Supplementary Material for the ICML 2021 Publication:
A Nullspace Property for Subspace-Preserving Recovery

1 Introduction

A note on numbering. When we refer to a theorem/proposition/equation/etc. in this Supplementary
Material, if its number has a section number in it, then it refers to a theorem/proposition/equation/etc. in
the Supplementary Material. Otherwise it is a result in the original paper.

2 Preliminaries and problem formulation

Detailed notation and preliminaries. The set of integers from 1 up to N is denoted as [N] := {1,..., N}.
For any ¢ € R, the support of ¢ is denoted as Supp(c) := {k € [N] : ¢, # 0}. The vector ¢ is called s-sparse
if | Supp(e)| < s. For any index set S C [N], the complement of S in [N] is denoted by S°. For a nonempty
set S C [N], the vector c¢g € R!S| denotes the part of ¢ that is supported on S. We use Prg € RV*N to
denote the matrix that projects onto the coordinates in S and sets all other coordinates to zero. For a matrix
X € RP*N and an index set S C [N], the matrix X g € RP*IS| denotes the submatrix of X consisting of the
columns of X indexed by S. Therefore, for all ¢ € RV, we have X Prgc = Xgcs. If S = {j} for some j, we
simply write x; instead of X g, to refer to the jth-column of X . We prioritize the subscript over superscript
in the sense that X & = (Xg)", and not (X ")g. Finally, Null(X) denotes the nullspace of the matrix X
and X ~'(-) denotes the inverse image under X.

The £,-norm of a vector x € RY is defined as |||, := (Zszl \xk|p)%, where | - | denotes the absolute
value. The unit £,-sphere is denoted by SP~! := {x € R : ||z|, = 1} and the unit ¢,-ball is denoted by
IB%Z? ={x € RP . llell, <1}.

The convex hull is denoted by conv(:). We denote the convex hull of the union of the columns of X
and —X by K(X). Sometimes we refer to it as the symmetrized convex hull of the columns of X. For
a nonempty convex set C C RP| the set of extreme points of C is denoted as Ext(C). These are precisely
the points that cannot be written as a nontrivial convex combination of two distinct points in C. The
interior of C is given by inte(C) := {x € C : 3¢ > 0s.t. ¢ +eBP C C}. Note that according to this
definition, the interior of C can be empty, although C is non-empty. The affine hull of C, denoted by
aff(C), is the smallest affine set in R” that contains C. The relative interior [I, p.44] of C is defined as
rinte(C):={xz €aff(C) : Je > 0, (x + eBY) Naff (C) C C)}. The polar [1, p.125] of C is defined as

C°:={qeRP:q'x <1forall zecC} (2.1)

Note C° is always a closed, convex set [ p.125]. For any € > 0, we have (e€)° = 1C° [1} Cor. 16.1.2]. If
C is closed and contains the origin, then C° is compact if and only if 0 € inte(conv(C)) [I, Cor. 14.5.1]. If
C1,Cy C RP are closed convex sets, then C; C Co if and only if CS C CS [I, p.125]. We define the dual || - ||.
of a norm || - || as [[z[|« := supy, <1 zTy. Then, if ¢, denotes the dual of £,-norm, we have 1% + % =1 and
BD = (BD)°.

We define the inner-£,-radius of a nonempty compact convex set C C RP containing the origin as the
radius of the largest £,-ball (confined to the linear span of C) one can inscribe inside C, and denote it by
t, (C). That is, t, (C) := max{a € Rsq : a(B) Nspan(C)) C C}, where span(C) denotes the subspace spanned
by C. Likewise, we define the outer-¢,-radius of C as the radius of the smallest £,-ball that contains C, and
denote it by 9, (C). That is, R, (C) := min{3 € R5¢ : SBY D C}.

yl



3 A nullspace property for subspace-preserving recovery

Proof of Lemma [1]

Proof. Since each column of X p can be written as a convex combination of the union of the columns of X 5
and —X 5, we conclude that X p = X 5Yp for some Yp € RIPIXIPl with columns in Sllp‘fl. Also X 5 = Xﬁ.
holds trivially.

