Supplementary Material for the ICML 2021 Publication: A Nullspace Property for Subspace-Preserving Recovery

1 Introduction

A note on numbering. When we refer to a theorem/proposition/equation/etc. in this Supplementary Material, if its number has a section number in it, then it refers to a theorem/proposition/equation/etc. in the Supplementary Material. Otherwise it is a result in the original paper.

2 Preliminaries and problem formulation

Detailed notation and preliminaries. The set of integers from 1 up to N is denoted as $[N] := \{1, \ldots, N\}$. For any $\boldsymbol{c} \in \mathbb{R}^N$, the support of \boldsymbol{c} is denoted as $\operatorname{Supp}(\boldsymbol{c}) := \{k \in [N] : c_k \neq 0\}$. The vector \boldsymbol{c} is called s-sparse if $|\operatorname{Supp}(\boldsymbol{c})| \leq s$. For any index set $S \subseteq [N]$, the complement of S in [N] is denoted by S^c . For a nonempty set $S \subseteq [N]$, the vector $\boldsymbol{c}_S \in \mathbb{R}^{|S|}$ denotes the part of \boldsymbol{c} that is supported on S. We use $\operatorname{Pr}_S \in \mathbb{R}^{N \times N}$ to denote the matrix that projects onto the coordinates in S and sets all other coordinates to zero. For a matrix $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ and an index set $S \subseteq [N]$, the matrix $\boldsymbol{X}_S \in \mathbb{R}^{D \times |S|}$ denotes the submatrix of \boldsymbol{X} consisting of the columns of \boldsymbol{X} indexed by S. Therefore, for all $\boldsymbol{c} \in \mathbb{R}^N$, we have $\boldsymbol{X} \operatorname{Pr}_S \boldsymbol{c} = \boldsymbol{X}_S \boldsymbol{c}_S$. If $S = \{j\}$ for some j, we simply write \boldsymbol{x}_j instead of \boldsymbol{X}_S , to refer to the jth-column of \boldsymbol{X} . We prioritize the subscript over superscript in the sense that $\boldsymbol{X}_S^\top \equiv (\boldsymbol{X}_S)^\top$, and not $(\boldsymbol{X}^\top)_S$. Finally, Null(\boldsymbol{X}) denotes the nullspace of the matrix \boldsymbol{X} and $\boldsymbol{X}^{-1}(\cdot)$ denotes the inverse image under \boldsymbol{X} .

The ℓ_p -norm of a vector $\boldsymbol{x} \in \mathbb{R}^{D}$ is defined as $\|\boldsymbol{x}\|_p := (\sum_{k=1}^{D} |\boldsymbol{x}_k|^p)^{\frac{1}{p}}$, where $|\cdot|$ denotes the absolute value. The unit ℓ_p -sphere is denoted by $\mathbb{S}_p^{D-1} := \{\boldsymbol{x} \in \mathbb{R}^D : \|\boldsymbol{x}\|_p = 1\}$ and the unit ℓ_p -ball is denoted by $\mathbb{B}_p^D := \{\boldsymbol{x} \in \mathbb{R}^D : \|\boldsymbol{x}\|_p \leq 1\}$.

The convex hull is denoted by $\operatorname{conv}(\cdot)$. We denote the convex hull of the union of the columns of Xand -X by $\mathcal{K}(X)$. Sometimes we refer to it as the symmetrized convex hull of the columns of X. For a nonempty convex set $\mathcal{C} \subseteq \mathbb{R}^D$, the set of extreme points of \mathcal{C} is denoted as $\operatorname{Ext}(\mathcal{C})$. These are precisely the points that cannot be written as a nontrivial convex combination of two distinct points in \mathcal{C} . The *interior* of \mathcal{C} is given by $\operatorname{inte}(\mathcal{C}) := \{x \in \mathcal{C} : \exists \varepsilon > 0 \text{ s.t. } x + \varepsilon \mathbb{B}_1^D \subseteq \mathcal{C}\}$. Note that according to this definition, the interior of \mathcal{C} can be empty, although \mathcal{C} is non-empty. The affine hull of \mathcal{C} , denoted by $\operatorname{aff}(\mathcal{C})$, is the smallest affine set in \mathbb{R}^D that contains \mathcal{C} . The relative interior [1, p.44] of \mathcal{C} is defined as $\operatorname{rinte}(\mathcal{C}) := \{x \in \operatorname{aff}(\mathcal{C}) : \exists \varepsilon > 0, (x + \varepsilon \mathbb{B}_2^D) \cap \operatorname{aff}(\mathcal{C}) \subseteq \mathcal{C}\}$. The polar [1, p.125] of \mathcal{C} is defined as

