Supplementary Material for the ICML 2021 Publication: A Nullspace Property for Subspace-Preserving Recovery

1 Introduction

A note on numbering. When we refer to a theorem/proposition/equation/etc. in this Supplementary Material, if its number has a section number in it, then it refers to a theorem/proposition/equation/etc. in the Supplementary Material. Otherwise it is a result in the original paper.

2 Preliminaries and problem formulation

Detailed notation and preliminaries. The set of integers from 1 up to N is denoted as $[N]:=\{1, \ldots, N\}$. For any $\boldsymbol{c} \in \mathbb{R}^{N}$, the support of \boldsymbol{c} is denoted as $\operatorname{Supp}(\boldsymbol{c}):=\left\{k \in[N]: c_{k} \neq 0\right\}$. The vector \boldsymbol{c} is called s-sparse if $|\operatorname{Supp}(\boldsymbol{c})| \leq s$. For any index set $S \subseteq[N]$, the complement of S in $[N]$ is denoted by S^{c}. For a nonempty set $S \subseteq[N]$, the vector $\boldsymbol{c}_{S} \in \mathbb{R}^{|S|}$ denotes the part of \boldsymbol{c} that is supported on S. We use $\operatorname{Pr}_{S} \in \mathbb{R}^{N \times N}$ to denote the matrix that projects onto the coordinates in S and sets all other coordinates to zero. For a matrix $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ and an index set $S \subseteq[N]$, the matrix $\boldsymbol{X}_{S} \in \mathbb{R}^{D \times|S|}$ denotes the submatrix of \boldsymbol{X} consisting of the columns of \boldsymbol{X} indexed by S. Therefore, for all $\boldsymbol{c} \in \mathbb{R}^{N}$, we have $\boldsymbol{X} \operatorname{Pr}_{S} \boldsymbol{c}=\boldsymbol{X}_{S} \boldsymbol{c}_{S}$. If $S=\{j\}$ for some j, we simply write \boldsymbol{x}_{j} instead of \boldsymbol{X}_{S}, to refer to the $j^{t h}$-column of \boldsymbol{X}. We prioritize the subscript over superscript in the sense that $\boldsymbol{X}_{S}^{\top} \equiv\left(\boldsymbol{X}_{S}\right)^{\top}$, and $\operatorname{not}\left(\boldsymbol{X}^{\top}\right)_{S}$. Finally, Null (\boldsymbol{X}) denotes the nullspace of the matrix \boldsymbol{X} and $\boldsymbol{X}^{-1}(\cdot)$ denotes the inverse image under \boldsymbol{X}.

The ℓ_{p}-norm of a vector $\boldsymbol{x} \in \mathbb{R}^{D}$ is defined as $\|\boldsymbol{x}\|_{p}:=\left(\sum_{k=1}^{D}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}$, where $|\cdot|$ denotes the absolute value. The unit ℓ_{p}-sphere is denoted by $\mathbb{S}_{p}^{D-1}:=\left\{\boldsymbol{x} \in \mathbb{R}^{D}:\|\boldsymbol{x}\|_{p}=1\right\}$ and the unit ℓ_{p}-ball is denoted by $\mathbb{B}_{p}^{D}:=\left\{\boldsymbol{x} \in \mathbb{R}^{D}:\|\boldsymbol{x}\|_{p} \leq 1\right\}$.

The convex hull is denoted by conv (\cdot). We denote the convex hull of the union of the columns of \boldsymbol{X} and $-\boldsymbol{X}$ by $\mathcal{K}(\boldsymbol{X})$. Sometimes we refer to it as the symmetrized convex hull of the columns of \boldsymbol{X}. For a nonempty convex set $\mathcal{C} \subseteq \mathbb{R}^{D}$, the set of extreme points of \mathcal{C} is denoted as $\operatorname{Ext}(\mathcal{C})$. These are precisely the points that cannot be written as a nontrivial convex combination of two distinct points in \mathcal{C}. The interior of \mathcal{C} is given by $\operatorname{inte}(\mathcal{C}):=\left\{\boldsymbol{x} \in \mathcal{C}: \exists \varepsilon>0\right.$ s.t. $\left.\boldsymbol{x}+\varepsilon \mathbb{B}_{1}^{D} \subseteq \mathcal{C}\right\}$. Note that according to this definition, the interior of \mathcal{C} can be empty, although \mathcal{C} is non-empty. The affine hull of \mathcal{C}, denoted by $\operatorname{aff}(\mathcal{C})$, is the smallest affine set in \mathbb{R}^{D} that contains \mathcal{C}. The relative interior [1, p.44] of \mathcal{C} is defined as $\left.\operatorname{rinte}(\mathcal{C}):=\left\{\boldsymbol{x} \in \operatorname{aff}(\mathcal{C}): \exists \varepsilon>0,\left(\boldsymbol{x}+\varepsilon \mathbb{B}_{2}^{D}\right) \cap \operatorname{aff}(\mathcal{C}) \subseteq \mathcal{C}\right)\right\}$. The polar [1, p.125] of \mathcal{C} is defined as

