T2
ir
≡ T\preT(Bir ). For Bjs ∈ SX, let T1

js
≡ T\{Bjs , preT(Bjs)} and T2

js
≡ T\preT(Bjs).

Let X be a bucket satisfying the criterion in Lemma 3. Suppose

φQ[T] =
∑̀
j=1

fj
∑
hj

φj(ωj ,θj).

Then, we will derive φQ[T\X]. We will use φ(·), V(·) and µ(·) to denote an IF, a UIF and EP [V(·)] of Q(·).

φQ[T\X] = φT\SX
· QSX\X + φSX\X · QT\SX

,

where by Lemma S.5,

φT\SX
=

q∑
r=1

 q∏
s=1
s 6=r

µPv\t(bis |preT(bis ))

φPv\t(bir |preT(bir ))

where

φPv\t(bis |preT(bis )) =
1∑

t2is
µQ[T]

∑
t1is

φQ[T] −

∑
t1is
µQ[T]∑

t2is
µQ[T]

1∑
t2is
µQ[T]

∑
t2is

φQ[T]

VPv\t(bis |preT(bis )) =
1∑

t2is
µQ[T]

∑
t1is

VQ[T] −

∑
t1is
µQ[T]∑

t2is
µQ[T]

1∑
t2is
µQ[T]

∑
t2is

φQ[T],
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and µPv\t(bis |preT(bis )) ≡ EP [VPv\t(bis |preT(bis ))]. That is,

φT\SX
=

q∑
r=1


q∏
s=1
s 6=r

µPv\t(bis |preT(bis ))

︸ ︷︷ ︸
=cr

T\SX


 1∑

t2ir
µQ[T]

∑
t1ir

φQ[T] −

∑
t1ir
µQ[T]∑

t2ir
µQ[T]

1∑
t2ir
µQ[T]

∑
t2ir

φQ[T]



=

q∑
r=1

crT\SX∑
t2ir
µQ[T]

∑
t2ir

φQ[T] −
q∑
r=1

∑
t1ir
µQ[T]∑

t2ir
µQ[T]

crT\SX∑
t2ir
µQ[T]

∑
t2ir

φQ[T].

Also, by Lemma S.5,

φSX\X =

p∑
r=1

∑
x

 p∏
s=1
s 6=r

µPv\t(bjs |preT(bjs ))

φPv\t(bjs |preT(bjs ))

where

φPv\t(bjs |preT(bjs )) =
1∑

t2js
µQ[T]

∑
t1js

φQ[T] −

∑
t1js
µQ[T]∑

t2js
µQ[T]

1∑
t2js
µQ[T]

∑
t2js

φQ[T]

VPv\t(bjs |preT(bjs )) =
1∑

t2js
µQ[T]

∑
t1js

VQ[T] −

∑
t1js
µQ[T]∑

t2js
µQ[T]

1∑
t2js
µQ[T]

∑
t2js

φQ[T],

and µPv\t(bjs |preT(bjs )) ≡ EP [VPv\t(bjs |preT(bjs ))]. That is,

φSX\X =

p∑
r=1

∑
x


p∏
s=1
s 6=r

µPv\t(bjs |preT(bjs ))

︸ ︷︷ ︸
=cr

SX\X


 1∑

t2jr
µQ[T]

∑
t1jr

φQ[T] −

∑
t1jr

µQ[T]∑
t2jr

µQ[T]

1∑
t2jr

µQ[T]

∑
t2jr

φQ[T]



=

p∑
r=1

∑
x

crSX\X∑
t2jr

µQ[T]

∑
t2jr

φQ[T] −
p∑
r=1

∑
x

∑
t1jr

µQ[T]∑
t2jr

µQ[T]

crSX\X∑
t2jr

µQ[T]

∑
t2jr

φQ[T].