$$\mathcal{C}^{\circ} := \{ \boldsymbol{q} \in \mathbb{R}^{D} : \boldsymbol{q}^{\top} \boldsymbol{x} \le 1 \text{ for all } \boldsymbol{x} \in \mathcal{C} \}.$$

$$(2.1)$$

Note \mathcal{C}° is always a closed, convex set [1, p.125]. For any $\varepsilon > 0$, we have $(\varepsilon \mathcal{C})^{\circ} = \frac{1}{\varepsilon} \mathcal{C}^{\circ}$ [1, Cor. 16.1.2]. If \mathcal{C} is closed and contains the origin, then \mathcal{C}° is compact if and only if $0 \in \text{inte}(\text{conv}(\mathcal{C}))$ [1, Cor. 14.5.1]. If $\mathcal{C}_1, \mathcal{C}_2 \subset \mathbb{R}^D$ are closed convex sets, then $\mathcal{C}_1 \subseteq \mathcal{C}_2$ if and only if $\mathcal{C}_2^{\circ} \subseteq \mathcal{C}_1^{\circ}$ [1, p.125]. We define the dual $\|\cdot\|_*$ of a norm $\|\cdot\|$ as $\|z\|_* := \sup_{\|y\| \leq 1} z^\top y$. Then, if ℓ_q denotes the dual of ℓ_p -norm, we have $\frac{1}{p} + \frac{1}{q} = 1$ and $\mathbb{B}_q^D = (\mathbb{B}_p^D)^{\circ}$.

We define the *inner*- ℓ_p -radius of a nonempty compact convex set $\mathcal{C} \subseteq \mathbb{R}^D$ containing the origin as the radius of the largest ℓ_p -ball (confined to the linear span of \mathcal{C}) one can inscribe inside \mathcal{C} , and denote it by $\mathfrak{r}_p(\mathcal{C})$. That is, $\mathfrak{r}_p(\mathcal{C}) := \max\{\alpha \in \mathbb{R}_{>0} : \alpha(\mathbb{B}_p^D \cap \operatorname{span}(\mathcal{C})) \subseteq \mathcal{C}\}$, where $\operatorname{span}(\mathcal{C})$ denotes the subspace spanned by \mathcal{C} . Likewise, we define the *outer*- ℓ_p -radius of \mathcal{C} as the radius of the smallest ℓ_p -ball that contains \mathcal{C} , and denote it by $\mathfrak{R}_p(\mathcal{C})$. That is, $\mathfrak{R}_p(\mathcal{C}) := \min\{\beta \in \mathbb{R}_{>0} : \beta \mathbb{B}_p^D \supseteq \mathcal{C}\}$.

A nullspace property for subspace-preserving recovery 3

Proof of Lemma 1

Proof. Since each column of X_P can be written as a convex combination of the union of the columns of $X_{\tilde{P}}$ and $-\boldsymbol{X}_{\tilde{P}}$, we conclude that $\boldsymbol{X}_{P} = \boldsymbol{X}_{\tilde{P}}Y_{P}$ for some $Y_{P} \in \mathbb{R}^{|\tilde{P}| \times |P|}$ with columns in $\mathbb{S}_{1}^{|\tilde{P}|-1}$. Also $\boldsymbol{X}_{\tilde{P}} = \tilde{\boldsymbol{X}}_{\tilde{P}}$ holds trivially.

 \Rightarrow : Suppose that X satisfies SNSP. Let $\tilde{\eta} \in \text{Null}(\tilde{X}, \tilde{\mathcal{P}})$ and $\tilde{P} \in \tilde{\mathcal{P}}$. There exists a unique $P \in \mathcal{P}$ such that $\tilde{P} \subseteq P$. We lift $\tilde{\eta}$ to $\eta \in \text{Null}(\boldsymbol{X}, \mathcal{P})$ by inserting zeros at the missing indices. Since \boldsymbol{X} satisfies SNSP, the problem $\min_{c: \mathbf{X}_P(\eta_P) = \mathbf{X}_P(c)} \|c\|_1$ has a minimizer \hat{c} which satisfies