=-: Suppose that X satisfies SNSP. Let 7 € Null(X, 75) and P € P. There exists a unique P € P such
that P C P. We lift 7 to n € Null(X,P) by inserting zeros at the missing indices. Since X satisfies SNSP,
the problem mine.x . (yp)=x »(e) [l¢|l1 has a minimizer ¢ which satisfies

lellx < lnpelly (3:2)
Furthermore, we have ~ ~ R
X p(Ype) = (XpYp)t = Xpt= Xpnp = X pijp, (3.3)
and we conclude that
~ min_ llelli < ||Ypé|lr Since Yp¢ is feasible by (3.3)).
pip=Xp(c)
< |léllx Since Yp has normalized columns.
< |Inpelh By (8.2
= Hf/ﬁc ”1’

and so, X satisfies SNSP. ~
<: Conversely, suppose X satisfies SNSP. Let n € Null(X,P). Suppose that X has r columns, and
define 77 € R" as the vector satisfying 75 := Ypnp for all P € P. Note that we have

X p(i1p) = (X pYr)np = X pup. (3.4)

Hence, X7 = Y Pep X 5(7p) = > pep XpPnp = Xn = 0. So, we conclude that 7 € Null(X).

If Xpnp =0 for all P € P, we have ming. x ., (yp)=x p(c) llcllt = 0 < [|npe[]1 for all P € P. Therefore,
is satisfies for ) and for all P € P trivially. So, w.l.o.g. we can assume that there exists Q,T" € P with @ 75 T
such that X gng # 0 # Xrnr. In turn, we have XQnQ #*£0# XTnT by . Hence, w.l.o.g. Supp(7) is
not contained in P for any P € P, and we have 7 € Null(X, P).

Now we let P € P, and argue as follows:

min lleli = min llell1
caXp(np)=Xp(c) c:(X pYp)(np)=Xp(c)

< min _ Ilz|l1 By restricting the constraint set.
Z:X}a(ﬁ}s):X}a(z)

< |7l Since X satisfies SNSP.

= Z ||77QH1
Q#P,QeP

= Y IYonelh
Q#P,QeP

< Z Ingll Since Y has normalized columns.
Q#P,QeP

= llnpe|l1-

Hence, X satisfies SNSP. O

4 A geometrically interpretable characterization of SNSP

There are no extra proofs for this section, or any additional material of other kind.



5 Reduction of the verification of SNSP to a decision on finite
sets

Reformulation of SNSP
Lemma 5.1. For any P € P, the function fp : RN — R defined as

fn) = el + o min izl (55)

s convex and positively homogeneous of degree 1.

Proof. We first aim to establish that fp is a convex function. Let A € [0,1] and w,y € RY. Then,

frQAw + (1= A)y)

= [[Awp + (1 = Nyplr + min 1211
zXpAwp+(1-N)yp)=Xp(z)

Awp + (1= Nyplly + [[Mwp +n90) + (1 = N (yp +ny)lls for all 5,7, € Null(X p)

<
< Alwplls + lwp + 1wll1) + (1= A (llyplly + lyp +myll1)  for all n., n, € Null(Xp).

In particular,
fPQw+ (1= Xy)

S/\<||wP||1+ i |z||1)+<1—x>(yp||1+ win ||z||1)

i
Z:Xp(’LUp):Xp(Z) Z:Xp(yp):Xp(z)

= Afp(w) + (1 =) fp(y),

which establishes that fp is a convex function.
In order to show positive homogeneity, let a € Rs . Then, it follows that

aw) = ||aw min z
fr(aw) = [lawp| +Z:XP(WP):XP(Z)H Il
= allwpll1 + min (E(5
Z:Xp wp :Xp éz)
= allwpll1 + min oyl
y:Xp(wp)=Xp(y)