$$
\begin{equation*}
\mathcal{C}^{\circ}:=\left\{\boldsymbol{q} \in \mathbb{R}^{D}: \boldsymbol{q}^{\top} \boldsymbol{x} \leq 1 \text { for all } \boldsymbol{x} \in \mathcal{C}\right\} . \tag{2.1}
\end{equation*}
$$

Note \mathcal{C}° is always a closed, convex set [1, p.125]. For any $\varepsilon>0$, we have $(\varepsilon \mathcal{C})^{\circ}=\frac{1}{\varepsilon} \mathcal{C}^{\circ}$ [1, Cor. 16.1.2]. If \mathcal{C} is closed and contains the origin, then \mathcal{C}° is compact if and only if $0 \in \operatorname{inte}(\operatorname{conv}(\mathcal{C}))$ [1, Cor. 14.5.1]. If $\mathcal{C}_{1}, \mathcal{C}_{2} \subset \mathbb{R}^{D}$ are closed convex sets, then $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}$ if and only if $\mathcal{C}_{2}^{\circ} \subseteq \mathcal{C}_{1}^{\circ}$ [1, p.125]. We define the dual $\|\cdot\|_{*}$ of a norm $\|\cdot\|$ as $\|z\|_{*}:=\sup _{\|y\| \leq 1} z^{\top} y$. Then, if ℓ_{q} denotes the dual of ℓ_{p}-norm, we have $\frac{1}{p}+\frac{1}{q}=1$ and $\mathbb{B}_{q}^{D}=\left(\mathbb{B}_{p}^{D}\right)^{\circ}$.

We define the inner- ℓ_{p}-radius of a nonempty compact convex set $\mathcal{C} \subseteq \mathbb{R}^{D}$ containing the origin as the radius of the largest ℓ_{p}-ball (confined to the linear span of \mathcal{C}) one can inscribe inside \mathcal{C}, and denote it by $\mathfrak{r}_{p}(\mathcal{C})$. That is, $\mathfrak{r}_{p}(\mathcal{C}):=\max \left\{\alpha \in \mathbb{R}_{>0}: \alpha\left(\mathbb{B}_{p}^{D} \cap \operatorname{span}(\mathcal{C})\right) \subseteq \mathcal{C}\right\}$, where $\operatorname{span}(\mathcal{C})$ denotes the subspace spanned by \mathcal{C}. Likewise, we define the outer- ℓ_{p}-radius of \mathcal{C} as the radius of the smallest ℓ_{p}-ball that contains \mathcal{C}, and denote it by $\mathfrak{R}_{p}(\mathcal{C})$. That is, $\mathfrak{R}_{p}(\mathcal{C}):=\min \left\{\beta \in \mathbb{R}_{>0}: \beta \mathbb{B}_{p}^{D} \supseteq \mathcal{C}\right\}$.