$$\|\hat{c}\|_1 < \|\eta_{P^c}\|_1 \tag{3.2}$$

Furthermore, we have

$$\tilde{\boldsymbol{X}}_{\tilde{P}}(Y_{P}\hat{c}) = (\tilde{\boldsymbol{X}}_{\tilde{P}}Y_{P})\hat{c} = \boldsymbol{X}_{P}\hat{c} = \boldsymbol{X}_{P}\eta_{P} = \tilde{\boldsymbol{X}}_{\tilde{P}}\tilde{\eta}_{\tilde{P}},$$
(3.3)

and we conclude that

$$\min_{\boldsymbol{c}: \tilde{\boldsymbol{X}}_{\tilde{P}} \tilde{\eta}_{\tilde{P}} = \tilde{\boldsymbol{X}}_{\tilde{P}}(\boldsymbol{c}) } \|\boldsymbol{c}\|_{1} \leq \|Y_{P} \hat{c}\|_{1}$$
 Since $Y_{P} \hat{c}$ is feasible by (3.3).
$$\leq \|\hat{c}\|_{1}$$
 Since Y_{P} has normalized columns.
$$< \|\eta_{P^{c}}\|_{1}$$
 By (3.2)
$$= \|\tilde{\eta}_{\tilde{P}^{c}}\|_{1},$$

and so, \tilde{X} satisfies SNSP.

 \Leftarrow : Conversely, suppose \tilde{X} satisfies SNSP. Let $\eta \in \text{Null}(X, \mathcal{P})$. Suppose that X has r columns, and define $\tilde{\eta} \in \mathbb{R}^r$ as the vector satisfying $\tilde{\eta}_{\tilde{P}} := Y_P \eta_P$ for all $P \in \mathcal{P}$. Note that we have

$$\boldsymbol{X}_{\tilde{P}}(\tilde{\eta}_{\tilde{P}}) = (\boldsymbol{X}_{\tilde{P}}Y_P)\eta_P = \boldsymbol{X}_P\eta_P.$$
(3.4)

Hence, $\tilde{\boldsymbol{X}}\tilde{\eta} = \sum_{\tilde{P}\in\tilde{\mathcal{P}}} \tilde{\boldsymbol{X}}_{\tilde{P}}(\tilde{\eta}_{\tilde{P}}) = \sum_{P\in\mathcal{P}} \boldsymbol{X}_{P}\eta_{P} = \boldsymbol{X}\eta = 0$. So, we conclude that $\tilde{\eta} \in \text{Null}(\tilde{\boldsymbol{X}})$. If $\boldsymbol{X}_{P}\eta_{P} = 0$ for all $P \in \mathcal{P}$, we have $\min_{\boldsymbol{c}:\boldsymbol{X}_{P}(\eta_{P})=\boldsymbol{X}_{P}(\boldsymbol{c})} \|\boldsymbol{c}\|_{1} = 0 < \|\eta_{P^{c}}\|_{1}$ for all $P \in \mathcal{P}$. Therefore, (4) is satisfies for η and for all $P \in \mathcal{P}$ trivially. So, w.l.o.g. we can assume that there exists $Q, T \in \mathcal{P}$ with $Q \neq T$, such that $X_Q \eta_Q \neq 0 \neq X_T \eta_T$. In turn, we have $\tilde{X}_{\tilde{Q}} \tilde{\eta}_{\tilde{Q}} \neq 0 \neq \tilde{X}_{\tilde{T}} \tilde{\eta}_{\tilde{T}}$ by (3.4). Hence, w.l.o.g. Supp $(\tilde{\eta})$ is not contained in \tilde{P} for any $\tilde{P} \in \tilde{\mathcal{P}}$, and we have $\tilde{\eta} \in \text{Null}(\tilde{X}, \tilde{\mathcal{P}})$.