Then,

φQ[T\X] = φT\SX
· QSX\X + φSX\X · QT\SX

,

=

q∑
r=1

QSX\X · crT\SX∑
t2ir
µQ[T]

∑
t1ir

φQ[T] −
q∑
r=1

∑
t1ir
µQ[T]∑

t2ir
µQ[T]

crT\SX
· QSX\X∑

t2ir
µQ[T]

∑
t2ir

φQ[T]

+
∑
x

p∑
r=1

crSX\X · QT\SX∑
t2jr

µQ[T]

∑
t1jr

φQ[T] −
∑
x

p∑
r=1

∑
t1jr

µQ[T]∑
t2jr

µQ[T]

crSX\X · QT\SX∑
t2jr

µQ[T]

∑
t2jr

φQ[T]

=

2∑
a1=1

∑
ca1

2∑
a2=1

ma1∑
r=1

da1a2
∑
ta1a2

φQ[T],

where C1 = ∅ and C2 = X; m1 = q and m2 = p; d11 =
QSX\X·c

r
T\SX∑

t2
ir
µQ[T]

, d12 = −
∑

t1
ir
µQ[T]∑

t2
ir
µQ[T]

crT\SX
·QSX\X∑

t2
ir
µQ[T]

, d21 =

crSX\X
·QT\SX∑

t2
jr
µQ[T]

, and d22 =

∑
t1
jr
µQ[T]∑

t2
jr
µQ[T]

crSX\X
·QT\SX∑

t2
jr
µQ[T]

; t11 = t1
ir

, t12 = t2
ir

, t21 = t1
jr

, and t22 = t2
jr

.
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Note we assume φQ[T] =
∑`
j=1 fj

∑
jj
φj(ωj ,θj). Then,

φQ[T\X] =

2∑
a1=1

∑
ca1

2∑
a2=1

ma1∑
r=1

da1a2
∑
ta1a2

∑̀
j=1

fj
∑
hj

φj(ωj ,θj)

=

2∑
a1=1

2∑
a2=1

ma1∑
r=1

∑̀
j=1

da1a2fj
∑
ca1

∑
ta1a2

∑
hj

φj(ωj ,θj).

This implies that φQ[T\X] is in the form of a linear combination of φj(ωj ,θj).

If line 15 (or Lemma 5) is invoked, then the IF is represented as follows:

φQ[T] =
Q[RT\RA

]

Q[RA ∩RT\RA
]
φQ[RA] +

Q[RA]

Q[RA ∩RT\RA
]
φQ[RT\RA

] −
Q[RA] ·Q[RT\RA

]

Q[RA ∩RT\RA
]

1

Q[RA ∩RT\RA
]
φQ[RA∩RT\RA

],

=

3∑
b1=1

cb1φQ[Tb1 ],

where c1 =
Q[RT\RA

]

Q[RA∩RT\RA
] , c2 = Q[RA]

Q[RA∩RT\RA
] and c3 = −Q[RA]·Q[RT\RA

]

Q[RA∩RT\RA
]

1
Q[RA∩RT\RA

] ; and T1 = RA, T2 =

RT\RA
, and T3 = RA∩RT\RA

. Therefore φQ[T] will be a linear combination of IFs for CE-1 whenever φTb1 are written
as a linear combination of IFs for CE-1 (i.e.,

∑`
j=1 fj

∑
jj
φj(ωj ,θj)).

We conclude that φQ[D] is always a linear combination of IFs for CE-1. This completes the proof.

Lemma S.8. The IF given in Lemma 1 for CE-1 is a Neyman orthogonal score with respect to η = (ω,θ) defined in
Lemma 1.

Proof. We recall that an IF for CE-1 is given as follows, by Eq. (B.8):

φ(V; η = {ω,θ}, ψ) = θ0,1 − ψ +

m∑
k=0

Ck 6=∅

ωk (θk,1 − θk,2) .

Let {i1, i2, · · · , ip} = {k ∈ {1, · · · ,m}|Ck 6= ∅}. Then, we can rewrite the IF as

φ(V; η = {ω,θ}, ψ) = θ0,1 − ψ +

p∑
r=1

ωir (θir,1 − θir,2) .