3 A nullspace property for subspace-preserving recovery

Proof of Lemma 1

Proof. Since each column of \boldsymbol{X}_{P} can be written as a convex combination of the union of the columns of $\boldsymbol{X}_{\tilde{P}}$ and $-\boldsymbol{X}_{\tilde{P}}$, we conclude that $\boldsymbol{X}_{P}=\boldsymbol{X}_{\tilde{P}} Y_{P}$ for some $Y_{P} \in \mathbb{R}^{|\tilde{P}| \times|P|}$ with columns in $\mathbb{S}_{1}^{|\tilde{P}|-1}$. Also $\boldsymbol{X}_{\tilde{P}}=\tilde{\boldsymbol{X}}_{\tilde{P}}$ holds trivially.
\Rightarrow : Suppose that \boldsymbol{X} satisfies SNSP. Let $\tilde{\eta} \in \operatorname{Null}(\tilde{\boldsymbol{X}}, \tilde{\mathcal{P}})$ and $\tilde{P} \in \tilde{\mathcal{P}}$. There exists a unique $P \in \mathcal{P}$ such that $\tilde{P} \subseteq P$. We lift $\tilde{\eta}$ to $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P})$ by inserting zeros at the missing indices. Since \boldsymbol{X} satisfies SNSP, the problem $\min _{\boldsymbol{c}: \boldsymbol{X}_{P}\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{c})}\|\boldsymbol{c}\|_{1}$ has a minimizer \hat{c} which satisfies

$$
\begin{equation*}
\|\hat{c}\|_{1}<\left\|\eta_{P^{c}}\right\|_{1} \tag{3.2}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\tilde{\boldsymbol{X}}_{\tilde{P}}\left(Y_{P} \hat{c}\right)=\left(\tilde{\boldsymbol{X}}_{\tilde{P}} Y_{P}\right) \hat{c}=\boldsymbol{X}_{P} \hat{c}=\boldsymbol{X}_{P} \eta_{P}=\tilde{\boldsymbol{X}}_{\tilde{P}} \tilde{\eta}_{\tilde{P}} \tag{3.3}
\end{equation*}
$$

and we conclude that

$$
\begin{aligned}
\min _{c: \tilde{\boldsymbol{X}}_{\tilde{P}} \tilde{\eta}_{\tilde{P}}=\tilde{\boldsymbol{X}}_{\tilde{P}}(\boldsymbol{c})}\|\boldsymbol{c}\|_{1} & \leq\left\|Y_{P} \hat{c}\right\|_{1} \quad \text { Since } Y_{P} \hat{c} \text { is feasible by (3.3). } \\
& \leq\|\hat{c}\|_{1} \quad \text { Since } Y_{P} \text { has normalized columns. } \\
& <\left\|\eta_{P^{c}}\right\|_{1} \\
& =\left\|\tilde{\eta}_{\tilde{P}^{c}}\right\|_{1},
\end{aligned}
$$

and so, $\tilde{\boldsymbol{X}}$ satisfies SNSP.
\Leftarrow : Conversely, suppose $\tilde{\boldsymbol{X}}$ satisfies SNSP. Let $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P})$. Suppose that \boldsymbol{X} has r columns, and define $\tilde{\eta} \in \mathbb{R}^{r}$ as the vector satisfying $\tilde{\eta}_{\tilde{P}}:=Y_{P} \eta_{P}$ for all $P \in \mathcal{P}$. Note that we have

$$
\begin{equation*}
\tilde{\boldsymbol{X}}_{\tilde{P}}\left(\tilde{\eta}_{\tilde{P}}\right)=\left(\tilde{\boldsymbol{X}}_{\tilde{P}} Y_{P}\right) \eta_{P}=\boldsymbol{X}_{P} \eta_{P} \tag{3.4}
\end{equation*}
$$

Hence, $\tilde{\boldsymbol{X}} \tilde{\eta}=\sum_{\tilde{P} \in \tilde{\mathcal{P}}} \tilde{\boldsymbol{X}}_{\tilde{P}}\left(\tilde{\eta}_{\tilde{P}}\right)=\sum_{P \in \mathcal{P}} \boldsymbol{X}_{P} \eta_{P}=\boldsymbol{X} \eta=0$. So, we conclude that $\tilde{\eta} \in \operatorname{Null}(\tilde{\boldsymbol{X}})$.
If $\boldsymbol{X}_{P} \eta_{P}=0$ for all $P \in \mathcal{P}$, we have $\min _{\boldsymbol{c}:} \boldsymbol{X}_{P}\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{c})\|\boldsymbol{c}\|_{1}=0<\left\|\eta_{P^{c}}\right\|_{1}$ for all $P \in \mathcal{P}$. Therefore, (4) is satisfies for η and for all $P \in \mathcal{P}$ trivially. So, w.l.o.g. we can assume that there exists $Q, T \in \mathcal{P}$ with $Q \neq T$, such that $\boldsymbol{X}_{Q} \eta_{Q} \neq 0 \neq \boldsymbol{X}_{T} \eta_{T}$. In turn, we have $\tilde{\boldsymbol{X}}_{\tilde{Q}} \tilde{\eta}_{\tilde{Q}} \neq 0 \neq \tilde{\boldsymbol{X}}_{\tilde{T}} \tilde{\eta}_{\tilde{T}}$ by (3.4). Hence, w.l.o.g. Supp $(\tilde{\eta})$ is not contained in \tilde{P} for any $\tilde{P} \in \tilde{\mathcal{P}}$, and we have $\tilde{\eta} \in \operatorname{Null}(\tilde{\boldsymbol{X}}, \tilde{\mathcal{P}})$.