Now we let $P \in \mathcal{P}$, and argue as follows:

$$\min_{\boldsymbol{c}:\boldsymbol{X}_{P}(\eta_{P})=\boldsymbol{X}_{P}(\boldsymbol{c})} \|\boldsymbol{c}\|_{1} = \min_{\boldsymbol{c}:(\tilde{\boldsymbol{X}}_{\tilde{P}}Y_{P})(\eta_{P})=\boldsymbol{X}_{P}(\boldsymbol{c})} \|\boldsymbol{c}\|_{1}$$

$$\leq \min_{\boldsymbol{z}:\tilde{\boldsymbol{X}}_{\tilde{P}}(\tilde{\eta}_{\tilde{P}})=\tilde{\boldsymbol{X}}_{\tilde{P}}(\boldsymbol{z})} \|\boldsymbol{z}\|_{1}$$
By restricting the constraint set.
$$< \|\tilde{\eta}_{\tilde{P}^{c}}\|_{1}$$
Since $\tilde{\boldsymbol{X}}$ satisfies SNSP.
$$= \sum_{\tilde{Q}\neq\tilde{P},\tilde{Q}\in\tilde{\mathcal{P}}} \|\tilde{\eta}_{\tilde{Q}}\|_{1}$$

$$= \sum_{Q\neq P,Q\in\mathcal{P}} \|Y_{Q}\eta_{Q}\|_{1}$$

$$\leq \sum_{Q\neq P,Q\in\mathcal{P}} \|\eta_{Q}\|_{1}$$
Since Y_{Q} has normalized columns.
$$= \|\eta_{P^{c}}\|_{1}.$$

Hence, X satisfies SNSP.

A geometrically interpretable characterization of SNSP 4

There are no extra proofs for this section, or any additional material of other kind.

Reduction of the verification of SNSP to a decision on finite $\mathbf{5}$ sets

Reformulation of SNSP

Lemma 5.1. For any $P \in \mathcal{P}$, the function $f_P : \mathbb{R}^N \to \mathbb{R}_{>0}$ defined as

$$f(\eta) = \|\eta_P\|_1 + \min_{z: X_P z = X_P \eta_P} \|z\|_1$$
(5.5)

is convex and positively homogeneous of degree 1.

Proof. We first aim to establish that f_P is a convex function. Let $\lambda \in [0,1]$ and $w, y \in \mathbb{R}^N$. Then,

$$f_{P}(\lambda w + (1 - \lambda)y) = \|\lambda w_{P} + (1 - \lambda)y_{P}\|_{1} + \min_{\boldsymbol{z}:\boldsymbol{X}_{P}(\lambda w_{P} + (1 - \lambda)y_{P}) = \boldsymbol{X}_{P}(\boldsymbol{z})} \|\boldsymbol{z}\|_{1}$$

$$\leq \|\lambda w_{P} + (1 - \lambda)y_{P}\|_{1} + \|\lambda(w_{P} + \eta_{w}) + (1 - \lambda)(y_{P} + \eta_{y})\|_{1} \quad \text{for all } \eta_{w}, \eta_{y} \in \text{Null}(\boldsymbol{X}_{P})$$

$$\leq \lambda(\|w_{P}\|_{1} + \|w_{P} + \eta_{w}\|_{1}) + (1 - \lambda)(\|y_{P}\|_{1} + \|y_{P} + \eta_{y}\|_{1}) \quad \text{for all } \eta_{w}, \eta_{y} \in \text{Null}(\boldsymbol{X}_{P}).$$

In particular,

$$f_P(\lambda w + (1 - \lambda)y)$$

$$\leq \lambda \left(\|w_P\|_1 + \min_{\boldsymbol{z}: \boldsymbol{X}_P(w_P) = \boldsymbol{X}_P(\boldsymbol{z})} \|\boldsymbol{z}\|_1 \right) + (1 - \lambda) \left(\|y_P\|_1 + \min_{\boldsymbol{z}: \boldsymbol{X}_P(y_P) = \boldsymbol{X}_P(\boldsymbol{z})} \|\boldsymbol{z}\|_1 \right)$$

$$= \lambda f_P(w) + (1 - \lambda) f_P(y),$$

which establishes that f_P is a convex function.

In order to show positive homogeneity, let $\alpha \in \mathbb{R}_{>0}$. Then, it follows that

$$f_P(\alpha w) = \|\alpha w_P\|_1 + \min_{\boldsymbol{z}: \boldsymbol{X}_P(\alpha w_P) = \boldsymbol{X}_P(\boldsymbol{z})} \|\boldsymbol{z}\|_1$$

$$= \alpha \|w_P\|_1 + \min_{\boldsymbol{z}: \boldsymbol{X}_P(w_P) = \boldsymbol{X}_P(\frac{1}{\alpha}\boldsymbol{z})} \|\boldsymbol{z}\|_1$$

$$= \alpha \|w_P\|_1 + \min_{\boldsymbol{y}: \boldsymbol{X}_P(w_P) = \boldsymbol{X}_P(\boldsymbol{y})} \|\alpha \boldsymbol{y}\|_1$$

$$= \alpha \|w_P\|_1 + \alpha \min_{\boldsymbol{y}: \boldsymbol{X}_P(w_P) = \boldsymbol{X}_P(\boldsymbol{y})} \|\boldsymbol{y}\|_1 = \alpha f_P(w),$$

which completes the proof.