We rewrite the set of nuisances as ω = {ωir}
p
r=1 and θ = {θ0,1} ∪ {(θir,1, θir,2)}pr=1. For any nuisance ηs ∈ ω or ηs ∈ θ,

we will use η∗s with an asterisk (∗) mark to denote the true nuisance. Let ω∗ = {ω∗ir}
p
r=1, θ∗ = {(θ∗ir,1, θ

∗
ir,2

)}pr=1, and
η∗ = (ω∗,θ∗) be a set of true nuisances.

We recall that φ is a Neyman orthogonal score if it satisfies (1) EP [φ(V;ψ, η∗)] = 0 and (2) ∂
∂ηEP [φ(V;ψ, η)]|η=η∗ = 0.

To check the first condition, we first note that

EP [θ∗0,1]− ψ = EP (B0max )[EPπ [Iy(Y)|B0max
]]− ψ = EPπ [Iy(Y)]− ψ = ψ − ψ = 0,

where the third equality holds since B0max 6⊆ X, and P (B0max) = Pπ(B0max). Also, for any r ∈ {1, 2, · · · , p},

EP [ω∗ir
(
θ∗ir,1 − θ

∗
ir,2

)
] = EP (preT(Bir,min))

[
EP
{
ω∗ir
(
θ∗ir,1 − θ

∗
ir,2

)
|preT(Bir,min)

}]
= EP (preT(Bir,min))

ω∗ir EP {θ∗ir,1|preT(Bir,min)
}︸ ︷︷ ︸

=θ∗ir,2

−θ∗ir,2


= 0,
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where the first equality holds by the law of total expectation, and the second equality holds since ω∗ir and θ∗ir,2 are functions
of preT(Bir,min) and EP

{
θ∗ir,1|preT(Bir,min)

}
= θ∗ir,2.

We now check the second condition. Let ir be any fixed index. Let η∗ωir ≡ {ωir} ∪ {η
∗\ω∗ir}, which is a nuisance set

constructed by replacing the true nuisance ω∗ir to an arbitrary nuisance ωir from η∗. Also, let θir−1
denote θir,2 and

θir−1,1 (note θir−1,1 and θir,2 are the same nuisance, since they compose of the same set of conditional probabilities).
Let η∗θir−1

≡ {θir−1
} ∪ {η∗\θ∗ir−1

}. Then, φ is a Neyman orthogonal score if the derivative of the expectation of φ w.r.t.
nuisances evaluated at the true nuisance is zero (Chernozhukov et al., 2018, Def.2.1).

First,

∂

∂ωir
EP
[
φ(V; η∗ωir , ψ)

]
|ωir=ω∗ir

=
∂

∂ωir

m∑
j=r

(
EP
[
ωij

(
θ∗ij ,1 − θ

∗
ij ,2

)])
|ωir=ω∗ir

= 0,

where the last equality holds since EP
[
ωij

(
θ∗ij ,1 − θ

∗
ij ,2

)]
= EP

[
ωij

(
EP
{
θ∗ij ,1|preT(Bij ,min)

}
− θ∗ij ,2

)]
=

EP
[
ωij

(
θ∗ij ,2 − θ

∗
ij ,2

)]
= 0.

Second,

∂

∂θir−1

EP
[
φ(V; η∗θir−1

, ψ)
]
|θir=θ∗ir−1

=
∂

∂θir−1

EP
[
ω∗ir−1

θir−1,1 − ω∗irθir,2
]

= EP [ω∗ir−1
− ω∗ir ] = 0.

The second equality holds since θir−1,1, θir,2 are the same nuisance composing the same set of conditional probabilities.
The third equality holds by the law of total expectation. The first equality holds since

∂

∂θir−1

EP [φ(V; η, ψ)]

=
∂

∂θir−1

EP

[
p∑
s=1

ωis (θis,1 − θis,2)

]

=
∂

∂θir−1

EP

[
p∑
s=1

ωisθis,1 −
p∑
s=1

ωisθis,2

]

=
∂

∂θir−1

EP

 p∑
s=1

θis−1,1
6=θir−1

ωisθis,1 −
p∑
s=1

θis,2
6=θir−1

ωisθis,2


︸ ︷︷ ︸

=0

+
∂

∂θir
EP

 p∑
s=1

θis−1,1
=θir−1

ωisθis,1 −
p∑
s=1

θis,2
=θir−1

ωisθis,2



=
∂

∂θir
EP
[
ωir−1θir−1,1 − ωirθir,2

]
.