Now we let $P \in \mathcal{P}$, and argue as follows:

$$
\begin{array}{rlr}
\min _{\boldsymbol{c}: \boldsymbol{X}_{P}\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{c})}\|\boldsymbol{c}\|_{1} & =\min _{\boldsymbol{c}:\left(\tilde{\boldsymbol{X}}_{\tilde{P}} Y_{P}\right)\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{c})}\|\boldsymbol{c}\|_{1} \\
& \leq \min _{\boldsymbol{z}: \tilde{\boldsymbol{X}}_{\tilde{P}}\left(\tilde{\eta}_{\tilde{P}}\right)=\tilde{\boldsymbol{X}}_{\tilde{P}}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1} \quad \text { By restricting the constraint set. } \\
& <\left\|\tilde{\eta}_{\tilde{P}^{c}}\right\|_{1} \\
& =\sum_{\tilde{Q} \neq \tilde{P}, \tilde{Q} \in \tilde{\mathcal{P}}}\left\|\tilde{\eta}_{\tilde{Q}}\right\|_{1} \\
& =\sum_{Q \neq P, Q \in \mathcal{P}}\left\|Y_{Q} \eta_{Q}\right\|_{1} & \\
& \leq \sum_{Q \neq P, Q} \tilde{\boldsymbol{X}} \text { satisfies SNSP. } \\
& \left\|\eta_{Q}\right\|_{1} \quad \text { Since } Y_{Q} \text { has normalized columns. } \\
& \left\|\eta_{P^{c}}\right\|_{1} .
\end{array}
$$

Hence, \boldsymbol{X} satisfies SNSP.

4 A geometrically interpretable characterization of SNSP

There are no extra proofs for this section, or any additional material of other kind.

5 Reduction of the verification of SNSP to a decision on finite sets

Reformulation of SNSP

Lemma 5.1. For any $P \in \mathcal{P}$, the function $f_{P}: \mathbb{R}^{N} \rightarrow \mathbb{R}_{\geq 0}$ defined as

$$
\begin{equation*}
f(\eta)=\left\|\eta_{P}\right\|_{1}+\min _{\boldsymbol{z}: \boldsymbol{X}_{P} \boldsymbol{z}=\boldsymbol{X}_{P} \eta_{P}}\|\boldsymbol{z}\|_{1} \tag{5.5}
\end{equation*}
$$

is convex and positively homogeneous of degree 1.
Proof. We first aim to establish that f_{P} is a convex function. Let $\lambda \in[0,1]$ and $w, y \in \mathbb{R}^{N}$. Then,

$$
\begin{aligned}
& f_{P}(\lambda w+(1-\lambda) y) \\
& \quad=\left\|\lambda w_{P}+(1-\lambda) y_{P}\right\|_{1}+\min _{z: \boldsymbol{X}_{P}\left(\lambda w_{P}+(1-\lambda) y_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1} \\
& \quad \leq\left\|\lambda w_{P}+(1-\lambda) y_{P}\right\|_{1}+\left\|\lambda\left(w_{P}+\eta_{w}\right)+(1-\lambda)\left(y_{P}+\eta_{y}\right)\right\|_{1} \quad \text { for all } \eta_{w}, \eta_{y} \in \operatorname{Null}\left(\boldsymbol{X}_{P}\right) \\
& \quad \leq \lambda\left(\left\|w_{P}\right\|_{1}+\left\|w_{P}+\eta_{w}\right\|_{1}\right)+(1-\lambda)\left(\left\|y_{P}\right\|_{1}+\left\|y_{P}+\eta_{y}\right\|_{1}\right) \quad \text { for all } \eta_{w}, \eta_{y} \in \operatorname{Null}\left(\boldsymbol{X}_{P}\right) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& f_{P}(\lambda w+(1-\lambda) y) \\
& \quad \leq \lambda\left(\left\|w_{P}\right\|_{1}+_{\boldsymbol{z}: \boldsymbol{X}_{P}\left(w_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1}\right)+(1-\lambda)\left(\left\|y_{P}\right\|_{1}+_{\boldsymbol{z}: \boldsymbol{X}_{P}\left(y_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1}\right) \\
& \quad=\lambda f_{P}(w)+(1-\lambda) f_{P}(y)
\end{aligned}
$$

