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Abstract

We consider training models on private data that are distributed across user de-
vices. To ensure privacy, we add on-device noise and use secure aggregation so that
only the noisy sum is revealed to the server. We present a comprehensive end-to-end
system, which appropriately discretizes the data and adds discrete Gaussian noise be-
fore performing secure aggregation. We provide a novel privacy analysis for sums of
discrete Gaussians and carefully analyze the effects of data quantization and modu-
lar summation arithmetic. Our theoretical guarantees highlight the complex tension
between communication, privacy, and accuracy. Our extensive experimental results
demonstrate that our solution is essentially able to match the accuracy to central dif-
ferential privacy with less than 16 bits of precision per value.
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1 Introduction

Software and service providers rely on increasingly complex data analytics and machine
learning models to improve their services. However, training these machine learning models
hinges on the availability of large datasets, which are often distributed across user devices
and contain sensitive information. The collection of these datasets comes with several pri-
vacy risks – can the service provider address issues around consent, transparency, control,
breaches, persistence, processing, and release of data? There is thus a strong desire for tech-
nologies which systematically address privacy concerns while preserving, to the best extent
possible, the utility of the offered services.

To address this need, several privacy-enhancing technologies have been studied and built
over the past few years. Prominent examples of such technologies include federated learning
(FL) to ensure that raw data never leaves users’ devices [MMRHA17; KM+19], crypto-
graphic secure aggregation (SecAgg) to prevent a server from inspecting individual user
updates [BIKMMPRSS17; BBGLR20], and differentially private stochastic gradient descent
(DP-SGD) to train models with provably limited information leakage [ACGMMTZ16; TB20].
While these technologies have been extremely well studied in a separate fashion, little work
has focused on understanding precisely how they can be combined in a rigorous and princi-
pled fashion. Towards this end, we present a comprehensive end-to-end system where each
client appropriately discretizes their model update and adds discrete Gaussian noise to it
before sending it for modular secure summation using SecAgg. This provides the first con-
crete step towards building a communication-efficient FL system with distributed DP1 and
SecAgg guarantees.

Organization The remainder of the paper is organized as follows. We summarize our main
results and review related works in this section. We present the preliminaries in Section 2.
In Section 3, we introduce the distributed discrete Gaussian mechanism and analyze its
privacy guarantees. In Section 4, we show how R-valued vectors can be efficiently mapped

1See “Distributed DP” paragraph in Section 1.2 for a definition of this notion of DP.
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to Z-valued vectors and how the distributed discrete Gaussian mechanism can be combined
with modulo clipping to obtain noisy vectors in Zdm. We present our experimental results
in Section 5 and conclude our paper with a few interesting and non-trivial extensions in
Section 6.

1.1 Main Results

We start by considering a single round of federated learning in which we are simply summing
model update vectors. That is, we have n clients and assume that each client holds a
vector xi ∈ Rd and our goal is to privately approximate x̄ :=

∑n
i xi. Client i computes

zi = Aclient(xi) ∈ Zdm; here, Aclient(·) can be thought of as a compression and privatization
scheme. Using secure aggregation as a black box,2 the server observes

z̄ :=
n∑
i

zi mod m =
n∑
i

Aclient(xi) mod m, (1)

and uses z̄ to estimate Aserver(z̄) ≈ x̄ =
∑n

i xi.
The protocol consists of three parts – the client side Aclient, secure aggregation, and

the server side Aserver. There is already ample work on implementing secure aggregation
[BBGLR20; BIKMMPRSS16]; thus we treat SecAgg as a black box which is guaranteed to
faithfully compute the modular sum of the inputs, while revealing no further information to a
potential privacy adversary. Further discussion of SecAgg and the required trust assumptions
is beyond the scope of this work. This allows us to focus on the requirements for Aclient and
Aserver:

• Privacy: The sum z̄ =
∑n

i Aclient(xi) mod m must be a differentially private function
of the inputs x1, · · · , xn. Specifically, adding or removing one client should only change
the distribution of the sum slightly. Note that our requirement is weaker than local
DP, since we only reveal the sum, rather than the individual responses zi = Aclient(xi).

Privacy is achieved by each client independently adding discrete Gaussian noise [CKS20]
to its (appropriately discretized) vector. The sum of independent discrete Gaussians
is not a discrete Gaussian, but we show that it is extremely close for the parameter
regime of interest. This is the basis of our differential privacy guarantee, and we believe
this result to be of independent interest.

• Accuracy: Our goal is to approximate the sum Aserver(z̄) ≈ x̄ =
∑n

i xi. For simplic-
ity, we focus on the mean squared error, although our experiments also evaluate the
accuracy by aggregating client model updates for federated learning.

There are three sources of error to consider: (i) the discretization of the xi vectors from
Rd to Zd; (ii) the noise added for privacy (which also depends on the norm ‖xi‖ and

2We will assume the secure aggregation protocol accepts zi’s on Zdm (i.e., length-d integer vectors modulo
m) and computes the sum modulo m. Our methods do not depend on the specifics of the implementation
of SecAgg.
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Algorithm 1 Client Procedure Aclient

Input: Private vector xi ∈ Rd. {Assume dimension d is a power of 2.}
Parameters: Dimension d ∈ N; clipping threshold c > 0; granularity γ > 0; modulus
m ∈ N; noise scale σ > 0; bias β ∈ [0, 1).
Shared/public randomness: Uniformly random sign vector ξ ∈ {−1,+1}d.
Clip and scale vector: x′i = 1

γ
min

{
1, c
‖xi‖2

}
· xi ∈ Rd.

Flatten vector: x′′i = HdDξx
′
i ∈ Rd where H ∈ {−1/

√
d,+1/

√
d}d×d is a Walsh-Hadamard

matrix satisfying HTH = I and Dξ ∈ {−1, 0,+1}d×d is a diagonal matrix with ξ on the
diagonal.
repeat

Let x̃i ∈ Zd be a randomized rounding of x′′i ∈ Rd. I.e., x̃i is a product distribution with
E [x̃i] = x′′i and ‖x̃i − x′′i ‖∞ < 1.

until ‖x̃i‖2 ≤ min

{
c/γ +

√
d,

√
c2/γ2 + 1

4
d+

√
2 log(1/β) ·

(
c/γ + 1

2

√
d
)}

.

Let yi ∈ Zd consist of d independent samples from the discrete Gaussian NZ(0, σ2/γ2).
Let zi = (x̃i + yi) mod m.
Output: zi ∈ Zdm for the secure aggregation protocol.

how discretization affects this); and (iii) the potential modular wrap-around introduced
by SecAgg modular sum. We provide a detailed analysis of all three effects and how
they affect one another.

• Communication and Computation: It is crucial that our algorithms are efficient,
especially the client side, which may be running on a mobile device. Computationally,
our algorithms run in time that is nearly linear in the dimension. The communication
cost is O(d logm). While we cannot control the dimension d, we can minimize the
number of bits per coordinate, which is logm. However, this introduces a tradeoff
between communication and accuracy – larger m means more communication, but we
can reduce the probability of a modular wrap around and pick a finer discretization to
reduce the rounding error.

We focus our discussion on the simple task of summing vectors. In a realistic federated
learning system, there will be many summing rounds as we iteratively update our model.
Each round will be one invocation of our protocol. The privacy loss parameters of the larger
system can be controlled using the composition and subsampling properties of differential
privacy. That is, we can use standard privacy accounting techniques [BS16; Mir17; WBK19]
to analyse the more complex system, as long as we have differential privacy guarantees for
the basic protocol that is used as a subroutine.

We now present our algorithm in two parts – the client part Aclient in Algorithm 1 and
the server part Aserver in Algorithm 2. The two parts are connected by a secure aggregation
protocol. We also note that our algorithms may be a subroutine of a larger FL system.

We briefly remark about the parameters of the algorithm: d is the dimension of the
inputs xi and outputs, which we assume is a power of 2 for convenience. The input vectors
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Algorithm 2 Server Procedure Aserver

Input: Vector z̄ = (
∑n

i zi mod m) ∈ Zdm via secure aggregation.
Parameters: Dimension d ∈ N; number of clients n ∈ N; clipping threshold c > 0;
granularity γ > 0; modulus m ∈ N; noise scale σ > 0; bias β ∈ [0, 1).
Shared/public randomness: Uniformly random sign vector ξ ∈ {−1,+1}d.
Map Zm to {1 − m/2, 2 − m/2, · · · ,−1, 0, 1 · · · ,m/2 − 1,m/2} so that z̄ is mapped to
z̄′ ∈ [−m/2,m/2]d ∩ Zd (and we have z̄′ mod m = z̄).
Output: y=γDξH

T
d z̄
′ ∈ Rd. {Goal: y ≈ x̄ =

∑n
i xi}

must have their norm clipped for privacy; c controls this tradeoff – larger c will require
more noise for privacy (larger σ) and smaller c will distort the vectors more. If β = 0, then
the discretization via randomized rounding is unbiased, but the norm of x̃i could be larger;
each iteration of the randomized rounding loop succeeds with probability at least 1 − β.
The modulus m will determine the communication complexity – zi requires d log2m bits to
represent. The noise scale σ determines the privacy, specifically ε ≈ c/

√
nσ. Finally, the

granularity γ gives a tradeoff: smaller γ means the randomized rounding introduces less
error, but also makes it more likely that the modulo m operation introduces error.