Therefore, φ is a Neyman orthogonal score with respect to η.

Proposition B.1 (Restated Prop. 3). Let Px(y) be identified as Px(y) = ψ ≡ Ψ(P ). Then, the IF φPx(y) = VPx(y) −
EP [VPx(y)], where VPx(y) is derived by Algo. 1 IFP, is a Neyman orthogonal score for ψ.

Proof. Recall that the set of nuisances for φPx(y) is η = {ωj ,θj}`j=1, where ωj = {ωj,k}
mj
k=1 and θj = {θj,0,1} ∪

{θj,k,1, θj,k,2}
mj
k=1 are nuisances as specified in Lemma 6. By Lemma S.7, φPx(y) is a linear combination of IFs of CE-1 in

the form of

φPx(y) =
∑
d\y

∑̀
j=1

fj
∑
hj

φj(ωj ,θj).

For any fixed j ∈ {1, 2, · · · , `} and k ∈ {1, 2, · · · ,mj}, let ηj,k ∈ {ωj,k, (θj,k−1,1, θj,k,2)}. Let η∗ denote a set of true
nuisances. Let η∗ηj,k ≡ {ηj,k} ∪ {η

∗\η∗j,k} constructed by replacing η∗j,k in η∗ with an arbitrary nuisance ηj,k.
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We recall that φ is a Neyman orthogonal score if it satisfies (1) EP [φ(V;ψ, η∗)] = 0 and (2) ∂
∂ηEP [φ(V;ψ, η)]|η=η∗ = 0.

To witness φPx(y) is a Neyman orthogonal score, we first check whether EP [φPx(y)(V; η∗, ψ)] = 0 holds. This holds,
since EP [φj(ω

∗
j ,θ
∗
j )] = 0 by Lemma S.8. Then, we will check whether ∂

∂ηj,k
EP [φPx(y)(V; η∗ηj,k , ψ)]|ηj,k=η∗j,k

= 0 holds.
Consider the following:

∂

∂ηj,k
EP [φPx(y)(V; η∗ηj,k , ψ)]|ηj,k=η∗j,k

=
∂

∂ηj,k

∑
d\y

∑̀
j=1

ηj,k∈{ωj ,θj}

fj
∑
hj

EP [φj(ωj ,θj)]

=
∑
d\y

∑̀
j=1

ηj,k∈{ωj ,θj}

fj
∑
hj

∂

∂ωj,k
EP [φj(ωj ,θj)]|ηj,k=η∗j,k

= 0,

where the last equality holds by Lemma S.8. This implies that φPx(y) is a Neyman orthogonal score.

Lemma S.9 (Sufficient condition for consistency). Let TN be an estimator for ψ. If TN is asymptotically unbiased (i.e.,
limN→∞ EP [TN ]− ψ = 0) and limN→∞ V ar(TN ) = 0, then TN is consistent for ψ; i.e., TN − ψ = oP (1).

Proof. For any ε > 0, by Markov inequality,

P (|TN − ψ| > ε) ≤ EP [(TN − ψ)2]

ε2
.

Let µTN ≡ EP [TN ]. By the bias-variance decomposition, we note

EP [(TN − ψ)2] = (µTN − ψ)2 + EP [(TN − µTN )2],

and therefore,

P (|TN − ψ| > ε) ≤ 1

ε2
(
(µTN − ψ)2 + EP [(TN − µTN )2]

)
=

1

ε2
(
(µTN − ψ)2 + V ar(TN )

)
.