which establishes that f_{P} is a convex function.
In order to show positive homogeneity, let $\alpha \in \mathbb{R}_{>0}$. Then, it follows that

$$
\begin{aligned}
f_{P}(\alpha w) & =\left\|\alpha w_{P}\right\|_{1}+\min _{\boldsymbol{z}: \boldsymbol{X}_{P}\left(\alpha w_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1} \\
& =\alpha\left\|w_{P}\right\|_{1}+\min _{\boldsymbol{z}: \boldsymbol{X}_{P}\left(w_{P}\right)=\boldsymbol{X}_{P}\left(\frac{1}{\alpha} \boldsymbol{z}\right)}\|\boldsymbol{z}\|_{1} \\
& =\alpha\left\|w_{P}\right\|_{1}+\min _{\boldsymbol{y}: \boldsymbol{X}_{P}\left(w_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{y})}\|\alpha \boldsymbol{y}\|_{1} \\
& =\alpha\left\|w_{P}\right\|_{1}+\alpha \min _{\boldsymbol{y}: \boldsymbol{X}_{P}\left(w_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{y})}\|\boldsymbol{y}\|_{1}=\alpha f_{P}(w),
\end{aligned}
$$

which completes the proof.
Proposition 5.1. The matrix \boldsymbol{X} satisfies $S N S P$ if and only if for all $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_{1}^{N}$ and for all $P \in \mathcal{P}$, we have

$$
\begin{equation*}
\left\|\eta_{P}\right\|_{1}+\min _{\boldsymbol{z}: \boldsymbol{X}_{P}\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1}<1 \tag{5.6}
\end{equation*}
$$

Proof. The matrix \boldsymbol{X} satisfies SNSP if and only if $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P})$ and for all $P \in \mathcal{P}$, we have $f_{P}(\eta)<\|\eta\|_{1}$. That is, if and only if, $f_{P}\left(\frac{\eta}{\|\eta\|_{1}}\right)<1$, since f_{P} is positively homogeneous by Lemma 5.1. Hence, \boldsymbol{X} satisfies SNSP if and only if for all $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{S}_{1}^{N-1}$ and for all $P \in \mathcal{P}$, we have $f_{P}(\eta)<1$. This is true, if and only, for all $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_{1}^{N}$ and for all $P \in \mathcal{P}$ (5.6) holds, as claimed.

Proof of Thm. 3

Proof. We will use Prop. 5.1 to show the equivalence. For this purpose, what we need to show is the following: The inequality (5.6) holds for all $P \in \mathcal{P}$ and for all $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_{1}^{N}$, if and only if, it holds for all $P \in \mathcal{P}$ and for all $\eta \in \operatorname{Ext}\left(\operatorname{Null}(\boldsymbol{X}) \cap \mathbb{B}_{1}^{N}, \mathcal{P}\right)$.
\Rightarrow : Obvious, since $\operatorname{Ext}\left(\operatorname{Null}(\boldsymbol{X}) \cap \mathbb{B}_{1}^{N}, \mathcal{P}\right) \subset \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_{1}^{N}$.
\Leftarrow Let $P \in \mathcal{P}$, and $\eta \in \operatorname{Null}(\boldsymbol{X}, \mathcal{P}) \cap \mathbb{B}_{1}^{N}$. Then, there exists $r \geq 1,\left\{w_{l}\right\}_{l=1}^{r} \in \operatorname{Ext}\left(\operatorname{Null}(\boldsymbol{X}) \cap \mathbb{B}_{1}^{N}\right)$ and $\left\{\lambda_{l}\right\}_{l=1}^{r} \subset(0,1]$ with $\sum_{l=1}^{r} \lambda_{l}=1$ such that $\eta=\sum_{l=1}^{r} \lambda_{l} w_{l}$.