Proposition 5.1. The matrix X satisfies SNSP if and only if for all $\eta \in \text{Null}(X, \mathcal{P}) \cap \mathbb{B}_1^N$ and for all $P \in \mathcal{P}$, we have

$$\|\eta_P\|_1 + \min_{\boldsymbol{z}: \boldsymbol{X}_P(\eta_P) = \boldsymbol{X}_P(\boldsymbol{z})} \|\boldsymbol{z}\|_1 < 1$$
(5.6)

Proof. The matrix \boldsymbol{X} satisfies SNSP if and only if $\eta \in \text{Null}(\boldsymbol{X}, \mathcal{P})$ and for all $P \in \mathcal{P}$, we have $f_P(\eta) < \|\eta\|_1$. That is, if and only if, $f_P\left(\frac{\eta}{\|\eta\|_1}\right) < 1$, since f_P is positively homogeneous by Lemma 5.1. Hence, X satisfies SNSP if and only if for all $\eta \in \text{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{S}_1^{N-1}$ and for all $P \in \mathcal{P}$, we have $f_P(\eta) < 1$. This is true, if and only, for all $\eta \in \text{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_1^N$ and for all $P \in \mathcal{P}$ (5.6) holds, as claimed.

Proof of Thm. 3

Proof. We will use Prop. 5.1 to show the equivalence. For this purpose, what we need to show is the following: The inequality (5.6) holds for all $P \in \mathcal{P}$ and for all $\eta \in \text{Null}(\mathbf{X}, \mathcal{P}) \cap \mathbb{B}_1^N$, if and only if, it holds for all $P \in \mathcal{P}$ and for all $\eta \in \text{Ext}(\text{Null}(\boldsymbol{X}) \cap \mathbb{B}_1^N, \mathcal{P}).$ $\Rightarrow: \text{Obvious, since } \text{Ext}(\text{Null}(\boldsymbol{X}) \cap \mathbb{B}_1^N, \mathcal{P}) \subset \text{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_1^N.$

 $\leftarrow: \text{Let } P \in \mathcal{P}, \text{ and } \eta \in \text{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_1^N. \text{ Then, there exists } r \geq 1, \ \{w_l\}_{l=1}^r \in \text{Ext}(\text{Null}(\boldsymbol{X}) \cap \mathbb{B}_1^N) \text{ and } \{\lambda_l\}_{l=1}^r \subset (0, 1] \text{ with } \sum_{l=1}^r \lambda_l = 1 \text{ such that } \eta = \sum_{l=1}^r \lambda_l w_l.$

Let f_P be the function in Lemma 5.1. Note that for all $l \in \{1, \dots, r\}$, if there exists $Q_l \in \mathcal{P}$ such that $\operatorname{Supp}(w_l) \subseteq Q_l$, then

$$f_P(w_l) = \begin{cases} 0 & \text{if } Q_l \neq P, \\ 1 & \text{if } Q_l = P. \end{cases}$$

If no such Q_l exists, then $w_l \in \text{Ext}(\text{Null}(\mathbf{X}) \cap \mathbb{B}_1^N, \mathcal{P})$, and $f_P(w_l) < 1$, by our hypothesis. So, we conclude that $f_P(w_l) < 1$, if $\text{Supp}(w_l) \not\subseteq P$.

Note that there must exist $\bar{l} \in \{1, \ldots, r\}$ such that $\operatorname{Supp}(w_{\bar{l}}) \not\subseteq P$ because, otherwise, $\operatorname{Supp}(\eta) \subseteq P$, which would be a contradiction. Moreover, $f_P(w_{\bar{l}}) < 1$, which we can use to argue that

$$\begin{split} \|\eta_P\|_1 + \min_{\boldsymbol{z}:\boldsymbol{X}_P(\eta_P)=\boldsymbol{X}_P(\boldsymbol{z})} \|\boldsymbol{z}\|_1 \\ &= f_P(\eta) = f_P\left(\sum_{l=1}^r \lambda_l w_l\right) \\ &\leq \sum_{l=1}^r \lambda_l f_P(w_l) \\ &< \sum_{l=1}^r \lambda_l = 1 \end{split} \qquad \text{Since } f_P \text{ is convex by Lemma 5.1} \\ &< \sum_{l=1}^r \lambda_l = 1 \end{aligned}$$

which completes the proof.

