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A Nullspace Property for Subspace-Preserving Recovery

1 Introduction

A note on numbering. When we refer to a theorem/proposition/equation/etc. in this Supplementary
Material, if its number has a section number in it, then it refers to a theorem/proposition/equation/etc. in
the Supplementary Material. Otherwise it is a result in the original paper.

2 Preliminaries and problem formulation

Detailed notation and preliminaries. The set of integers from 1 up to N is denoted as [N ] := {1, . . . , N}.
For any c ∈ RN , the support of c is denoted as Supp(c) := {k ∈ [N ] : ck 6= 0}. The vector c is called s-sparse
if |Supp(c)| ≤ s. For any index set S ⊆ [N ], the complement of S in [N ] is denoted by Sc. For a nonempty
set S ⊆ [N ], the vector cS ∈ R|S| denotes the part of c that is supported on S. We use PrS ∈ RN×N to
denote the matrix that projects onto the coordinates in S and sets all other coordinates to zero. For a matrix
X ∈ RD×N and an index set S ⊆ [N ], the matrix XS ∈ RD×|S| denotes the submatrix of X consisting of the
columns of X indexed by S. Therefore, for all c ∈ RN , we have X PrS c = XScS . If S = {j} for some j, we
simply write xj instead of XS , to refer to the jth-column of X. We prioritize the subscript over superscript

in the sense that X>S ≡ (XS)>, and not (X>)S . Finally, Null(X) denotes the nullspace of the matrix X
and X−1(·) denotes the inverse image under X.

The `p-norm of a vector x ∈ RD is defined as ‖x‖p := (
∑D
k=1 |xk|p)

1
p , where | · | denotes the absolute

value. The unit `p-sphere is denoted by SD−1
p := {x ∈ RD : ‖x‖p = 1} and the unit `p-ball is denoted by

BDp := {x ∈ RD : ‖x‖p ≤ 1}.
The convex hull is denoted by conv(·). We denote the convex hull of the union of the columns of X

and −X by K(X). Sometimes we refer to it as the symmetrized convex hull of the columns of X. For
a nonempty convex set C ⊆ RD, the set of extreme points of C is denoted as Ext(C). These are precisely
the points that cannot be written as a nontrivial convex combination of two distinct points in C. The
interior of C is given by inte(C) := {x ∈ C : ∃ε > 0 s.t. x + εBD1 ⊆ C}. Note that according to this
definition, the interior of C can be empty, although C is non-empty. The affine hull of C, denoted by
aff(C), is the smallest affine set in RD that contains C. The relative interior [1, p.44] of C is defined as
rinte(C) :=

{
x∈aff(C) : ∃ε > 0, (x + εBD2 ) ∩ aff(C) ⊆ C)

}
. The polar [1, p.125] of C is defined as

C◦ := {q ∈ RD : q>x ≤ 1 for all x ∈ C}. (2.1)

Note C◦ is always a closed, convex set [1, p.125]. For any ε > 0, we have (εC)◦ = 1
εC
◦ [1, Cor. 16.1.2]. If

C is closed and contains the origin, then C◦ is compact if and only if 0 ∈ inte(conv(C)) [1, Cor. 14.5.1]. If
C1, C2 ⊂ RD are closed convex sets, then C1 ⊆ C2 if and only if C◦2 ⊆ C◦1 [1, p.125]. We define the dual ‖ · ‖∗
of a norm ‖ · ‖ as ‖z‖∗ := sup‖y‖≤1 z

>y. Then, if `q denotes the dual of `p-norm, we have 1
p + 1

q = 1 and

BDq = (BDp )◦.