Let f_{P} be the function in Lemma 5.1. Note that for all $l \in\{1, \cdots, r\}$, if there exists $Q_{l} \in \mathcal{P}$ such that $\operatorname{Supp}\left(w_{l}\right) \subseteq Q_{l}$, then

$$
f_{P}\left(w_{l}\right)= \begin{cases}0 & \text { if } Q_{l} \neq P, \\ 1 & \text { if } Q_{l}=P .\end{cases}
$$

If no such Q_{l} exists, then $w_{l} \in \operatorname{Ext}\left(\operatorname{Null}(\boldsymbol{X}) \cap \mathbb{B}_{1}^{N}, \mathcal{P}\right)$, and $f_{P}\left(w_{l}\right)<1$, by our hypothesis. So, we conclude that $f_{P}\left(w_{l}\right)<1$, if $\operatorname{Supp}\left(w_{l}\right) \nsubseteq P$.

Note that there must exist $\bar{l} \in\{1, \ldots, r\}$ such that $\operatorname{Supp}\left(w_{\bar{l}}\right) \nsubseteq P$ because, otherwise, $\operatorname{Supp}(\eta) \subseteq P$, which would be a contradiction. Moreover, $f_{P}\left(w_{\bar{l}}\right)<1$, which we can use to argue that

$$
\begin{array}{rlrl}
\left\|\eta_{P}\right\|_{1} & +\min _{z: \boldsymbol{X}_{P}\left(\eta_{P}\right)=\boldsymbol{X}_{P}(\boldsymbol{z})}\|\boldsymbol{z}\|_{1} & \\
& =f_{P}(\eta)=f_{P}\left(\sum_{l=1}^{r} \lambda_{l} w_{l}\right) & & \\
& \leq \sum_{l=1}^{r} \lambda_{l} f_{P}\left(w_{l}\right) & & \text { Since } f_{P} \text { is convex by Lemma } 5.1 \\
& <\sum_{l=1}^{r} \lambda_{l}=1 & & \text { Since } f_{P}\left(w_{\bar{l}}\right)<1 \text { and } f_{P}\left(w_{l}\right) \leq 1,
\end{array}
$$

which completes the proof.

Auxiliary results for the dual of Basis Pursuit

When $\Psi \in \mathbb{R}^{r \times s}$, the dual of the ℓ_{1}-minimization problem

$$
\begin{equation*}
\min _{\Psi \bar{y}=\Psi y}\|y\|_{1} \tag{5.7}
\end{equation*}
$$

is given by the following two equivalent forms

$$
\begin{equation*}
\max _{\Psi^{\top} v \in \mathbb{B}_{\infty}^{s}} \bar{y}^{\top} \Psi^{\top} v \quad \equiv \quad \max _{w \in \operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}} \bar{y}^{\top} w . \tag{5.8}
\end{equation*}
$$

Since there is no duality gap and we have $\min _{\Psi \bar{y}=\Psi y}\|y\|_{1}=\max _{w \in \operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}} \bar{y}^{\top} w$. We use the dual problem to derive sufficient conditions for SNSP, which are geometrically more interpretable. Therefore, the structure of $\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}$ is of particular interest, and the next result helps us understand it better, when the columns of Ψ have unit ℓ_{p}-norm.
Lemma 5.2. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_{p}-norm with $p \in[1, \infty]$, and ℓ_{q} be the dual of ℓ_{p}. Then,

$$
\begin{equation*}
\Psi \mathbb{B}_{1}^{s} \subseteq \operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}, \tag{5.9}
\end{equation*}
$$

or alternatively,

$$
\begin{equation*}
\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s} \supseteq \Psi^{\top} \mathbb{B}_{q}^{r} \tag{5.10}
\end{equation*}
$$

When $p \in\{1, \infty\}$, the equality holds in 5.9), if and only if, equality holds in 5.10.
Proof. Since the columns of Ψ have unit ℓ_{p}-norm, we must have $\Psi v \in \mathbb{B}_{p}^{r}$ for all $v \in \mathbb{B}_{1}^{s}$. That is, we have $\Psi \mathbb{B}_{1}^{s} \subseteq \mathbb{B}_{p}^{r}$, so that (5.9) follows trivially.