Auxiliary results for the dual of Basis Pursuit

When $\Psi \in \mathbb{R}^{r \times s}$, the dual of the ℓ_1 -minimization problem

$$\min_{\Psi\bar{y}=\Psi y} \|y\|_1 \tag{5.7}$$

is given by the following two equivalent forms

$$\max_{\Psi^{\top} v \in \mathbb{B}_{\infty}^{*}} \bar{y}^{\top} \Psi^{\top} v \equiv \max_{w \in \operatorname{im}(\Psi^{\top}) \cap \mathbb{B}_{\infty}^{*}} \bar{y}^{\top} w.$$
(5.8)

Since there is no duality gap and we have $\min_{\Psi \bar{y} = \Psi y} \|y\|_1 = \max_{w \in \operatorname{im}(\Psi^{\top}) \cap \mathbb{B}^s_{\infty}} \bar{y}^{\top} w$. We use the dual problem to derive sufficient conditions for SNSP, which are geometrically more interpretable. Therefore, the structure of $\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}^s_{\infty}$ is of particular interest, and the next result helps us understand it better, when the columns of Ψ have unit ℓ_p -norm.

Lemma 5.2. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_p -norm with $p \in [1, \infty]$, and ℓ_q be the dual of ℓ_p . Then,

$$\Psi \mathbb{B}_1^s \subseteq \operatorname{im}(\Psi) \cap \mathbb{B}_p^r,\tag{5.9}$$

or alternatively,

$$\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}^{s}_{\infty} \supseteq \Psi^{\top} \mathbb{B}^{r}_{q}.$$
(5.10)

When $p \in \{1, \infty\}$, the equality holds in (5.9), if and only if, equality holds in (5.10).

Proof. Since the columns of Ψ have unit ℓ_p -norm, we must have $\Psi v \in \mathbb{B}_p^r$ for all $v \in \mathbb{B}_1^s$. That is, we have $\Psi \mathbb{B}_1^s \subseteq \mathbb{B}_p^r$, so that (5.9) follows trivially.

The inclusion (5.9) implies $\mathbb{B}_1^s \subseteq \Psi^{-1}\mathbb{B}_p^r$. Taking the polar of both sides, we obtain $\mathbb{B}_{\infty}^s = (\mathbb{B}_1^s)^{\circ} \supseteq (\Psi^{-1}\mathbb{B}_p^r)^{\circ} = \Psi^T \mathbb{B}_q^r$ by [1, Cor. 16.3.2]. Since $\operatorname{im}(\Psi^{\top}) \supseteq \Psi^T \mathbb{B}_q^r$ holds trivially, we obtain (5.10).

Suppose that $p \in \{1, \infty\}$ and equality holds in (5.9). Taking inverse image under Ψ on both sides of (5.9), we obtain $\Psi^{-1}\Psi\mathbb{B}_1^s = \Psi^{-1}(\operatorname{im}(\Psi) \cap \mathbb{B}_p^r)$. The left-hand-side of this equation is $\operatorname{Null}(\Psi) + \mathbb{B}_1^s$, whereas the right-hand-side is equal to $\Psi^{-1}\mathbb{B}_p^r$. That is, we have $\operatorname{Null}(\Psi) + \mathbb{B}_1^s = \Psi^{-1}\mathbb{B}_p^r$. Now, taking polar of both

sides, we obtain $\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}_{\infty}^{s} = (\operatorname{Null}(\Psi) + \mathbb{B}_{1}^{s})^{\circ} = (\Psi^{-1}\mathbb{B}_{p}^{r})^{\circ} = \Psi^{\top}\mathbb{B}_{q}^{r}$, by [1, Cor. 16.3.2 & Cor. 16.5.2]. Conversely, suppose that equality holds in (5.10). Then, by taking the polar of both sides of the equality, we obtain $\operatorname{Null}(\Psi) + \mathbb{B}_{1}^{s} = \Psi^{-1}\mathbb{B}_{p}^{r}$, by [1, Cor. 9.1.1, Cor. 16.3.2 & Cor. 16.5.2]. Applying Ψ to both sides, we obtain $\Psi\mathbb{B}_{1}^{s} = \operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}$.