We also remark about some of the techniques used in our system: The first step in
Algorithm 1 scales and clips the input vector so that ‖x′i‖2 ≤ c/γ. The next step performs a
unitary rotation/reflection operation x′′i = HdDξx

′
i [SFKM17]. This operation “flattens” the

vector – i.e., ‖x′′i ‖∞ ≈ 1√
d
‖x′i‖2. Flattening ensures that the modular arithmetic does not

introduce large distortions due to modular wrap around (i.e., large coordinates of x′′i will be
subject to modular reduction). This flattening operation and the scaling by γ are undone in
the last step of Algorithm 2. The x′′i is randomly rounded to the integer grid in an unbiased
manner. That is, each coordinate is independently rounded to one of the two nearest integers.
E.g., 42.3 has a 30% probability of being rounded up to 43 and a 70% probability of being
rounded down to 42. This may increase the norm – ‖x̃i‖2 ≤ ‖x′′i ‖2 +

√
d. To mitigate this,

we perform conditional randomized rounding: repeatedly perform independent randomized
rounding on x′′i until ‖x̃i‖2 is not too big. This introduces a small amount of bias, but, since
the noise we add to attain differential privacy must scale with the norm of the discretized
vector, reducing the norm reduces the noise variance.

Privacy We now state the privacy of our algorithm.

Theorem 1 (Privacy of Our Algorithm). Let c, d, γ, β, σ be the parameters of Algorithm 1
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and n the number of trustworthy clients. Define

∆2
2 := min


c2+ γ2d

4
+

√
2 log

(
1
β

)
·γ ·
(
c+ γ

2

√
d
)
,(

c+ γ
√
d
)2

 , (2)

τ := 10 ·
n−1∑
k=1

e
−2π2 σ2

γ2
· k
k+1 , (3)

ε := min

{ √
∆2

2

nσ2 + 1
2
τd,

∆2√
nσ

+ τ
√
d

}
. (4)

Then Algorithm 1 satisfies 1
2
ε2-concentrated differential privacy,3 assuming that secure ag-

gregation only reveals the sum z = (
∑n

i zi mod m) ∈ Zdm to the privacy adversary.

We remark on the parameters of the theorem: To first approximation, ε ≈ c√
nσ

. This is

because the input vectors are clipped to have norm c and then each client adds (discrete)
Gaussian noise with variance ≈ σ2. The noise added to the sum thus has variance ≈ nσ2.
However, there are two additional effects to account for: First, randomized rounding can
increase the norm from c to ∆2 and this becomes the sensitivity bound that we use for the
privacy analysis. Second, the sum of n discrete Gaussians is not a discrete Gaussian, but it
is close; τ bounds the max divergence between the sum of n discrete Gaussians each with
scale parameter σ/γ and one discrete Gaussian with scale parameter

√
nσ/γ.

Note that 1
2
ε2-concentrated DP [BS16] is equivalent to satisfying

(
α, 1

2
ε2α
)
-Rényi DP

[Mir17] simultaneously for all α > 1. Concentrated DP can be converted to the more
standard approximate differential privacy [CKS20]: For any δ > 0, 1

2
ε2-concentrated DP

implies (εaDP(δ), δ)-DP, where

εaDP(δ) = inf
α>1

1

2
ε2α +

log(1/αδ)

α− 1
+ log(1− 1/α) ≤ 1

2
ε2 +

√
2 log(1/δ) · ε.

Accuracy Next we turn to the accuracy of the algorithm. We provide both an empirical
evaluation and theoretical analysis. We give the following asymptotic guarantee; a more
precise guarantee with exact constants can be found in Theorem 36.

Theorem 2 (Accuracy of Our Algorithm). Let n,m, d ∈ N and c, ε > 0 satisfy

m ≥ Õ

(
n+

√
ε2n3

d
+

√
d

ε

)
.

3Note that this is with respect to the addition or removal of an individual, not replacement (which would
double the ε parameter). To keep n fixed, we could define addition/removal to simply zero-out the relevant
vectors.
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Let Ã(x) = Aserver (
∑n

i Aclient(xi) mod m) denote the output of the system given by Al-

gorithms 1 and 2 instantiated with parameters γ = Θ̃
(

cn
m
√
d

+ c
εm

)
, β ≤ Θ

(
1
n

)
, and σ =

Θ̃
(

c
ε
√
n

+
√

d
n
· γ
ε

)
. Then Ã satisfies 1

2
ε2-concentrated differential privacy and attains the

following accuracy. Let x1, · · · , xn ∈ Rd with ‖xi‖2 ≤ c for all i ∈ [n]. Then

E

∥∥∥∥∥Ã(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ O

(
c2d

ε2

)
. (5)

To interpret Theorem 2, note that mean squared error O
(
c2d
ε2

)
is, up to constants,

exactly the error we would expect to attain for differential privacy in the central model.
Our analysis attains reasonably sharp constants (at the expense of many lower order terms
that we suppress here in the introduction). However, to truly gauge the practicality of our
method, we perform an empirical evaluation.

Experiments To investigate the interplay between communication, accuracy, and privacy
under our proposed protocol in practice, we empirically evaluate our protocol and compare
it to the commonly used centralized continuous Gaussian mechanism on two canonical tasks:
distributed mean estimation (DME) and federated learning (FL). For DME, each client holds
a vector and the server’s goal is to obtain a differentially private mean estimate of the vec-
tors. We show that 16 bits per coordinate are sufficient to nearly match the utility of the
Gaussian baseline for regimes of interest. For FL, we show on Federated EMNIST [CD-
WLKMST18] and Stack Overflow [Aut19] that our approach gives good performance under
tight privacy budgets, despite using generic RDP amplification via sampling [ZW19] for our
methods and the precise RDP analysis for the subsampled Gaussian mechanism [MTZ19].
We provide an open-source implementation of our methods in TensorFlow Privacy [ATMR19]
and TensorFlow Federated [IO19].4

1.2 Related Work

Federated Learning Under FL, a set of clients (e.g., mobile devices or institutions) col-
laboratively train a model under the orchestration of a central server, while keeping training
data decentralized [MMRHA17; Bon+19]. It embodies the principles of focused data col-
lection and minimization, and can mitigate many of the systemic privacy risks and costs
resulting from traditional, centralized machine learning and data science approaches. FL
performs many rounds of interaction between the server and subsets of online clients; for
example, each round may consist of computing and aggregating the gradients of the loss
for a given set of model weights, which are then updated using the aggregated gradients
for the next round. This allows us to focus on the simple task of computing the sum of

4Code: https://github.com/google-research/federated/tree/master/distributed_dp.
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vectors (model updates) held by the clients. We refer the reader to Kairouz, McMahan,
et al. [KM+19] for a survey of recent advances and open problems in FL.

While the above features can offer significant practical privacy improvements over cen-
tralizing training data, FL offers no formal guarantee of privacy and has to be composed
with other privacy technologies to offer strong (worst-case) privacy guarantees. The primary
goal of this paper is to show how two such technologies, namely secure aggregation and dif-
ferential privacy, can be carefully combined with FL to offer strong and quantifiable privacy
guarantees.

Secure Aggregation SecAgg is a lightweight instance of cryptographic secure multi-party
computation (MPC) that enables clients to submit vector inputs, such that the server learns
just an aggregate function of the clients’ vectors, typically the sum. In most contexts of
FL, single-server SecAgg is achieved via additive masking over a finite group [BBGLR20;
BIKMMPRSS16]. To be precise, clients add randomly sampled zero-sum mask vectors by
working in the space of integers modulo m and sampling the coordinates of the mask uni-
formly from Zm. This process guarantees that each client’s masked update is indistinguish-
able from random values. However, when all the masked updates are summed modulo m
by the server, the masks cancel out and the server obtains the exact sum. Observe that in
practice, the model updates computed by the clients are real valued vectors whereas SecAgg
requires the input vectors to be from Zm (i.e., integers modulo m). This discrepancy is
typically bridged by clipping the values to a fixed range, say [−r, r], which is then translated
and scaled to

[
0, m−1

n

]
, and then uniformly quantizing the values in this range to integers

in {0, 1, · · · , bm−1
n
c}, where n is the number of clients. This ensures that, up to clipping

and quantization, the server computes the exact sum without overflowing (i.e., the sum is
in [0,m− 1], which is unaffected by the modular arithmetic) [BSKMG19]. In our work, we
provide a novel strategy for transforming R-valued vectors into Zm-valued ones.