The inclusion (5.9) implies $\mathbb{B}_{1}^{s} \subseteq \Psi^{-1} \mathbb{B}_{p}^{r}$. Taking the polar of both sides, we obtain $\mathbb{B}_{\infty}^{s}=\left(\mathbb{B}_{1}^{s}\right)^{0} \supseteq$ $\left(\Psi^{-1} \mathbb{B}_{p}^{r}\right)^{\circ}=\Psi^{T} \mathbb{B}_{q}^{r}$ by [1, Cor. 16.3.2]. Since $\operatorname{im}\left(\Psi^{\top}\right) \supseteq \Psi^{T} \mathbb{B}_{q}^{r}$ holds trivially, we obtain (5.10).

Suppose that $p \in\{1, \infty\}$ and equality holds in (5.9). Taking inverse image under Ψ on both sides of (5.9), we obtain $\Psi^{-1} \Psi \mathbb{B}_{1}^{s}=\Psi^{-1}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)$. The left-hand-side of this equation is $\operatorname{Null}(\Psi)+\mathbb{B}_{1}^{s}$, whereas the right-hand-side is equal to $\Psi^{-1} \mathbb{B}_{p}^{r}$. That is, we have $\operatorname{Null}(\Psi)+\mathbb{B}_{1}^{s}=\Psi^{-1} \mathbb{B}_{p}^{r}$. Now, taking polar of both
sides, we obtain $\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}=\left(\operatorname{Null}(\Psi)+\mathbb{B}_{1}^{s}\right)^{\circ}=\left(\Psi^{-1} \mathbb{B}_{p}^{r}\right)^{\circ}=\Psi^{\top} \mathbb{B}_{q}^{r}$, by [1, Cor. 16.3.2 \& Cor. 16.5.2]. Conversely, suppose that equality holds in 5.10 . Then, by taking the polar of both sides of the equality, we obtain $\operatorname{Null}(\Psi)+\mathbb{B}_{1}^{s}=\Psi^{-1} \mathbb{B}_{p}^{r}$, by [1, Cor. 9.1.1, Cor. 16.3.2 \& Cor. 16.5.2]. Applying Ψ to both sides, we obtain $\Psi \mathbb{B}_{1}^{s}=\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}$.

Since the span of $\Psi \mathbb{B}_{1}^{s}$ is $\operatorname{im}(\Psi)$, the definition of inner- ℓ_{p}-radius implies that $\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{s}^{1}\right)$ is the largest number such that $\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{s}^{1}\right)} \Psi \mathbb{B}_{1}^{s} \supseteq \operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}$. When $p \notin\{1, \infty\}$, we always have $\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{s}^{1}\right)<1$, but when $p \in\{1, \infty\}$, the equality can be attained, so we give this case a special name.
Definition 5.1. Let $p \in\{1, \infty\}$ and $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_{p}-norm. We say that Ψ is perfectly expressive, if $\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)=1$.

We also have the following lemma, which characterizes perfectly expressiveness.
Lemma 5.3. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_{p}-norm with $p \in\{1, \infty\}$. Then, Ψ is perfectly expressive, if and only if, one of the following equivalent conditions hold:

1. $\Psi \mathbb{B}_{1}^{s}=\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}$.
2. For all $v \in \operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)$, v or $-v$ is a column of Ψ.
3. $\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}=\Psi^{\top} \mathbb{B}_{q}^{r}$.

Proof. $1 \Rightarrow 2$: If $\Psi \mathbb{B}_{1}^{s}=\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}$, then we necessarily have $\operatorname{Ext}\left(\Psi \mathbb{B}_{1}^{s}\right)=\operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)$. That is, any $v \in \operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)$ is an extreme point of $\Psi \mathbb{B}_{1}^{s}$. But each extreme point of $\Psi \mathbb{B}_{1}^{s}$ is either a column of Ψ or a column of $-\Psi$, and we get the result.
$2 \Rightarrow 1:$ If for all $v \in \operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right), v$ or $-v$ is a column of Ψ, then $\operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right) \subseteq \Psi \mathbb{B}_{1}^{s}$. Taking convex hull, we obtain $\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}=\operatorname{conv}\left(\operatorname{Ext}\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)\right) \subseteq \Psi \mathbb{B}_{1}^{s}$. Since the converse inclusion always holds by Lemma 5.2, we obtain the equality.
$3 \Longleftrightarrow 1$: Follows from Lemma 5.2,
We end this part with a final auxiliary result that will be useful in the proof of Prop. 1 .
Lemma 5.4. Let $\Psi \in \mathbb{R}^{r \times s}$ be a matrix with columns of unit ℓ_{p}-norm with $p \in[1, \infty]$, and ℓ_{q} be the dual of ℓ_{p}. Then,

$$
\begin{equation*}
\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)}=\min \left\{\beta \in \mathbb{R}_{\geq 1}: \operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s} \subseteq \beta \Psi^{\top} \mathbb{B}_{q}^{r}\right\} \tag{5.11}
\end{equation*}
$$