We define the inner -`p-radius of a nonempty compact convex set C ⊆ RD containing the origin as the
radius of the largest `p-ball (confined to the linear span of C) one can inscribe inside C, and denote it by
rp (C). That is, rp (C) := max{α ∈ R>0 : α(BDp ∩ span(C)) ⊆ C}, where span(C) denotes the subspace spanned
by C. Likewise, we define the outer -`p-radius of C as the radius of the smallest `p-ball that contains C, and
denote it by Rp (C). That is, Rp (C) := min{β ∈ R>0 : βBDp ⊇ C}.
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3 A nullspace property for subspace-preserving recovery

Proof of Lemma 1

Proof. Since each column of XP can be written as a convex combination of the union of the columns of X P̃

and −X P̃ , we conclude that XP = X P̃YP for some YP ∈ R|P̃ |×|P | with columns in S|P̃ |−1
1 . Also X P̃ = X̃ P̃

holds trivially.
⇒: Suppose that X satisfies SNSP. Let η̃ ∈ Null(X̃, P̃) and P̃ ∈ P̃. There exists a unique P ∈ P such

that P̃ ⊆ P . We lift η̃ to η ∈ Null(X,P) by inserting zeros at the missing indices. Since X satisfies SNSP,
the problem minc:XP (ηP )=XP (c) ‖c‖1 has a minimizer ĉ which satisfies

‖ĉ‖1 < ‖ηP c‖1 (3.2)

Furthermore, we have
X̃ P̃ (YP ĉ) = (X̃ P̃YP )ĉ = XP ĉ = XP ηP = X̃ P̃ η̃P̃ , (3.3)

and we conclude that

min
c:X̃P̃ η̃P̃=X̃P̃ (c)

‖c‖1 ≤ ‖YP ĉ‖1 Since YP ĉ is feasible by (3.3).

≤ ‖ĉ‖1 Since YP has normalized columns.

< ‖ηP c‖1 By (3.2)

= ‖η̃P̃ c‖1,

and so, X̃ satisfies SNSP.
⇐: Conversely, suppose X̃ satisfies SNSP. Let η ∈ Null(X,P). Suppose that X has r columns, and

define η̃ ∈ Rr as the vector satisfying η̃P̃ := YP ηP for all P ∈ P. Note that we have

X̃ P̃ (η̃P̃ ) = (X̃ P̃YP )ηP = XP ηP . (3.4)

Hence, X̃ η̃ =
∑
P̃∈P̃ X̃ P̃ (η̃P̃ ) =

∑
P∈PXP ηP = Xη = 0. So, we conclude that η̃ ∈ Null(X̃).

If XP ηP = 0 for all P ∈ P, we have minc:XP (ηP )=XP (c) ‖c‖1 = 0 < ‖ηP c‖1 for all P ∈ P. Therefore, (4)
is satisfies for η and for all P ∈ P trivially. So, w.l.o.g. we can assume that there exists Q,T ∈ P with Q 6= T ,
such that XQηQ 6= 0 6= XT ηT . In turn, we have X̃Q̃η̃Q̃ 6= 0 6= X̃ T̃ η̃T̃ by (3.4). Hence, w.l.o.g. Supp(η̃) is

not contained in P̃ for any P̃ ∈ P̃, and we have η̃ ∈ Null(X̃, P̃).
Now we let P ∈ P, and argue as follows:

min
c:XP (ηP )=XP (c)

‖c‖1 = min
c:(X̃P̃YP )(ηP )=XP (c)

‖c‖1

≤ min
z:X̃P̃ (η̃P̃ )=X̃P̃ (z)

‖z‖1 By restricting the constraint set.

< ‖η̃P̃ c‖1 Since X̃ satisfies SNSP.

=
∑

Q̃6=P̃ ,Q̃∈P̃

‖η̃Q̃‖1

=
∑

Q6=P,Q∈P

‖YQηQ‖1

≤
∑

Q6=P,Q∈P

‖ηQ‖1 Since YQ has normalized columns.

= ‖ηP c‖1.

Hence, X satisfies SNSP.

4 A geometrically interpretable characterization of SNSP

There are no extra proofs for this section, or any additional material of other kind.
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5 Reduction of the verification of SNSP to a decision on finite
sets

Reformulation of SNSP

Lemma 5.1. For any P ∈ P, the function fP : RN → R≥0 defined as

f(η) = ‖ηP ‖1 + min
z:XP z=XP ηP

‖z‖1 (5.5)

is convex and positively homogeneous of degree 1.