Since the span of $\Psi \mathbb{B}_1^s$ is $\operatorname{im}(\Psi)$, the definition of $\operatorname{inner}-\ell_p$ -radius implies that $\mathfrak{r}_p\left(\Psi \mathbb{B}_s^1\right)$ is the largest number such that $\frac{1}{\mathfrak{r}_p(\Psi \mathbb{B}_s^1)}\Psi \mathbb{B}_1^s \supseteq \operatorname{im}(\Psi) \cap \mathbb{B}_p^r$. When $p \notin \{1, \infty\}$, we always have $\mathfrak{r}_p\left(\Psi \mathbb{B}_s^1\right) < 1$, but when $p \in \{1, \infty\}$, the equality can be attained, so we give this case a special name.

Definition 5.1. Let $p \in \{1, \infty\}$ and $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_p -norm. We say that Ψ is perfectly expressive, if $\mathfrak{r}_p(\Psi \mathbb{B}^s_1) = 1$.

We also have the following lemma, which characterizes perfectly expressiveness.

Lemma 5.3. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_p -norm with $p \in \{1, \infty\}$. Then, Ψ is perfectly expressive, if and only if, one of the following equivalent conditions hold:

- 1. $\Psi \mathbb{B}_1^s = \operatorname{im}(\Psi) \cap \mathbb{B}_p^r$.
- 2. For all $v \in \operatorname{Ext}(\operatorname{im}(\Psi) \cap \mathbb{B}_p^r)$, v or -v is a column of Ψ .
- 3. $\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}^s_{\infty} = \Psi^{\top} \mathbb{B}^r_q$.

Proof. $1 \Rightarrow 2$: If $\Psi \mathbb{B}_1^s = \operatorname{im}(\Psi) \cap \mathbb{B}_p^r$, then we necessarily have $\operatorname{Ext}(\Psi \mathbb{B}_1^s) = \operatorname{Ext}(\operatorname{im}(\Psi) \cap \mathbb{B}_p^r)$. That is, any $v \in \operatorname{Ext}(\operatorname{im}(\Psi) \cap \mathbb{B}_p^r)$ is an extreme point of $\Psi \mathbb{B}_1^s$. But each extreme point of $\Psi \mathbb{B}_1^s$ is either a column of Ψ or a column of $-\Psi$, and we get the result.

 $2 \Rightarrow 1$: If for all $v \in \text{Ext}(\text{im}(\Psi) \cap \mathbb{B}_p^r)$, v or -v is a column of Ψ , then $\text{Ext}(\text{im}(\Psi) \cap \mathbb{B}_p^r) \subseteq \Psi \mathbb{B}_1^s$. Taking convex hull, we obtain $\text{im}(\Psi) \cap \mathbb{B}_p^r = \text{conv}(\text{Ext}(\text{im}(\Psi) \cap \mathbb{B}_p^r)) \subseteq \Psi \mathbb{B}_1^s$. Since the converse inclusion always holds by Lemma 5.2, we obtain the equality.

 $3 \iff 1$: Follows from Lemma 5.2.

We end this part with a final auxiliary result that will be useful in the proof of Prop. 1.

Lemma 5.4. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_p -norm with $p \in [1, \infty]$, and ℓ_q be the dual of ℓ_p . Then,

$$\frac{1}{r_p(\Psi \mathbb{B}_1^s)} = \min\left\{\beta \in \mathbb{R}_{\geq 1} : \operatorname{im}(\Psi^\top) \cap \mathbb{B}_\infty^s \subseteq \beta \Psi^\top \mathbb{B}_q^r\right\}.$$
(5.11)

Proof. We set $\beta^* := \min \{\beta \in \mathbb{R}_{\geq 1} : \operatorname{im}(\Psi^\top) \cap \mathbb{B}^s_\infty \subseteq \beta \Psi^\top \mathbb{B}^r_q \}$. Then