Proof. We set $\beta^{*}:=\min \left\{\beta \in \mathbb{R}_{\geq 1}: \operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s} \subseteq \beta \Psi^{\top} \mathbb{B}_{q}^{r}\right\}$. Then

$$
\begin{aligned}
\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s} \subseteq \beta^{*} \Psi^{\top} \mathbb{B}_{q}^{r} & \Longleftrightarrow\left(\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}\right)^{\circ} \supseteq\left(\beta^{*} \Psi^{\top} \mathbb{B}_{q}^{r}\right)^{\circ} \\
& \Longleftrightarrow \operatorname{Null}(\Psi)+\mathbb{B}_{1}^{s} \supseteq \frac{1}{\beta^{*}} \Psi^{-1} \mathbb{B}_{p}^{r} \\
& \Longleftrightarrow \operatorname{Null}(\Psi)+\beta^{*} \mathbb{B}_{1}^{s} \supseteq \Psi^{-1} \mathbb{B}_{p}^{r} \\
& \Longleftrightarrow \beta^{*} \Psi \mathbb{B}_{1}^{s} \supseteq \Psi \Psi^{-1} \mathbb{B}_{p}^{r}=\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}
\end{aligned}
$$

Hence, we must have $\beta^{*} \geq \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)}$. Conversely, we have

$$
\begin{aligned}
\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r} \subseteq \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \Psi \mathbb{B}_{1}^{s} & \Longleftrightarrow\left(\operatorname{im}(\Psi) \cap \mathbb{B}_{p}^{r}\right)^{\circ} \supseteq\left(\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \Psi \mathbb{B}_{1}^{s}\right)^{\circ} \\
& \Longleftrightarrow \operatorname{Null}\left(\Psi^{\top}\right)+\mathbb{B}_{q}^{r} \supseteq \mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)\left(\Psi^{\top}\right)^{-1} \mathbb{B}_{\infty}^{s} \\
& \Longleftrightarrow \operatorname{Null}\left(\Psi^{\top}\right)+\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \mathbb{B}_{q}^{r} \supseteq\left(\Psi^{\top}\right)^{-1} \mathbb{B}_{\infty}^{s} \\
& \Longleftrightarrow \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \Psi^{\top} \mathbb{B}_{q}^{r} \supseteq \Psi^{\top}\left(\Psi^{\top}\right)^{-1} \mathbb{B}_{\infty}^{s}=\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}
\end{aligned}
$$

So, we also have the reverse inequality, $\beta^{*} \leq \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)}$. Hence, $\beta^{*}=\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)}$.

Proof of Prop. 1.
Proof. By Lemma 5.4 we have $\operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s} \subseteq \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \Psi^{\top} \mathbb{B}_{q}^{r}$. Hence,

$$
\begin{align*}
\max _{w \in \operatorname{im}\left(\Psi^{\top}\right) \cap \mathbb{B}_{\infty}^{s}} \bar{y}^{\top} w & \leq \max _{w \in \frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)}} \Psi^{\top} \mathbb{B}_{q}^{r} \tag{5.12}\\
& \bar{y}^{\top} w \\
& =\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \max _{w \in \Psi^{\top} \mathbb{B}_{q}^{r}} \bar{y}^{\top} w \\
& =\frac{1}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} \max _{e \in \mathbb{B}_{q}^{r}} \bar{y}^{\top} \Psi^{\top} e \\
& =\frac{\|\Psi \bar{y}\|_{p}}{\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)} .
\end{align*}
$$

If $p \in\{1, \infty\}$ and $\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)=1$ (i.e. Ψ is perfectly expressive), then, by Lemma 5.3 , equality holds in (5.12) with $\mathfrak{r}_{p}\left(\Psi \mathbb{B}_{1}^{s}\right)=1$, and the result follows.

References

[1] Ralph Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