Proof. We first aim to establish that fP is a convex function. Let λ ∈ [0, 1] and w, y ∈ RN . Then,

fP (λw + (1− λ)y)

= ‖λwP + (1− λ)yP ‖1 + min
z:XP (λwP+(1−λ)yP )=XP (z)

‖z‖1

≤ ‖λwP + (1− λ)yP ‖1 + ‖λ(wP + ηw) + (1− λ)(yP + ηy)‖1 for all ηw, ηy ∈ Null(XP )

≤ λ(‖wP ‖1 + ‖wP + ηw‖1) + (1− λ)(‖yP ‖1 + ‖yP + ηy‖1) for all ηw, ηy ∈ Null(XP ).

In particular,

fP (λw + (1− λ)y)

≤ λ
(
‖wP ‖1 + min

z:XP (wP )=XP (z)
‖z‖1

)
+(1− λ)

(
‖yP ‖1 + min

z:XP (yP )=XP (z)
‖z‖1

)
= λfP (w) + (1− λ)fP (y),

which establishes that fP is a convex function.
In order to show positive homogeneity, let α ∈ R>0. Then, it follows that

fP (αw) = ‖αwP ‖1 + min
z:XP (αwP )=XP (z)

‖z‖1

= α‖wP ‖1 + min
z:XP (wP )=XP ( 1

αz)
‖z‖1

= α‖wP ‖1 + min
y:XP (wP )=XP (y)

‖αy‖1

= α‖wP ‖1 + α min
y:XP (wP )=XP (y)

‖y‖1 = αfP (w),

which completes the proof.

Proposition 5.1. The matrix X satisfies SNSP if and only if for all η ∈ Null(X,P)∩BN1 and for all P ∈ P,
we have

‖ηP ‖1 + min
z:XP (ηP )=XP (z)

‖z‖1 < 1 (5.6)

Proof. The matrix X satisfies SNSP if and only if η ∈ Null(X,P) and for all P ∈ P, we have fP (η) < ‖η‖1.

That is, if and only if, fP

(
η
‖η‖1

)
< 1, since fP is positively homogeneous by Lemma 5.1. Hence, X satisfies

SNSP if and only if for all η ∈ Null(X,P) ∩ SN−1
1 and for all P ∈ P , we have fP (η) < 1. This is true, if and

only, for all η ∈ Null(X,P) ∩ BN1 and for all P ∈ P (5.6) holds, as claimed.

Proof of Thm. 3

Proof. We will use Prop. 5.1 to show the equivalence. For this purpose, what we need to show is the following:
The inequality (5.6) holds for all P ∈ P and for all η ∈ Null(X,P) ∩ BN1 , if and only if, it holds for all P ∈ P
and for all η ∈ Ext(Null(X) ∩ BN1 ,P).
⇒: Obvious, since Ext(Null(X) ∩ BN1 ,P) ⊂ Null(X,P) ∩ BN1 .
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⇐: Let P ∈ P, and η ∈ Null(X,P) ∩ BN1 . Then, there exists r ≥ 1, {wl}rl=1 ∈ Ext(Null(X) ∩ BN1 ) and
{λl}rl=1 ⊂ (0, 1] with

∑r
l=1 λl = 1 such that η =

∑r
l=1 λlwl.

Let fP be the function in Lemma 5.1. Note that for all l ∈ {1, · · · , r}, if there exists Ql ∈ P such that
Supp(wl) ⊆ Ql, then

fP (wl) =

{
0 if Ql 6= P,

1 if Ql = P.

If no such Ql exists, then wl ∈ Ext(Null(X) ∩ BN1 ,P), and fP (wl) < 1, by our hypothesis. So, we conclude
that fP (wl) < 1, if Supp(wl) 6⊆ P .

Note that there must exist l̄ ∈ {1, . . . , r} such that Supp(wl̄) 6⊆ P because, otherwise, Supp(η) ⊆ P , which
would be a contradiction. Moreover, fP (wl̄) < 1, which we can use to argue that

‖ηP ‖1 + min
z:XP (ηP )=XP (z)

‖z‖1

= fP (η) = fP

(
r∑
l=1

λlwl

)

≤
r∑
l=1

λlfP (wl) Since fP is convex by Lemma 5.1

<

r∑
l=1

λl = 1 Since fP (wl̄) < 1 and fP (wl) ≤ 1,

which completes the proof.