Distributed DP While SecAgg prevents the server from inspecting individual client up-
dates, the server is still able to learn the sum of the updates, which itself may leak potentially
sensitive information [MSDCS19; CLEKS19; SS19a; DSSUV15; SS19b; NSTPC21; SSSS17].
To address this issue, differential privacy (DP) [DMNS06], and in particular, DP-SGD can be
employed [SCS13; BST14; ACGMMTZ16; TB20]. DP is a rigorous measure of information
disclosure about individuals participating in computations over centralized or distributed
datasets. Over the last decade, an extensive set of techniques has been developed for dif-
ferentially private data analysis, particularly under the assumption of a centralized setting,
where the raw data is collected by a trusted service provider prior to applying perturbations
necessary to achieve privacy. This setting is commonly referred to as the central DP setting.
More recently, there has been a great interest in the local model of DP [KLNRS11; ESAG04;
War65] where the data is perturbed on the client side before it is collected by a service
provider.

Local DP avoids the need for a fully trusted aggregator. However, it is now well-
established that local DP usually leads to a steep hit in accuracy [KLNRS11; DJW13;

8



KBR16]. In order to recover some of the utility of central DP, without having to rely on a
fully trusted central server, an emerging set of models of DP, often referred to as distributed
DP, can be used. Under distributed DP, clients employ a cryptographic protocol (e.g.,
SecAgg) to simulate some of the benefits of a trusted central party. Clients first compute
minimal application-specific reports, perturb these slightly, and then execute the aggrega-
tion protocol. The untrusted server then only has access to the aggregated reports, with
the aggregated perturbations. The noise added by individual clients is typically insufficient
for a meaningful local DP guarantee on its own. However, after aggregation, the aggregated
noise is sufficient for a meaningful DP guarantee, under the security assumptions necessary
for the cryptographic protocol.

FL with SecAgg and Distributed DP Despite the recent surge of interest in distributed
DP, much of the work in this space focuses on the shuffled model of DP where a trusted third
party (or a trusted execution environment) shuffles the noisy client updates before forwarding
them to the server [EFMRTT19; BEMMRLRKTS17; CSUZZ19]. For more information on
the shuffled model of DP, we refer the reader to Ghazi, Kumar, Manurangsi, and Pagh
[GKMP20], Ghazi, Golowich, Kumar, Pagh, and Velingker [GGKPV21], Ghazi, Manurangsi,
Pagh, and Velingker [GMPV20], Ghazi, Golowich, Kumar, Manurangsi, Pagh, and Velingker
[GGKMPV20], Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS06], Balle, Bell, Gascón, and
Nissim [BBGN19; BBGN20], Balcer and Cheu [BC20], Balcer, Cheu, Joseph, and Mao
[BCJM21], and Girgis, Data, Diggavi, Kairouz, and Suresh [GDDKS20].

The combination of SecAgg and distributed DP in the context of communication-efficient
FL is far less studied. For instance, the majority of existing works ignore the finite precision
and modular summation arithmetic associated with secure aggregation [GXS13; TBASLZZ19;
VA17]. This is especially problematic at low SecAgg bit-widths (e.g., in practical FL settings
where communication efficiency is critical).

The closest work to ours is cpSGD [ASYKM18], which also serves as an inspiration for
much of our work. cpSGD uses a distributed version of the binomial mechanism [DKMMN06]
to achieve distributed DP. When properly scaled, the binomial mechanism can (asymptot-
ically) match the continuous Gaussian mechanism. However, there are several important
differences between our work and cpSGD. First, the binomial mechanism does not achieve
Rényi or concentrated DP [Mir17; BS16] and hence we cannot combine it with state-of-the-
art composition and subsampling results, which is a significant barrier if we wish to build a
larger FL system. The binomial mechanism is analyzed via approximate DP; in other words,
the privacy loss for the binomial mechanism can be infinite with a non-zero probability.
We avoid this issue by basing our privacy guarantee on the discrete Gaussian mechanism
[CKS20], which also matches the performance of the continuous Gaussian and yields clean
concentrated DP guarantees that are suitable for sharp composition and subsampling anal-
ysis. cpSGD also does not consider the impact of modular arithmetic, which makes it harder
to combine with secure aggregation.

Previous attempts at achieving DP using a distributed version of the discrete Gaussian
mechanism have either inaccurately glossed over the fact that the sum of discrete Gaussians
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is not a discrete Gaussian, or assumed that all clients secretly share a seed that is used to
generate the same discrete Gaussian instance, which is problematic because a single honest-
but-curious client can fully break the privacy guarantees [WJS21]. We provide a careful
privacy analysis for sums of discrete Gaussians. Our privacy guarantees degrade gracefully
as a function of the fraction of malicious (or dropped out) clients.

2 Preliminaries

We begin by defining the Rényi divergences, which we use throughout to quantify privacy.

Definition 3 (Rényi divergences). Let P and Q be probability distributions on some common
domain Ω. Assume that P is absolutely continuous with respect to Q so that the Radon-
Nikodym derivative P (x)/Q(x) is well-defined for x ∈ Ω.5

For α ∈ (1,∞), we define the Rényi divergence of order α of P with respect to Q as

Dα (P‖Q) :=
1

α− 1
log E

X←P

[(
P (X)

Q(X)

)α−1
]
. (6)

We also define

D1 (P‖Q) := E
X←P

[
log

(
P (X)

Q(X)

)]
= lim

α→1
Dα (P‖Q) , (7)

D∞ (P‖Q) := sup
x∈Ω

log

(
P (x)

Q(x)

)
= lim

α→∞
Dα (P‖Q) , (8)

D±∞ (P‖Q) := sup
x∈Ω

∣∣∣∣log

(
P (x)

Q(x)

)∣∣∣∣ = max{D∞ (P‖Q) ,D∞ (Q‖P )}, (9)

D∗ (P‖Q) := sup
α∈(1,∞)

1

α
Dα (P‖Q) . (10)

We will abuse this notation by considering the divergence between random variables when
we mean the divergence between their respective distributions.

We now state some properties of the Rényi divergences; proofs and further properties
can be found in the literature [BS16; BS19].

Lemma 4. Let P,Q,R be probability distributions such that P is absolutely continuous with
respect to Q and Q is absolutely continuous with respect to R. Then the following hold.

• Gaussian divergence: For all µ, µ′ ∈ R and all σ > 0, D∗ (N (µ, σ2)‖N (µ′, σ2)) =
(µ−µ′)2

2σ2 .

5If P is not absolutely continuous with respect to Q, then we define all of these divergences to be infinity.
The Radon-Nikodym derivative is only unique up to measure zero events. In the definition of D∞ (P‖Q) and
D±∞ (P‖Q), we ignore zero probability events (i.e., we take the essential supremum). That is, we assume
the Radon-Nikodym derivative is chosen to minimize these quantities.
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• Conversion from max divergence: D∗ (P‖Q) ≤ min{D∞ (P‖Q) , 1
2

(D±∞ (P‖Q))2}.

• Triangle inequality: D∗ (P‖R) ≤
(√

D∗ (P‖Q) +
√

D∗ (Q‖R)
)2

and Dα (P‖R) ≤
min{Dα (P‖Q) + D∞ (Q‖R) ,D∞ (P‖Q) + Dα (Q‖R)} for all α ∈ [1,∞] ∪ {∗}.

• Product distributions (non-adaptive composition): If P = P1×P2 is a product
distribution and Q = Q1×Q2 is a corresponding product distriution, then Dα (P‖Q) =
Dα (P1‖Q1) + Dα (P2‖Q2) for all α ∈ [1,∞] ∪ {∗}.

• Postprocessing (data processing inequality): 0 ≤ Dα (f(P )‖f(Q)) ≤ Dα (P‖Q)
for all α ∈ [1,∞] ∪ {∗} and all f , where f(P ) denotes the distribution obtained by
applying some function f to a sample from the distribution P . This also holds if f is
an independently randomized function.