By the given condition that µTN − ψ → 0, and limN→∞ V ar(TN ) = 0, we have

lim
N→∞

P (|TN − ψ| > ε) ≤ lim
N→∞

1

ε2
(
(µTN − ψ)2 + V ar(TN )

)
= 0,

implying that limN→∞ P (|TN − ψ| > ε) = 0.

Lemma S.10. Suppose Px(y) is identified as CE-1. Let TN denote the DML-IDP estimator (Def. 5) of Px(y) constructed
based on the UIF of Px(y) in Lemma 1 with nuisances ω = {ωk}mk=1 and θ = {θ0,1} ∪ {θk,1, θk,2}mk=1. Then, TN is
consistent if, for every k, either estimates ω̂k or (θ̂k−1,1, θ̂k,2) converge to the true nuisances at rate oP (1).

Proof. Let V denote the UIF. Let V̂ ≡ V(V; η̂). To show that TN is a consistent estimator for ψ (i.e., TN − ψ = oP (1)),
it suffices to show that EP

[
V̂ − V

]
= oP (1) by Lemma S.9, since V ar(TN ) = 1

N V ar(V̂)→ 0 as N →∞ by the strict
boundedness assumption.

Let Xk = Bjk , i.e., X = {X1 ≺ · · · ≺ Xm} = {Bj1 ≺ · · · ≺ Bjm}. Then, we rewrite ωk ≡
∏k
r=1

Ixr (Xr)
P (Xr|preT(Xr)) . Let

ωkj ≡
∏k
r=j

Ixr (Xr)
P (Xr|preT(Xr)) . Let wr ≡ Ixr (Xr)

P (Xr|preT(Xr)) . Let

Qj ≡ θj−1,1 +

m∑
k=j

ωkj (θk,1 − θk,2) .

Then, Q1 = V .
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Since

Qj = θj−1,1 + wj (θj,1 − θj,2) + wjwj+1 (θj+1,1 − θj+1,2) + · · ·
Qj+1 = θj,1 + wj+1 (θj+1,1 − θj+1,2) + wj+1wj+2 (θj+2,1 − θj+2,2) + · · ·

wjQj+1 = wjθj,1 + wjwj+1 (θj+1,1 − θj+1,2) + wjwj+1wj+2 (θj+2,1 − θj+2,2) + · · · ,

we can rewrite Qj as

Qj = wj (Qj+1 − θj,1) + wj (θj,1 − θj,2) + θj−1,1

= wj (Qj+1 − θj,2) + θj−1,1.

Let Q̂j denote an estimated Qj with η̂. Then,

EP
[
Q̂j − θj,2

]
= EP

[
ŵj

(
Q̂j+1 − θ̂j,2

)
+ θ̂j−1,1 − θj,2

]
= EP

[
ŵj

(
Q̂j+1 − θj+1,2

)
+ ŵj

(
θj+1,2 − θ̂j,2

)
+ θ̂j−1,1 − θj,2

]
= EP

[
ŵj

(
Q̂j+1 − θj+1,2

)
+ ŵj

(
θj,1 − θ̂j,2

)
+
(
θj,2 − θ̂j,2

)]
= EP

[
ŵj

(
Q̂j+1 − θj+1,2

)]
+ EP

[
ŵj

(
θj,2 − θ̂j,2

)
+
(
θj,2 − θ̂j,2

)]
= EP

[
ŵj

(
Q̂j+1 − θj+1,2

)]
+ EP

[
ŵj

(
θj,2 − θ̂j,2

)
+
(
θj,2 − θ̂j,2

)]
= EP

[
ŵj

(
Q̂j+1 − θj+1,2

)]
+ oP

(
‖ŵj − wj‖2 ·

∥∥∥θj,2 − θ̂j,2∥∥∥
2

)
.