= aflwp|1 + @ m

in =afp(w),
eyl = afe(w)

which completes the proof. O

Proposition 5.1. The matriz X satisfies SNSP if and only if for alln € Null(X,P)NBY and for all P € P,
we have

Inell+ =l <1 (56)

min
Xp(np)=Xp
Proof. The matrix X satisfies SNSP if and only if € Null(X,P) and for all P € P, we have fp(n) < ||n]1.
That is, if and only if, fp (W) < 1, since fp is positively homogeneous by Lemma Hence, X satisfies

SNSP if and only if for all € Null(X,P) N SN ™! and for all P € P, we have fp(n) < 1. This is true, if and
only, for all n € Null(X,P) NBY and for all P € P (5.6) holds, as claimed. O

Proof of Thm. [3

Proof. We will use Prop. to show the equivalence. For this purpose, what we need to show is the following:
The inequality holds for all P € P and for all n € Null(X,P) NBY, if and only if, it holds for all P € P
and for all n € Ext(Null(X) N By, P).

=: Obvious, since Ext(Null(X)NBY,P) c Null(X,P) NBN.



«: Let P € P, and n € Null(X,P) NBY. Then, there exists r > 1, {w;}/_, € Ext(Null(X)NBY) and
{N}_, € (0,1] with >7;_; Ay = 1 such that n =Y ,_; Nw;.

Let fp be the function in Lemma Note that for all [ € {1,---,r}, if there exists @Q; € P such that
Supp(w;) C @, then

0 ifQ+P,

felwn) = {1 ifQ, = P.

If no such Q exists, then w; € Ext(Null(X)NBY,P), and fp(w;) < 1, by our hypothesis. So, we conclude
that fp(w;) < 1, if Supp(w;) € P.

Note that there must exist [ € {1,...,r} such that Supp(w;) € P because, otherwise, Supp(n) C P, which
would be a contradiction. Moreover, fp(w;) < 1, which we can use to argue that

el + mi [

n
z:Xp(np)=Xrp(z)

=fe(n) =fr (Z /\lwl>
=1

< Z Aufp(wy) Since fp is convex by Lemma
=1
< Z)\l =1 Since fp(wy) <1 and fp(w;) <1,
1=1
which completes the proof. O

Auxiliary results for the dual of Basis Pursuit

When ¥ € R"*#, the dual of the £;-minimization problem

i 5.7
Syl (5.7)
is given by the following two equivalent forms
TqT _ —T
max v = max w. 5.8
v ToeBs, Y weim (¥ T)NB, 4 ( )

Since there is no duality gap and we have mingy—w, [|yl|1 = max, cimw)nB: 7" w. We use the dual problem
to derive sufficient conditions for SNSP, which are geometrically more interpretable. Therefore, the structure
of im(¥ ") MBS, is of particular interest, and the next result helps us understand it better, when the columns
of ¥ have unit £,-norm.

Lemma 5.2. Let U € R"™® be a matriz with columns of unit £,-norm with p € [1,00], and £, be the dual of
l,. Then,
WB] C im(¥) NB,, (5.9)

or alternatively,
im(¥")NBS, 2 VB (5.10)

When p € {1,00}, the equality holds in (5.9), if and only if, equality holds in (5.10)).

Proof. Since the columns of ¥ have unit £,-norm, we must have ¥v € B} for all v € Bj. That is, we have
VB§ C IB;, so that follows trivially.

The inclusion implies Bf C W~'B;. Taking the polar of both sides, we obtain B, = (Bf)® 2
(\I/_llB;)o = UTB; by [1, Cor. 16.3.2]. Since im(¥") O WTB holds trivially, we obtain (5.10).