• Monotonicity: Dα (P‖Q) ≤ Dα′ (P‖Q) whenever 1 ≤ α ≤ α′ ≤ ∞.

• (Quasi)convexity: If P ′ is a distribution on the same space as P and Q′ is a dis-
tribution on the same space as Q and P ′ is absolutely continuous with respect to Q′,
then

D1 (tP + (1− t)P ′‖tQ+ (1− t)Q′) ≤ t ·D1 (P‖Q) + (1− t) ·D1 (P ′‖Q′)

and, for α ∈ (1,∞),

Dα (tP + (1− t)P ′‖tQ+ (1− t)Q′) ≤
log
(
t · e(α−1)Dα(P‖Q) + (1− t) · e(α−1)Dα(P ′‖Q′))

α− 1

≤ max{Dα (P‖Q) ,Dα (P ′‖Q′)},

where tP + (1− t)P ′ denotes the convex combination of distributions.

Now we can state the definitions of concentrated differential privacy [BS16] and Rényi
differential privacy [Mir17] and relate these to the standard definition of differential privacy
[DMNS06; DKMMN06]. We adopt user-level privacy – i.e., each entry in the input corre-
sponds to all the records associated with a single person [MRTZ18]. Thus the differential
privacy distributional similarity guarantee holds with respect to adding or removing all of
the data belonging to a single person. This is stronger than the commonly-used notion of
item level privacy where, if a user contributes multiple records, only the addition or removal
of one record is protected.

We choose to define differential privacy with respect to adding or removing the records
of an individual, rather than replacing the records. Since replacement can be achieved by
a combination of an addition and a removal, group privacy (a.k.a. the triangle inequality)
implies a differential privacy guarantee for replacement; however, the privacy parameter will
be doubled. We define X ∗ =

⋃∞
n=0X n to be the set of varying-size inputs from X .
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Definition 5 (Concentrated Differential Privacy). A randomized algorithm M : X ∗ → Y
satisfies 1

2
ε2-concentrated differential privacy iff, for all x, x′ ∈ X ∗ differing by the addition

or removal of a single user’s records, we have D∗ (M(x)‖M(x′)) ≤ 1
2
ε2 .

Definition 6 (Rényi Differential Privacy). A randomized algorithm M : X ∗ → Y satisfies
(α, ε)-Rényi differential privacy iff, for all x, x′ ∈ X ∗ differing by the addition or removal of
a single user’s records, we have Dα (M(x)‖M(x′)) ≤ ε.

Definition 7 (Differential Privacy). A randomized algorithm M : X ∗ → Y satisfies (ε, δ)-
differential privacy iff, for all x, x′ ∈ X ∗ differing by the addition or removal of a single
user’s records, we have

P [M(x) ∈ E] ≤ eε · P [M(x′) ∈ E] + δ (11)

for all events E ⊂ Y. We refer to (ε, 0)-differential privacy as pure differential privacy
or pointwise differential privacy and we refer to (ε, δ)-differential privacy with δ > 0 as
approximate differential privacy.

We remark that (ε, 0)-DP is equivalent to (∞, ε)-DP. Similarly, 1
2
ε2-concentrated DP is

equivalent to satisfying (α, 1
2
ε2α)-Rényi DP simultaneously for all α ∈ (1,∞).

In addition we have the following conversion lemma [BS16; CKS20; ALCKS20] from
concentrated DP to approximate DP.

Lemma 8. If M satisfies (ε, 0)-differential privacy, then it satisfies 1
2
ε2-concentrated differ-

ential privacy. If M satisfies 1
2
ε2-concentrated differential privacy, then, for any δ > 0, M

satisfies (εaDP(δ), δ)-differential privacy, where

εaDP(δ) = inf
α>1

1

2
ε2α +

log(1/αδ)

α− 1
+ log(1− 1/α) ≤ ε ·

(√
2 log(1/δ) + ε/2

)
.

3 Distributed Discrete Gaussian

We will use the discrete Gaussian [CKS20] as the basis of our privacy guarantee.

Definition 9 (Discrete Gaussian). The discrete Gaussian with scale parameter σ > 0 and
location parameter µ ∈ Z is a probability distribution supported on the integers Z denoted by
NZ(µ, σ2) and defined by

∀x ∈ Z P
X←NZ(µ,σ2)

[X = x] =
exp

(
−(x−µ)2

2σ2

)
∑

y∈Z exp
(
−(y−µ)2

2σ2

) .
The discrete Gaussian has many of the desirable properties of the continuous Gaussian

[CKS20], including the fact that it can be used to provide differential privacy.
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Theorem 10 (Privacy of the Discrete Gaussian). Let σ > 0 and µ, µ′ ∈ Z. Then

D∗
(
NZ(µ, σ2)

∥∥NZ(µ′, σ2)
)

=
(µ− µ′)2

2σ2
. (12)

Unlike the continuous Gaussian, the sum/convolution of two independent discrete Gaus-
sians is not a discrete Gaussian. However, we show that, for reasonable parameter settings,
it is very close to one. The following result is a simpler version of Theorem 4.6 of Genise,
Micciancio, Peikert, and Walter [GMPW20].

Theorem 11 (Convolution of two Discrete Gaussians). Let σ, τ ≥ 1
2
. Let X ← NZ(0, σ2)

and Y ← NZ(0, τ 2) be independent. Let Z = X + Y . Let W ← NZ(0, σ2 + τ 2). Then

D±∞ (Z‖W ) = sup
z∈Z

∣∣∣∣log

(
P[Z = z]

P[W = z]

)∣∣∣∣ ≤ 5 · e−2π2/(1/σ2+1/τ2). (13)

The bound of the theorem is surprisingly strong; if σ2 = τ 2 = 3, then the bound is ≤
10−12, which should suffice for most applications. Furthermore, closeness in max divergence
is the strongest measure of closeness that we could hope for (rather than, say, total variation
distance).

Proof. For all z ∈ Z,

P[Z = z] =
∑
x∈Z

P[X = x] · P[Y = z − x]

=
∑
x∈Z

e−x
2/2σ2∑

u∈Z e
−u2/2σ2

e−(x−z)2/2τ2∑
v∈Z e

−v2/2τ2

=

∑
x∈Z exp

(
− (τ2+σ2)x2−2σ2xz+σ2z2

2σ2τ2

)
(∑

u∈Z e
−u2/2σ2

)
·
(∑

v∈Z e
−v2/2τ2

)
=

∑
x∈Z exp

(
−
x2−2 σ2

τ2+σ2
xz+ σ2

τ2+σ2
z2

2 σ2τ2

τ2+σ2

)
(∑

u∈Z e
−u2/2σ2

)
·
(∑

v∈Z e
−v2/2τ2

)

=

∑
x∈Z exp

(
−
(
x− σ2

τ2+σ2
z
)2
−
(

σ2

τ2+σ2
z
)2

+ σ2

τ2+σ2
z2

2 σ2τ2

τ2+σ2

)
(∑

u∈Z e
−u2/2σ2

)
·
(∑

v∈Z e
−v2/2τ2

)

= exp


(

σ2

τ2+σ2 z
)2

− σ2

τ2+σ2 z
2

2 σ2τ2

τ2+σ2


∑

x∈Z exp

(
−
(
x− σ2

τ2+σ2
z
)2

2 σ2τ2

τ2+σ2

)
(∑

u∈Z e
−u2/2σ2

)
·
(∑

v∈Z e
−v2/2τ2

)

= exp

(
−z2

2(τ 2 + σ2)

) ∑
x∈Z exp

(
−
(
x− σ2

τ2+σ2
z
)2

2 σ2τ2

τ2+σ2

)
(∑

u∈Z e
−u2/2σ2

)
·
(∑

v∈Z e
−v2/2τ2

) .
13



The exp
(

−z2
2(τ2+σ2)

)
term is exactly what we want – it is, up to scaling, P[W = z]. The

denominator is a constant (i.e., it does not depend on z), which means we do not need to
worry about it. The troublesome term is

∑
x∈Z

exp

−
(
x− σ2

τ2+σ2 z
)2

2 σ2τ2

τ2+σ2

 =
∑
x∈Z

exp

−
(
x− σ2

τ2+σ2 z
)2

2

(
1

σ2
+

1

τ 2

)
=
∑
x∈Z

f(1/σ2+1/τ2)−1

(
x− σ2

τ 2 + σ2
z

)
,

where fρ2(x) := exp
(
−x2
2ρ2

)
. Now we apply the Poisson summation formula using the Fourier

transform f̂ρ2(y) =
√

2πρ2 · exp(−2π2ρ2y2). For t, ρ ∈ R, we have

gρ2(t) :=
∑
x∈Z

fρ2(x− t) =
∑
y∈Z

f̂ρ2(y) · e−2π
√−1yt

=
√

2πρ2
∑
y∈Z

e−2π2ρ2y2 · e−2π
√−1yt

=
√

2πρ2
∑
y∈Z

e−2π2ρ2y2 · cos(2πyt)

=
√

2πρ2

(
1 + 2

∞∑
n=1

e−2π2ρ2n2 · cos(2πnt)

)
.