$$\begin{split} \operatorname{im}(\Psi^{\top}) \cap \mathbb{B}_{\infty}^{s} &\subseteq \beta^{*} \Psi^{\top} \mathbb{B}_{q}^{r} \iff \left(\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}_{\infty}^{s}\right)^{\circ} \supseteq \left(\beta^{*} \Psi^{\top} \mathbb{B}_{q}^{r}\right)^{\circ} \\ & \longleftrightarrow \quad \operatorname{Null}(\Psi) + \mathbb{B}_{1}^{s} \supseteq \frac{1}{\beta^{*}} \Psi^{-1} \mathbb{B}_{p}^{r} \\ & \Longleftrightarrow \quad \operatorname{Null}(\Psi) + \beta^{*} \mathbb{B}_{1}^{s} \supseteq \Psi^{-1} \mathbb{B}_{p}^{r} \\ & \Longrightarrow \quad \beta^{*} \Psi \mathbb{B}_{1}^{s} \supseteq \Psi \Psi^{-1} \mathbb{B}_{p}^{r} = \operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}. \end{split}$$

Hence, we must have $\beta^* \geq \frac{1}{\mathfrak{r}_p(\Psi \mathbb{B}_1^s)}$. Conversely, we have

$$\begin{split} \operatorname{im}(\Psi) \cap \mathbb{B}_p^r &\subseteq \frac{1}{\mathfrak{r}_p \left(\Psi \mathbb{B}_1^s\right)} \Psi \mathbb{B}_1^s \iff \left(\operatorname{im}(\Psi) \cap \mathbb{B}_p^r\right)^\circ \supseteq \left(\frac{1}{\mathfrak{r}_p \left(\Psi \mathbb{B}_1^s\right)} \Psi \mathbb{B}_1^s\right)^\circ \\ &\iff \operatorname{Null}(\Psi^\top) + \mathbb{B}_q^r \supseteq \mathfrak{r}_p \left(\Psi \mathbb{B}_1^s\right) \left(\Psi^\top\right)^{-1} \mathbb{B}_\infty^s \\ &\iff \operatorname{Null}(\Psi^\top) + \frac{1}{\mathfrak{r}_p \left(\Psi \mathbb{B}_1^s\right)} \mathbb{B}_q^r \supseteq \left(\Psi^\top\right)^{-1} \mathbb{B}_\infty^s \\ &\implies \frac{1}{\mathfrak{r}_p \left(\Psi \mathbb{B}_1^s\right)} \Psi^\top \mathbb{B}_q^r \supseteq \Psi^\top (\Psi^\top)^{-1} \mathbb{B}_\infty^s = \operatorname{im}(\Psi^\top) \cap \mathbb{B}_\infty^s. \end{split}$$

So, we also have the reverse inequality, $\beta^* \leq \frac{1}{\mathfrak{r}_p(\Psi \mathbb{B}^s_1)}$. Hence, $\beta^* = \frac{1}{\mathfrak{r}_p(\Psi \mathbb{B}^s_1)}$.

Proof of Prop. 1.

Proof. By Lemma 5.4, we have $\operatorname{im}(\Psi^{\top}) \cap \mathbb{B}^s_{\infty} \subseteq \frac{1}{\mathfrak{r}_p(\Psi \mathbb{B}^s_1)} \Psi^{\top} \mathbb{B}^r_q$. Hence,

$$\max_{w \in \operatorname{im}(\Psi^{\top}) \cap \mathbb{B}_{\infty}^{s}} \bar{y}^{\top} w \leq \max_{w \in \frac{1}{\mathfrak{r}_{p}(\Psi \mathbb{B}_{1}^{s})} \Psi^{\top} \mathbb{B}_{q}^{r}} \bar{y}^{\top} w \qquad (5.12)$$

$$= \frac{1}{\mathfrak{r}_{p}(\Psi \mathbb{B}_{1}^{s})} \max_{w \in \Psi^{\top} \mathbb{B}_{q}^{r}} \bar{y}^{\top} w$$

$$= \frac{1}{\mathfrak{r}_{p}(\Psi \mathbb{B}_{1}^{s})} \max_{e \in \mathbb{B}_{q}^{r}} \bar{y}^{\top} \Psi^{\top} e$$

$$= \frac{\|\Psi \bar{y}\|_{p}}{\mathfrak{r}_{p}(\Psi \mathbb{B}_{1}^{s})}.$$

If $p \in \{1, \infty\}$ and $\mathfrak{r}_p(\Psi \mathbb{B}_1^s) = 1$ (i.e. Ψ is perfectly expressive), then, by Lemma 5.3, equality holds in (5.12) with $\mathfrak{r}_p(\Psi \mathbb{B}_1^s) = 1$, and the result follows. \Box

References

[1] Ralph Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.