Auxiliary results for the dual of Basis Pursuit

When Ψ ∈ Rr×s, the dual of the `1-minimization problem

min
Ψȳ=Ψy

‖y‖1 (5.7)

is given by the following two equivalent forms

max
Ψ>v∈Bs∞

ȳ>Ψ>v ≡ max
w∈im(Ψ>)∩Bs∞

ȳ>w. (5.8)

Since there is no duality gap and we have minΨȳ=Ψy ‖y‖1 = maxw∈im(Ψ>)∩Bs∞ ȳ>w. We use the dual problem
to derive sufficient conditions for SNSP, which are geometrically more interpretable. Therefore, the structure
of im(Ψ>)∩Bs∞ is of particular interest, and the next result helps us understand it better, when the columns
of Ψ have unit `p-norm.

Lemma 5.2. Let Ψ ∈ Rr×s be a matrix with columns of unit `p-norm with p ∈ [1,∞], and `q be the dual of
`p. Then,

ΨBs1 ⊆ im(Ψ) ∩ Brp, (5.9)

or alternatively,
im(Ψ>) ∩ Bs∞ ⊇ Ψ>Brq. (5.10)

When p ∈ {1,∞}, the equality holds in (5.9), if and only if, equality holds in (5.10).

Proof. Since the columns of Ψ have unit `p-norm, we must have Ψv ∈ Brp for all v ∈ Bs1. That is, we have
ΨBs1 ⊆ Brp, so that (5.9) follows trivially.

The inclusion (5.9) implies Bs1 ⊆ Ψ−1Brp. Taking the polar of both sides, we obtain Bs∞ = (Bs1)
◦ ⊇(

Ψ−1Brp
)◦

= ΨTBrq by [1, Cor. 16.3.2]. Since im(Ψ>) ⊇ ΨTBrq holds trivially, we obtain (5.10).
Suppose that p ∈ {1,∞} and equality holds in (5.9). Taking inverse image under Ψ on both sides of

(5.9), we obtain Ψ−1ΨBs1 = Ψ−1
(
im(Ψ) ∩ Brp

)
. The left-hand-side of this equation is Null(Ψ) + Bs1, whereas

the right-hand-side is equal to Ψ−1Brp. That is, we have Null(Ψ) + Bs1 = Ψ−1Brp. Now, taking polar of both
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sides, we obtain im(Ψ>) ∩ Bs∞ = (Null(Ψ) + Bs1)
◦

=
(
Ψ−1Brp

)◦
= Ψ>Brq, by [1, Cor. 16.3.2 & Cor. 16.5.2].

Conversely, suppose that equality holds in (5.10). Then, by taking the polar of both sides of the equality, we
obtain Null(Ψ) + Bs1 = Ψ−1Brp, by [1, Cor. 9.1.1, Cor. 16.3.2 & Cor. 16.5.2]. Applying Ψ to both sides, we
obtain ΨBs1 = im(Ψ) ∩ Brp.

Since the span of ΨBs1 is im(Ψ), the definition of inner-`p-radius implies that rp
(
ΨB1

s

)
is the largest

number such that 1
rp(ΨB1

s)
ΨBs1 ⊇ im(Ψ) ∩ Brp. When p /∈ {1,∞}, we always have rp

(
ΨB1

s

)
< 1, but when

p ∈ {1,∞}, the equality can be attained, so we give this case a special name.

Definition 5.1. Let p ∈ {1,∞} and Ψ ∈ Rr×s be a matrix with columns of unit `p-norm. We say that Ψ is
perfectly expressive, if rp (ΨBs1) = 1.

We also have the following lemma, which characterizes perfectly expressiveness.

Lemma 5.3. Let Ψ ∈ Rr×s be a matrix with columns of unit `p-norm with p ∈ {1,∞}. Then, Ψ is perfectly
expressive, if and only if, one of the following equivalent conditions hold:

1. ΨBs1 = im(Ψ) ∩ Brp.