Note that gρ2(t) ≤ gρ2(0) for all t, ρ ∈ R [CKS20, Lemma 6], since cos(2πnt) ≤ 1 = cos(2πn0)
for all n and t. Our goal is to prove a lower bound on gρ2(t)/gρ2(0), which follows from the
following bound:

gρ2(0)− gρ2(t) =
√

2πρ2 · 2
∞∑
n=1

e−2π2ρ2n2 · (1− cos(2πnt))

≤
√

2πρ2 · 2
∞∑
n=1

e−2π2ρ2n2 · 2

= 4
√

2πρ2 · e−2π2ρ2 ·
∞∑
n=1

e−2π2ρ2(n2−1)

≤ 4
√

2πρ2 · e−2π2ρ2 ·
∞∑
n=1

e−6π2ρ2(n−1) (n2 − 1 = (n+ 1)(n− 1) ≥ 3(n− 1).)

= 4
√

2πρ2 · e−2π2ρ2 · 1

1− e−6π2ρ2

≤ 4
e−2π2ρ2

1− e−6π2ρ2
· gρ2(0). (gρ2(0) ≥

√
2πρ2.)
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Thus we obtain the bound

1− 4
e−2π2ρ2

1− e−6π2ρ2
≤
gρ2(t)

gρ2(0)
≤ 1.

For any z ∈ Z, we have

P[Z = z]

P[W = z]
=
g(1/σ2+1/τ2)−1(0) ·

∑
w∈Z e

−w2/2(σ2+τ2)(∑
u∈Z e

−u2/2σ2
)
·
(∑

v∈Z e
−v2/2τ2

) · g(1/σ2+1/τ2)−1

(
σ2

σ2+τ2
z
)

g(1/σ2+1/τ2)−1(0)

= c(σ2, τ 2) ·
g(1/σ2+1/τ2)−1

(
σ2

σ2+τ2
z
)

g(1/σ2+1/τ2)−1(0)

∈

[
c(σ2, τ 2) ·

(
1− 4

e−2π2/(1/σ2+1/τ2)

1− e−6π2/(1/σ2+1/τ2)

)
, c(σ2, τ 2)

]
.

Note that this interval is independent of z. Here c(σ2, τ 2) is an appropriate constant.
The interval must contain 1, since Z and W are both probability distributions. Thus

c(σ2, τ 2) ≥ 1 and c(σ2, τ 2) ·
(

1− 4 e−2π2/(1/σ2+1/τ2)

1−e−6π2/(1/σ2+1/τ2)

)
≤ 1, whence, for all z ∈ Z,

1− 4
e−2π2/(1/σ2+1/τ2)

1− e−6π2/(1/σ2+1/τ2)
≤ P[Z = z]

P[W = z]
≤ 1

1− 4 e−2π2/(1/σ2+1/τ2)

1−e−6π2/(1/σ2+1/τ2)

and ∣∣∣∣log

(
P[Z = z]

P[W = z]

)∣∣∣∣ ≤ − log

(
1− 4

e−2π2/(1/σ2+1/τ2)

1− e−6π2/(1/σ2+1/τ2)

)
≤ 5 · e−2π2/(1/σ2+1/τ2),

as long as 1/σ2 + 1/τ 2 ≤ 8.

Theorem 11 can easily be extended to sums of more than two discrete Gaussians by
induction:

Corollary 12 (Convolution of Many Discrete Gaussians). Let σ ≥ 1
2
. Let Xi ← NZ(0, σ2)

independently for each i. Let Zn =
∑n

i Xi. Let Wn ← NZ(0, n · σ2). Then

D±∞ (Zn‖Wn) = sup
z∈Z

∣∣∣∣log

(
P[Zn = z]

P[Wn = z]

)∣∣∣∣ ≤ 5 ·
n−1∑
k=1

e−2π2σ2 k
k+1 ≤ 5(n− 1)e−π

2σ2

. (14)

Proof. Let Z̃n = Wn−1 + Xn. (Note that Zn = Zn−1 + Xn.) By the triangle inequality and
postprocessing,

D±∞ (Zn‖Wn) ≤ D±∞
(
Zn

∥∥∥Z̃n)+ D±∞
(
Z̃n

∥∥∥Wn

)
≤ D±∞ (Zn−1‖Wn−1) + D±∞

(
Z̃n

∥∥∥Wn

)
.
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By Theorem 11,

D±∞
(
Z̃n

∥∥∥Wn

)
≤ 5 · e−2π2/(1/σ2+1/(n−1)σ2) = 5 · e−2π2σ2(n−1)/n.

The result now follows by induction; the base case n = 1 is trivial.

We can now use the triangle inequality to combine our convolution closeness results with
the privacy guarantee of a single discrete Gaussian to obtain a privacy guarantee for sums
of discrete Gaussians:

Proposition 13 (Privacy for Sums of Discrete Gaussians). Let σ ≥ 1
2
. Let Xi ← NZ(0, σ2)

independently for each i. Let Zn =
∑n

i Xi. Then, for all ∆ ∈ Z and all α ∈ [1,∞),

Dα (Zn‖Zn + ∆) ≤ min

 α∆2

2nσ2
+ 10 ·

n−1∑
k=1

e−2π2σ2 k
k+1 ,

α

2
·

(
|∆|√
nσ

+ 10 ·
n−1∑
k=1

e−2π2σ2 k
k+1

)2
 .

(15)
That is, an algorithm M that adds Zn to a sensitivity-∆ query satisfies 1

2
ε2-concentrated

differential privacy for ε = min

{√
∆2

nσ2 + 5 ·
∑n−1

k=1 e
−2π2σ2 k

k+1 , |∆|√
nσ

+ 10 ·
∑n−1

k=1 e
−2π2σ2 k

k+1

}
.

To make the above bound concrete, if σ = ∆ = 1 and n = 104, then ε < 0.02.

Proof. Let W ← NZ(0, n · σ2). By the triangle inequality,

Dα (Zn‖Zn + ∆) ≤ min

{
D∞ (Zn‖W ) + Dα (W‖W + ∆) + D∞ (W + ∆‖Zn + ∆) ,

α ·
(√

D∗ (Zn‖W ) +
√

D∗ (W‖W + ∆) +
√

D∗ (W + ∆‖Zn + ∆)
)2

}
.

By Theorem 10, D∗ (W‖W + ∆) ≤ ∆2

2nσ2 . By Corollary 12,

D±∞ (Zn‖W ) = D±∞ (W + ∆‖Zn + ∆) ≤ 5 ·
n−1∑
k=1

e−2π2σ2 k
k+1 .

By Lemma 4, D∗ (Zn‖W ) ≤ 1
2
(D±∞ (Zn‖W ))2. Combining yields the result.

Finally, we extend Proposition 13 to the multidimensional setting using the composition
property:

Proposition 14 (Privacy for Sums of Multidimensional Discrete Gaussians). Let σ ≥ 1
2
.

Let Xi,j ← NZ(0, σ2) independently for each i and j. Let Xi = (Xi,1, · · · , Xi,d) ∈ Zd. Let
Zn =

∑n
i Xi ∈ Zd. Then, for all ∆ ∈ Zd and all α ∈ [1,∞),

Dα (Zn‖Zn + ∆) ≤ min


α‖∆‖22
2nσ2 + τ · d,

α
2
·
(
‖∆‖22
nσ2 + 2‖∆‖1√

nσ
· τ + τ 2 · d

)
,

α
2
·
(
‖∆‖2√
nσ

+ τ ·
√
d
)2

 , (16)
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where τ := 10 ·
∑n−1

k=1 e
−2π2σ2 k

k+1 . An algorithm M that adds Zn to a query with `p sensitivity
∆p satisfies 1

2
ε2-concentrated differential privacy for

ε = min


√

∆2
2

nσ2 + 1
2
τd,√

∆2
2

nσ2 + 2 ∆1√
nσ
· τ + τ 2d,

∆2√
nσ

+ τ
√
d

 . (17)

Proof. This follows from Proposition 13 and summing over coordinates. Note that before
summing we expand

∑
i

(
|∆i|√
nσ

+ 10 ·
n−1∑
k=1

e−2π2σ2 k
k+1

)2

=
∑
i

∆2
i

nσ2
+ 2
|∆i|√
nσ

τ + τ 2 =
‖∆‖2

2

nσ2
+ 2
‖∆‖1√
nσ

τ + τ 2 · d.