Suppose that p € {1,00} and equality holds in . Taking inverse image under ¥ on both sides of
(5.9), we obtain ¥~1WB; = U~ (im(¥) NB}). The left-hand-side of this equation is Null(¥) + B, whereas
the right-hand-side is equal to W~ 'Bj. That is, we have Null(¥) + B = ¥~ 'B;. Now, taking polar of both



sides, we obtain im(¥") NBZ, = (Null(¥) + Bf)° = (¢~!B})” = W B, by [I, Cor. 16.3.2 & Cor. 16.5.2].
Conversely, suppose that equality holds in . Then, by taking the polar of both sides of the equality, we
obtain Null(¥) 4+ B = ¥~'B;, by [I, Cor. 9.1.1, Cor. 16.3.2 & Cor. 16.5.2]. Applying ¥ to both sides, we
obtain WB; = im(¥) NBY. O

Since the span of WBY is im(¥), the definition of inner-¢,-radius implies that v, (VB!) is the largest
number such that W\IIIB?[ 2 im(¥) NB,. When p ¢ {1,00}, we always have t, (VB!) < 1, but when
p € {1, 00}, the equality can be attained, so we give this case a special name.

Definition 5.1. Let p € {1,00} and ¥ € R™** be a matriz with columns of unit £,-norm. We say that ¥ is
perfectly expressive, if v, (¥B]) = 1.
We also have the following lemma, which characterizes perfectly expressiveness.

Lemma 5.3. Let ¥ € R"™** be a matriz with columns of unit £,-norm with p € {1,00}. Then, ¥ is perfectly
expressive, if and only if, one of the following equivalent conditions hold:

1. UBf = im(¥) N Bj.
2. For all v € Ext(im(¥) NB}), v or —v is a column of V.
3 im(¥T)NBE, = VB

Proof. 1= 2:1If UB{ = im(¥) N B}, then we necessarily have Ext(¥B}) = Ext(im(¥) NB}). That is, any
v € Ext(im(¥) NBy) is an extreme point of WB{. But each extreme point of WBY is either a column of ¥ or
a column of —W¥, and we get the result.

2= 1:1If for all v € Ext(im(¥) NB}), v or —v is a column of ¥, then Ext(im(¥) NB}) C WB;. Taking
convex hull, we obtain im(¥) N B} = conv(Ext(im(¥) NB})) € WB. Since the converse inclusion always
holds by Lemma [5.2] we obtain the equality.

3 <= 1: Follows from Lemma O

We end this part with a final auxiliary result that will be useful in the proof of Prop.

Lemma 5.4. Let ¥ € R™*° be a matriz with columns of unit £,-norm with p € [1,00], and £, be the dual of

¢,. Then,
1

— = mi Rsq :im(PT)NBS, C AU B, 5.11
& (UB1) min {ﬁ €R>y :im(¥ ") 5. CB q} ( )
Proof. We set f* := min {5 ER>y :im(¥T)NBE, C B\I/TBZ}. Then
im(0")NB, C A UB; = (im(TT)NB)" 2 (BT BY)°
S 1 — s
< Null(¥) +B; D §\p 'B;,

< Null(¥) + 8B 2 U™ 'B;,
— B*UB; O VU 'B) = im(¥) N B,

Hence, we must have g* > . (\;BS). Conversely, we have
P 1

1 ° 1 ’
im(¥)NB) C ————UB; < (im(¥)NB])° O | —=—~VB;
) 1) € g VBT = ()82 (g 98
= Nul(¥7) + B} 2, (UB) (U7)"'BS,
1
= Null(¥T)+ ——Br > (¢7)"'Bs
ull( )+ @By g2 (W) B
1
— — U B DU (U) B, =im(TT) N B
(emp ¢ o2 ) SN E
. : : P e —
So, we also have the reverse inequality, §* < (D) Hence, 5* = (D) O



Proof of Prop.

Proof. By Lemma we have im(¥ ") N B, C W\PTBE. Hence,
~ max §w < max j ' w (5.12)
weim (¥ T)NBS, wGWWTBZ
1 _T

———— max Yy w
S -
t, (VB) wev By

1 T T
- v
v, (UB3) cetr 0~ ©

gl
v, (VB])

If p e {1,00} and v, (UBF) =1 (i.e. ¥ is perfectly expressive), then, by Lemma equality holds in
(5.12) with v, (¥B5) = 1, and the result follows. O
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