2. For all v ∈ Ext(im(Ψ) ∩ Brp), v or −v is a column of Ψ.

3. im(Ψ>) ∩ Bs∞ = Ψ>Brq.

Proof. 1⇒ 2 : If ΨBs1 = im(Ψ) ∩ Brp, then we necessarily have Ext(ΨBs1) = Ext(im(Ψ) ∩ Brp). That is, any
v ∈ Ext(im(Ψ) ∩ Brp) is an extreme point of ΨBs1. But each extreme point of ΨBs1 is either a column of Ψ or
a column of −Ψ, and we get the result.

2⇒ 1 : If for all v ∈ Ext(im(Ψ) ∩ Brp), v or −v is a column of Ψ, then Ext(im(Ψ) ∩ Brp) ⊆ ΨBs1. Taking
convex hull, we obtain im(Ψ) ∩ Brp = conv(Ext(im(Ψ) ∩ Brp)) ⊆ ΨBs1. Since the converse inclusion always
holds by Lemma 5.2, we obtain the equality.

3 ⇐⇒ 1 : Follows from Lemma 5.2.

We end this part with a final auxiliary result that will be useful in the proof of Prop. 1.

Lemma 5.4. Let Ψ ∈ Rr×s be a matrix with columns of unit `p-norm with p ∈ [1,∞], and `q be the dual of
`p. Then,

1

rp (ΨBs1)
= min

{
β ∈ R≥1 : im(Ψ>) ∩ Bs∞ ⊆ βΨ>Brq

}
. (5.11)

Proof. We set β∗ := min
{
β ∈ R≥1 : im(Ψ>) ∩ Bs∞ ⊆ βΨ>Brq

}
. Then

im(Ψ>) ∩ Bs∞ ⊆ β∗Ψ>Brq ⇐⇒
(
im(Ψ>) ∩ Bs∞

)◦ ⊇ (β∗Ψ>Brq)◦
⇐⇒ Null(Ψ) + Bs1 ⊇

1

β∗
Ψ−1Brp

⇐⇒ Null(Ψ) + β∗Bs1 ⊇ Ψ−1Brp
=⇒ β∗ΨBs1 ⊇ ΨΨ−1Brp = im(Ψ) ∩ Brp.

Hence, we must have β∗ ≥ 1

rp(ΨBs1)
. Conversely, we have

im(Ψ) ∩ Brp ⊆
1

rp (ΨBs1)
ΨBs1 ⇐⇒

(
im(Ψ) ∩ Brp

)◦ ⊇ ( 1

rp (ΨBs1)
ΨBs1

)◦
⇐⇒ Null(Ψ>) + Brq ⊇ rp (ΨBs1) (Ψ>)−1Bs∞

⇐⇒ Null(Ψ>) +
1

rp (ΨBs1)
Brq ⊇ (Ψ>)−1Bs∞

=⇒ 1

rp (ΨBs1)
Ψ>Brq ⊇ Ψ>(Ψ>)−1Bs∞ = im(Ψ>) ∩ Bs∞.

So, we also have the reverse inequality, β∗ ≤ 1

rp(ΨBs1)
. Hence, β∗ = 1

rp(ΨBs1)
.
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Proof of Prop. 1.

Proof. By Lemma 5.4, we have im(Ψ>) ∩ Bs∞ ⊆ 1

rp(ΨBs1)
Ψ>Brq. Hence,

max
w∈im(Ψ>)∩Bs∞

ȳ>w ≤ max
w∈ 1

rp(ΨBs1)
Ψ>Brq

ȳ>w (5.12)

=
1

rp (ΨBs1)
max

w∈Ψ>Brq
ȳ>w

=
1

rp (ΨBs1)
max
e∈Brq

ȳ>Ψ>e

=
‖Ψȳ‖p
rp (ΨBs1)

.

If p ∈ {1,∞} and rp (ΨBs1) = 1 (i.e. Ψ is perfectly expressive), then, by Lemma 5.3, equality holds in
(5.12) with rp (ΨBs1) = 1, and the result follows.
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