To obtain the third expression we apply the bound ‖∆‖1 ≤
√
d · ‖∆‖2 and complete the

square again.

Finally, we state a utility bound for the discrete Gaussian.

Lemma 15 (Utility of the Discrete Gaussian). Let X ← NZ(0, σ2). Then E [X] = 0 and
Var [X] = E [X2] < σ2. For all t ∈ R, E

[
etX
]
≤ et

2σ2/2.

4 Theoretical Utility Analysis

We now delve into the accuracy analysis of our algorithm. There are three sources of error
that we must account for: (i) discretization via (conditional) randomized rounding, (ii) the
noise added for privacy (which depends on the norm of the discretized vector), and (iii) the
modular clipping operation. We address these concerns one at a time.

4.1 Randomized Rounding

In order to apply discrete noise, we must first round the input vectors to the discrete grid.
We must analyze the error (both bias and variance) that this introduces, and also ensure
that it doesn’t increase the sensitivity too much. That is, the rounded vector may have
larger norm than the original vector, and we must control this.

We begin by defining the randomized rounding operation:

Definition 16 (Randomized Rounding). Let γ > 0 and d ∈ N. Define Rγ : Rd → γZd
(where γZd := {(γz1, γz2, · · · , γzd) : z1, · · · , zd ∈ Z} ⊂ Rd) as follows. For x ∈ [0, γ]d,
Rγ(x) is a product distribution on {0, γ}d with mean x; that is, indepdently for each i ∈ [d],
we have P [Rγ(x)i = 0] = 1 − xi/γ and P [Rγ(x)i = γ] = xi/γ. In general, for x ∈ Rd, we
have Rγ(x) = γbx/γc + Rγ(x − γbx/γc); here γbx/γc ∈ γZd is the point x rounded down
coordinate-wise to the grid.
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We first look at how randomized rounding impacts the norm. It is easy to show that

P
[
‖Rγ(x)− x‖p ≤ γ · d1/p

]
= 1 (18)

for all p ∈ [1,∞]. This bound may be sufficient for many purposes, but, if we relax the
probability 1 requirement, we can do better (by constant factors), as demonstrated by the
following lemma.

Lemma 17 (Norm of Randomized Rounding). Let γ > 0 and x ∈ Rd. Let Rγ be as in
Definition 16. Then E [Rγ(x)] = x, E [‖Rγ(x)‖1] = ‖x‖1, and

E
[
‖Rγ(x)‖2

2

]
= ‖x‖2

2 + γ‖y‖1 − ‖y‖2
2 ≤ ‖x‖2

2 +
1

4
γ2d, (19)

where y := x− γbx/γc ∈ [0, γ]d. Furthermore, for any β ∈ (0, 1), we have

P
[
‖Rγ(x)‖2

2 ≤ E
[
‖Rγ(x)‖2

2

]
+
√

2 log(1/β) · γ ·
(
‖x‖2 +

1

2
γ
√
d

)]
≥ 1− β (20)

and

P

[
‖Rγ(x)‖1 ≤ ‖x‖1 + γ ·

√
1

2
d log(1/β)

]
≥ 1− β. (21)

Proof. Define x, x ∈ γZd by xi = γbxi/γc and xi = xi + γ. Then y = x− x ∈ [0, γ]d.
Fix some i ∈ [d]. By definition, P [Rγ(x)i = xi] = 1−yi/γ and P [Rγ(x)i = xi + γ] = yi/γ.

Thus E [Rγ(x)i] = xi + yi = xi, E [|Rγ(x)i|] = |xi|, and

E
[
Rγ(x)2

i

]
= (1− yi/γ)x2

i + (yi/γ)(xi + γ)2 = (xi + yi)
2 + γyi − y2

i = x2
i + γyi − y2

i .

Note that γyi − y2
i ≤ γ(γ/2) − (γ/2)2 = γ2/4 for all values of yi ∈ [0, γ]. Summing over

i ∈ [d] gives E [Rγ(x)] = x, E [‖Rγ(x)‖1] = ‖x‖1, and E [‖Rγ(x)‖2
2] = ‖x‖2

2 + γ‖y‖1 + ‖y‖2
2 ≤

‖x‖2
2 + γ2d/4, as required.
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Fix some i ∈ [d] and t, λ ≥ 0. By Hoeffding’s lemma,

E
[
exp(t ·Rγ(x)2

i )
]

= (1− yi/γ) · etx2i + (yi/γ) · et·x2i

≤ exp

(
t · E

[
Rγ(x)2

i

]
+
t2

8
(x2

i − x2
i )

2

)
= exp

(
t · E

[
Rγ(x)2

i

]
+
t2

8
(2γxi + γ2)2

)
≤ exp

(
t · E

[
Rγ(x)2

i

]
+
t2γ2

2

(
x2
i + γ|xi|+

1

4
γ2

))
,

E
[
exp(t · ‖Rγ(x)‖2

2)
]

=
d∏
i

E
[
exp(t ·Rγ(x)2

i )
]

≤ exp

(
t · E

[
‖Rγ(x)‖2

2

]
+
t2γ2

2

(
‖x‖2

2 + γ‖x‖1 +
1

4
γ2d

))
≤ exp

(
t · E

[
‖Rγ(x)‖2

2

]
+
t2γ2

2

(
‖x‖2

2 + γ
√
d‖x‖2 +

1

4
γ2d

))
= exp

(
t · E

[
‖Rγ(x)‖2

2

]
+
t2γ2

2

(
‖x‖2 +

1

2
γ
√
d

)2
)
,

P
[
‖Rγ(x)‖2

2 ≥ λ
]

= P
[
exp(t · (‖Rγ(x)‖2

2 − λ)) ≥ 1
]

≤ E
[
exp(t · (‖Rγ(x)‖2

2 − λ))
]

≤ exp

(
t ·
(
E
[
‖Rγ(x)‖2

2

]
− λ
)

+
t2γ2

2

(
‖x‖2 +

1

2
γ
√
d

)2
)
.

Setting t =
λ−E[‖Rγ(x)‖22]
γ2(‖x‖2+ 1

2
γ
√
d)

2 and λ = E [‖Rγ(x)‖2
2] +

√
2γ2(‖x‖2 + 1

2
γ
√
d)2 log(1/β) gives

P
[
‖Rγ(x)‖2

2 ≥ λ
]
≤ exp

−(λ− E [‖Rγ(x)‖2
2])2

2γ2
(
‖x‖2 + 1

2
γ
√
d
)2

 ≤ β.

Fix some i ∈ [d] and t, λ ≥ 0. Assume, without loss of generality, that xi ≥ 0. By
Hoeffding’s lemma,

E [exp (t · |Rγ(xi)|)] = (1− yi/γ) · et·xi + (yi/γ) · et·xi

≤ exp

(
t · xi +

t2γ2

8

)
,

E [exp(t · ‖Rγ(x)‖1)] ≤ exp

(
t · ‖x‖1 +

t2γ2

8
· d
)
,

P [‖Rγ(x)‖1 ≥ λ] ≤ exp

(
t · ‖x‖1 +

t2γ2

8
· d− t · λ

)
.
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Setting t = 4λ−‖x‖1
γ2d

and λ = ‖x‖1 + γ
√

1
2
d log(1/β) gives

P [‖Rγ(x)‖1 ≥ λ] ≤ exp

(
−2

(λ− ‖x‖1)2

γ2d

)
≤ β.

Remark 18. The expectation and high probability bounds of Lemma 17 are only a constant
factor better than the worst-case bound (18). Namely, Lemma 17 gives the bound

E
[
‖Rγ(x)‖2

2

]
= ‖x‖2

2 + γ‖y‖1 − ‖y‖2
2 ≤ ‖x‖2

2 +
1

4
γ2d,

whereas the worst case bound is

‖Rγ(x)‖2
2 ≤

(
‖x‖2 + γ

√
d
)2

≤ 2‖x‖2
2 + 2γ2d.

Nevertheless, constant factor improvements matter in practical systems. However, hope-
fully, γ is sufficiently small that the increase in norm from randomized rounding is entirely
negligible, even if we apply the worst-case bound.