Note that EP [θ1,2] = EP [θ0,1] = ψ = EP [V]. Then, this implies that

EP
[
V̂ − V

]
= EP

[
Q̂1 − θ1,2

]
=

m∑
k=1

oP

(
‖ŵj − wj‖2 ·

∥∥∥θj,2 − θ̂j,2∥∥∥
2

)
. (B.15)

Under the strict boundedness assumption and the given condition (i.e., either estimates ω̂j or (θ̂j−1,1, θ̂j,2) converge to the

true nuisances at rate oP (1) ), Eq. (B.15) =
∑m
k=1 oP

(
‖ŵj − wj‖2 ·

∥∥∥θj,2 − θ̂j,2∥∥∥
2

)
= oP (1). That is, EP

[
V̂ − V

]
=

oP (1).

Theorem B.2 (Restated Thm. 2). Let TN be the DML-IDP estimator of Px(y) defined in Def. 5 constructed based on
the UIF VPx(y)(V; η = {ωj ,θj}`j=1) where ωj = {ωj,k}

mj
k=1 and θj = {θj,0,1} ∪ {θj,k,1, θj,k,2}

mj
k=1 are nuisances as

specified in Lemma 6. Suppose TN is bounded from above by some constant C ∈ R; i.e., TN < C <∞. Then,

1. Debiasedness: TN is
√
N -consistent and asymptotically normal if estimates for all nuisances converge to the true

nuisances at least at rate oP (N−1/4).

2. Doubly robustness: TN is consistent if, for every j = 1, · · · , ` and k = 1, · · · ,mj , either estimates ω̂j,k or
(θ̂j,k−1,1, θ̂j,k,2) converge to the true nuisances at rate oP (1).

Proof. We note that φPx(y) (V; η, ψ) = VPx(y)(V; η) − ψ, where VPx(y) is derived from IFP in Algo. 1, is a Neyman
orthogonal score for ψ with nuisances η by Prop. 3. We also note that TN is a DML estimator satisfying the definition
in (Chernozhukov et al., 2018, Def.3.1) since TN satisfies

∑
p∈{0,1}

2
N

∑
V(i)∈Dp φPx(y)

(
V(i); η̂, TN

)
= 0. Then, the

Debiasedness property follows by (Chernozhukov et al., 2018, Thm.3.1).

The Doubly robustness property comes from that VPx(y) is an arithmetic function of UIFs Vj(ωj ,θj) for CE-1 (by
Lemma 6) that are given by Lemma 1. Specifically, an arithmetic function is a continuous function of Vj(ωj ,θj) by the strict
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Figure C.4: DAGs for the SCMs used in the experiments corresponding to the PAGs in Figs. 2a, 2b, and 1.

boundedness assumption. By Lemma S.10, each estimates of Vj(ωj ,θj) achieves consistency under the given condition.
Then, by the continuous mapping theorem, the estimate of VPx(y) achieves consistency. This implies that TN is a consistent
estimator of ψ.

C. Details of Experiments
C.1. Evaluating nuisances

We estimate ωk ∈ ω in the UIF for CE-1 (in Lemma 1) by estimating the conditional probabilities composing ωk and
plugging those into the functional ωk (i.e., estimating P̂ (bjr |preT(bjr )) for r = 1, · · · , k and plugging those into the
functional of ωk). Conditional probabilities are estimated using a gradient boosting model XGBoost (Chen & Guestrin,
2016).

For (θk,1, θk,2) ∈ θ, we use backward-iterated regression in the literature (Bang & Robins, 2005; Van der Laan & Rose,
2011; Molina et al., 2017; Rotnitzky et al., 2017). For k = m,m− 1, · · · , 1, given θ̂k,1 (where θ̂m,1 = {Iy(Y(i))}Ni=1),

1. Estimate θ̂k,2 by regressing θ̂k,1 onto preT(Bkmin); i.e., θ̂k,2 = fθ̂k,1 (preT(Bkmin)), where fa(b) is a regression
estimate regressing a onto b (e.g., neural networks, gradient boosting, etc). In the experiments, we employed a gradient
boosting model XGBoost (Chen & Guestrin, 2016)); then,

2. Estimate θ̂k−1,1 by evaluating fθ̂k,1 ((preT(Bkmin
)\{Bjk},bjk)), a regression estimate evaluated at covariates

preT(Bkmin) where Bjk is fixed to bjk .