Remark 19. In Lemma 17, the inequality E [‖Rγ(x)‖2
2] = ‖x‖2

2 +γ‖y‖1−‖y‖2
2 ≤ ‖x‖2

2 + 1
4
γ2d

is tight when y = x− γbx/γc has all entries being γ/2. However, if Y ∈ [0, γ]d is uniformly
random, then E [γ‖Y ‖1 − ‖Y ‖2

2] = 1
6
γ2d. Consequently, if we were to round not to γZd but

to a randomly translated grid (i.e., γZd + U for a uniformly random U ∈ [0, γ]d), then this
error term can be reduced; the shift U can also be released without compromising privacy.
We do not explore this direction further.

Lemma 17 shows that, with high probability, randomized rounding will not increase
the norm too much. We could use this directly as the basis of a privacy guarantee – the
probability of the norm being too large would correspond to some kind of privacy failure
probability. Instead what we will do is, if the norm is too large, we simply fix that – namely,
by resampling the randomized rounding procedure. That is, instead of accepting a small
probability of privacy failing, we accept a small probability of inaccuracy.

Definition 20 (Conditional Randomized Rounding). Let γ > 0 and d ∈ N and G ⊂ Rd.
Define RG

γ : Rd → γZd ∩ G to be Rγ conditioned on the output being in G. That is,

P
[
RG
γ (x) = y

]
= P [Rγ(x) = y]/P [Rγ(x) ∈ G] for all y ∈ γZd ∩G, where Rγ is as in Defini-

tion 16.

To implement conditional randomized rounding, we simply re-run Rγ(x) again and again
until it generates a point in G and then we output that. The expected number of times
we must run the randomized rounding to get a point in G is P [Rγ(x) ∈ G]−1. Thus it is
important to ensure that P [Rγ(x) ∈ G] is not too small.

Now we give a lemma that bounds the error of conditional randomized rounding.
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Lemma 21 (Error of Conditional Randomized Rounding). Let γ > 0, x ∈ Rd, and G ⊂ Rd.
Let 1− β = P [Rγ(x) ∈ G] > 0. Then

∥∥E [RG
γ (x)

]
− x
∥∥

2
≤ β · γ ·

√
d

1− β
(22)

and

E
[∥∥RG

γ (x)− E
[
RG
γ (x)

]∥∥2

2

]
≤ E

[∥∥RG
γ (x)− x

∥∥2

2

]
≤ γ2d

4(1− β)
. (23)

For all t ∈ Rd,

E
[
exp(〈t, RG

γ (x)− x〉)
]
≤

exp
(
γ2

8
· ‖t‖2

2

)
1− β

. (24)

Proof. For an arbitrary random variable X and nontrivial event E, we have

E [X] = E [X|E]P [E] + E
[
X|E

]
P
[
E
]
, (25)

which rearranges to give

E [X|E] =
E [X]− E

[
X|E

]
P
[
E
]

P [E]
(26)

and

E [X|E]− E [X] =
P
[
E
]

P [E]

(
E [X]− E

[
X|E

])
. (27)

Thus ∥∥E [RG
γ (x)

]
− x
∥∥

2
= ‖E [Rγ(x)|Rγ(x) ∈ G]− E [Rγ(x)]‖2

=
P [Rγ(x) /∈ G]

P [Rγ(x) ∈ G]
‖E [Rγ(x)]− E [Rγ(x)|Rγ(x) /∈ G]‖2

=
β

1− β
‖x− x∗‖2,

where x∗ ∈ γbx/γc+ [0, γ]d and, hence, ‖x− x∗‖2 ≤ γ ·
√
d.

Next, we have

E
[∥∥RG

γ (x)− x
∥∥2

2

]
=

E
[
‖Rγ(x)− x‖2

2

]
− E

[
‖Rγ(x)− x‖2

2 |Rγ(x) /∈ G
]
P [Rγ(x) /∈ G]

P [Rγ(x) ∈ G]

≤
E
[
‖Rγ(x)− x‖2

2

]
P [Rγ(x) ∈ G]

=
γ‖y‖1 − ‖y‖2

2

1− β
(Lemma 17)

≤ γ2d

4(1− β)
.
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Note that the apply the bias variance decomposition: Since E [Rγ(x)] = x, we have E
[
‖Rγ(x)‖2

2

]
=

E
[
‖Rγ(x)− x‖2

2

]
+ ‖x‖2

2. Similarly,

E
[∥∥RG

γ (x)− x
∥∥2

2

]
= E

[∥∥RG
γ (x)− E

[
RG
γ (x)

]∥∥2

2

]
+
∥∥E [RG

γ (x)
]
− x
∥∥2

2
≥ E

[∥∥RG
γ (x)− E

[
RG
γ (x)

]∥∥2

2

]
.

By Hoeffding’s lemma, since Rγ(x) ∈ γbx/γc+{0, γ}d and is a product distribution with
mean x, we have

∀t ∈ Rd E [exp(〈t, Rγ(x)− x〉)] ≤ exp

(
γ2

8
· ‖t‖2

2

)
. (28)

Thus

∀t ∈ Rd E
[
exp(〈t, RG

γ (x)− x〉)
]
≤ E [exp(〈t, Rγ(x)− x〉)]

P [Rγ(x) ∈ G]
≤

exp
(
γ2

8
· ‖t‖2

2

)
1− β

.

We summarize the results of this section. First we give a proposition for a single instance
of randomized rounding (this combines Lemma 17 and 21).

Proposition 22 (Properties of Randomized Rounding). Let β ∈ [0, 1), γ > 0, and x ∈ Rd.
Let

∆2
2 := min

 ‖x‖
2
2 + 1

4
γ2d+

√
2 log(1/β) · γ ·

(
‖x‖2 + 1

2
γ
√
d
)
,(

‖x‖2 + γ
√
d
)2

 (29)

and G :=
{
y ∈ Rd : ‖y‖2

2 ≤ ∆2
2

}
. Let Rγ(x) and RG

γ (x) be as in Definitions 16 and 20.
Then P [Rγ(x) ∈ G] ≥ 1− β and, consequently, the following hold.

∥∥E [RG
γ (x)

]
− x
∥∥

2
≤ β · γ ·

√
d

1− β
. (30)

E
[∥∥RG

γ (x)− E
[
RG
γ (x)

]∥∥2

2

]
≤ γ2d

4(1− β)
. (31)

∀t ∈ Rd E
[
exp(〈t, RG

γ (x)− x〉)
]
≤

exp
(
γ2

8
· ‖t‖2

2

)
1− β

. (32)

P
[
‖RG

γ (x)‖2
2 ≤ ∆2

2

]
= 1 = P

[
RG
γ (x) ∈ γZd

]
. (33)

Now we give a proposition for sums of randomized roundings.

Proposition 23 (Randomized Rounding & Sums). Let β ∈ [0, 1), γ > 0, and x1, · · · , xn ∈
Rd. Suppose ‖xi‖2 ≤ c for all i ∈ [n]. Let

∆2
2 := min

 c2 + 1
4
γ2d+

√
2 log(1/β) · γ ·

(
c+ 1

2
γ
√
d
)
,(

c+ γ
√
d
)2

 (34)
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and G :=
{
y ∈ Rd : ‖y‖2

2 ≤ ∆2
2

}
. Let RG

γ be as in Definition 20.
Then the following hold.∥∥∥∥∥E

[
n∑
i

RG
γ (xi)

]
−

n∑
i

xi

∥∥∥∥∥
2

≤ β · γ ·
√
d · n

1− β
. (35)

E

∥∥∥∥∥
n∑
i

RG
γ (xi)− E

[
n∑
i

RG
γ (xi)

]∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

. (36)

E

∥∥∥∥∥
n∑
i

RG
γ (xi)−

n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

. (37)

∀t ∈ Rd E

[
exp

(〈
t,

n∑
i

RG
γ (xi)−

n∑
i

xi

〉)]
≤

exp
(
γ2

8
· ‖t‖2

2 · n
)

(1− β)n
. (38)

P
[
∀i ‖RG

γ (xi)‖2
2 ≤ ∆2

2

]
= 1 = P

[
∀i RG

γ (xi) ∈ γZd
]
. (39)

Remark 24. Proposition 23 provides some guidance on how to set the parameter β. We
have the mean squared error bound (37)

E

∥∥∥∥∥
n∑
i

RG
γ (xi)−

n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n · (1− β + 4β2n)

4(1− β)2
.

If we set β ≈ 1/
√
n, then the bias and variance terms in the bound are of the same order.

Setting β too small would needlessly increase the sensitivity ∆2. And we see that there is
little value in setting β � 1/

√
n. So the theory suggests setting β ≈ 1/

√
n.