C.2. Structural Causal Models used in the experiments

In generating synthetic data for the simulation, we specify a Structural Causal Model (SCM) for each PAG (which is
concealed for the sake of the tested algorithms). The directed acyclic graphs (DAGs) (with bidirected edges encoding latent
variables) corresponding to the SCMs are shown in Fig. C.4. The DAGs in Fig. C.4 correspond to the PAGs in Fig. 1 and 2
which represent the Markov equivalence class (MEC) of the corresponding DAGs.

The following notations are used. Let N(µ, σ2) denote a random variable following Normal distribution with the mean and
the variance equals to µ, and σ2, respectively. For a continuous random variable A, let C(A) denote a mapping assigning
a discrete value corresponding to the value of A. For any random variable D, let B(D) ≡ Bernoulli(logit−1(D)), where
logit−1(·) is an inverse-logit function, and Bernoulli(p) for p ∈ (0, 1) denotes a Bernoulli random variable.
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Fig. 2a. The SCM corresponding to Fig. 2a is the following:

fA = C(N(2, 1))

fB = C(N(−1, 2))

fC = C(N(0, 0.5))

fX1
(A,B) = B (N(0, 1) +A−B − 1)

fZ(X1) = C(N(2X1 − 1, 0.5))

fX2
(X1, C, Z) = B (N(0, 1)− Z + C)

fY (X1, X2, Z) = B (X1 · Z −X2 · Z +N(0, 1)) .

Fig. 2b. The SCM corresponding to Fig. 2b is the following:

fUX,Y1 = N(2, 1)

fUY1,Y4 = N(−2, 2)

fUY3,Y4 = N(−1, 0.5)

fC = C(N(1, 2))

fX(C,UX,Y1) = B (N(0, 1) + C − 2UX,Y1 + 2)

fY1(UX,Y1 , UY1,Y4) = C (N (N(0, 1)− 2UX,Y1 + UY1,Y4 , 3))

fY2 (X) = C (N(2X − 1, 3))

fY3 (Z,UY3,Y4) = C (N(Z · UY3,Y4 , 3))

fY4 (UY1,Y4 , UY3,Y4) = C (N(2UY1,Y4 − UY3,Y4 , 3))

fY (Y1, Y3, Y4) = B (−Y1Y4 + Y3Y4 + Y1 − 2) .

Fig. 1. The SCM corresponding to Fig. 1 is the following:

fUX,Y1 = N(2, 1)

fUY1,R = N(−1, 2)

fUR,Y2 = N(−2, 2)

fUY2,Y3 = N(1, 2)

fY1(UX,Y1 , UY1,R) = C(N(UX,Y1 − UY1,R, 2))

fR(UY1,R, UR,Y2) = C(N(N(0, 1)− 2UY1,R + UR,Y2 , 3))

fX(R,UX,Y1) = B (N (N(0, 1) +R− 2UX,Y1 + 2, 3))

fY2 (UR,Y2 , UY2,Y3) = C (N (N(0, 1)− UY2,Y3 + 3UR,Y2 , 3))

fY3 (X,UY2,Y3) = C (N((2X − 1)UY2,Y3 , 3))

fY4 (Y1, Y2, Y3) = B (−Y1Y3 + Y1Y2 + Y1 − 2) .

C.3. Computing ground truth

We establish ground-truth µ(x) ≡ Px(y) by generating a data set from the submodel Mx of the given SCM M .
That is, we replace fXi for Xi ∈ X to the constant fXi = xi, generate the dataset, and compute the ground-
truth by µ(x) ≡ NX=x,Y=y

NX=x
, where N is the number of data generated from Mx, and NX=x ≡

∑N
i=1 Ix(X(i)), and

NX=x,Y=y ≡
∑N
i=1 Ix(X(i))Iy(Y(i)).

C.4. Code

Code can be found in https://github.com/yonghanjung/ICML21-DMLIDP.

https://github.com/yonghanjung/ICML21-DMLIDP