However, we emphasize that this is a worst-case upper bound on the error and it is likely
that, in practice, the error would likely be considerably less. Thus it is justifiable to set β to
be considerably larger – e.g., β = e−1/2 – and simply hope for the best in terms of accuracy.

Remark 25. Proposition 23 covers the error introduced by discretization. Obviously, reduc-
ing the granularity γ will reduce the discretization error. However, this comes at a cost in
communication, so the choice of this parameter will need to be carefully made.

In Section 3 we have covered the noise that is injected to preserve privacy and in Section
4.1 we have covered the error introduced by discretizing the data. Now we state a result
that combines these.

Proposition 26 (Randomized Rounding + Discrete Gaussian). Let β ∈ [0, 1), σ2 ≥ 1
2
γ > 0,
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and c > 0. Let

∆2
2 := min

 c2 + 1
4
γ2d+

√
2 log(1/β) · γ ·

(
c+ 1

2
γ
√
d
)
,(

c+ γ
√
d
)2

 , (40)

G :=
{
y ∈ Rd : ‖y‖2

2 ≤ ∆2
2

}
, (41)

τ := 10 ·
n−1∑
k=1

e
−2π2 σ2

γ2
· k
k+1 , (42)

ε := min

{ √
∆2

2

nσ2 + 1
2
τd,

∆2√
nσ

+ τ
√
d

}
. (43)

Let RG
γ be as in Definition 20. Define a randomized algorithm A : (Rd)n → γZd by6

A(x) =
n∑
i

RG
γ

(
min

{
1,

c

‖xi‖2

}
· xi
)

+ γ · Yi, (44)

where Y1, · · · , Yn ∈ Zd are independent random vectors with each entry drawn independently
from NZ(0, σ2/γ2).

Then A satisfies 1
2
ε2-concentrated differential privacy.7

Let x1, · · · , xn ∈ Rd with ‖xi‖2 ≤ c for all i ∈ [n]. Then the following hold.∥∥∥∥∥E [A(x)]−
n∑
i

xi

∥∥∥∥∥
2

≤ β · γ ·
√
d · n

1− β
. (45)

E
[
‖A(x)− E [A(x)]‖2

2

]
≤ γ2 · d · n

4(1− β)
+ n · d · σ2. (46)

E

∥∥∥∥∥A(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ n · d · σ2 (47)

∀t ∈ Rd E

[
exp

(〈
t, A(x)−

n∑
i

xi

〉)]
≤

exp
((

γ2

8
+ σ2

2

)
· ‖t‖2

2 · n
)

(1− β)n
. (48)

4.2 Flattening

It is possible that the inputs xi and the sum x̄ =
∑n

i xi are very heavily concentrated on
one coordinate. This is a bad case, as the modular clipping will create a very large error,

6Note that min
{

1, c
‖xi‖2

}
· xi is simply xi with it’s norm clipped to c.

7Not that this is with respect to the addition or removal of an element, not replacement. To keep n fixed,
we would need addition/removal to be defined to simply zero-out the relevant vectors.

24



unless we use a very large modulus. To avoid this problem we will “flatten” the inputs as a
pre-processing step (which is inverted by the server at the end of the protocol).

Specifically, our goal is to pre-process the inputs x1, · · · , xn so that
∑

i xi ∈ [a, b]d and
then at the end we can undo the pre-processing to obtain the original value. Here [a, b] is
the range where modular arithmetic does not cause errors.

To flatten the vectors we will transform the data points by multiplying them by a (ran-
dom) matrix U ∈ Rd×d; at the end we multiply by U−1 to undo this operation. We will take
U to be a unitary matrix so that U−1 = UT .8

Remark 27. The flattening matrix U is shared randomness – that is, the server and all the
clients must have access to this matrix. Fortunately, the differential privacy guarantee does
not depend on this randomness remaining hidden; thus U can be published, and we do not
need to worry about the privacy adversary having access to it.

The specific property that we want the flattening matrix U to satisfy is that, for all
x ∈ Rd and all i ∈ [d], the value (Ux)i ∈ R has a subgaussian distribution (determined by
the randomness of U) with variance proxy O(‖x‖2

2/d).
There are many possibilities for this flattening transformation. A natural option is for U

to be a random unitary matrix or rotation matrix. This would attain the desired property:

Lemma 28. Let x ∈ Rd be fixed. Let U ∈ Rd×d be a uniformly random unitary matrix or
rotation matrix, so that Ux is a uniformly random vector with norm ‖x‖2. Then E

[
et(Ux)i

]
≤

et
2‖x‖22/2d for all t ∈ R and all i ∈ [d].

Proof. Let Y = ((Ux)i/‖x‖2 + 1)/2 ∈ [0, 1]. Then Y follows a Beta((d − 1)/2, (d − 1)/2)
distribution [whu14]. Thus E

[
et(Y−1/2)

]
≤ et

2/8 for all t ∈ R [MA+17]. The result follows.

Unfortunately, a random rotation or unitary matrix has several downsides: Generating
a random unitary or rotation matrix is itself a non-trivial task [Mez06]. Even storing such
a matrix in memory and performing the required matrix-vector multiplication could be
prohibitive – it would take Θ(d2) time and space where we seek algorithms that run in Õ(d)
time and space.

Instead our approach is to first randomize the signs of the entries of x and then multiply
by a matrix with small entries. This attains the desired guarantee:

Lemma 29. Let H ∈ [−
√
ρ/d,

√
ρ/d]d×d be a fixed unitary matrix. Let D ∈ {0,−1,+1}d×d

be a diagonal matrix with random signs on the diagonal. Fix x ∈ Rd and i ∈ [d]. Let
Y = (HDx)i ∈ R. Then E

[
etY
]
≤ et

2‖x‖22ρ/2d for all t ∈ R.

Proof. We have Y = (HDx)i =
∑d

j Hi,jDj,jxj and, by independence, E
[
etY
]

=
∏d

j E
[
etHi,jDj,jxj

]
.

SinceHi,j ∈ [−
√
ρ/d,

√
ρ/d] andDj,j ∈ {−1,+1} is uniformly random, we have E

[
etHi,jDj,jxj

]
≤

et
2(
√
ρ/d)2x2j/2 by Hoeffding’s lemma.

8We take U to be a square matrix, but it is in general possible to also increase the dimension during
this pre-processing step. We also could extend beyond unitary matrices to invertible (and well-conditioned)
matrices.
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Generating the required random signs is easy. (We can use a pseudorandom generator
and a small shared random seed.) We just need a unitary matrix H ∈ [−

√
ρ/d,

√
ρ/d]d×d

with ρ as small as possible.9 And we want H to be easy to work with – specifically, we
want efficient algorithms to compute the matrix-vector product Hx and its inverse HTx for
arbitrary x ∈ Rd.

Walsh-Hadamard matrices are ideal for H (after scaling appropriately). They attain
the optimal ρ = 1 and the fast Walsh-Hadamard transform can compute the matrix-vector
products in O(d log d) operations. This is what we use in our experiments. Formally, the
Walsh-Hadamard matrices are defined recursively as follows:

H20 = (1), ∀k ≥ 0 H2k+1 =
1√
2

(
H2k H2k

H2k −H2k

)
∈
{
−1√
2k+1

,
1√
2k+1

}2k+1×2k+1

. (49)

The only downside of Walsh-Hadamard matrices is that they require the dimension d to
be a power of 2. We can pad the input vectors with zeros to ensure this. However, in the
worst case, padding may nearly double the dimension d, which correspondingly slows down
our algorithm. (E.g., if d = 2k + 1, then we must pad to dimension d = 2k+1.)

To avoid or reduce padding, there are several solutions:

• The first, and simplest, solution is to use the discrete cosine transform as the matrix
H ′d ∈ Rd×d, which is defined by

∀d ∈ N ∀i, j ∈ [d] H ′d(i, j) =

√
2

d
· cos

(
π

d
· i · (j − 1

2
)

)
. (50)

Such matrices exist for any dimension d and the required matrix-vector products can
still be computed in O(d log d) time. However, they attain a slightly suboptimal sub-
gaussian flatness parameter of ρ = 2.

• The second solution is to use more general Hadamard matrices. It is conjectured that
for all d ∈ {1, 2} ∪ {4` : ` ∈ N} there exist unitary matrices Hd in {−1/

√
d, 1/
√
d}d×d.

This conjecture would allow us to do very little padding (adding at most three ex-
tra coordinates to reach the next multiple of 4), but we do not have a proof of this
conjecture, much less efficient algorithms for computing with these matrices.

Fortunately, there are explicit constructions of Hadamard matrices of many sizes which
also allow efficient matrix-vector computations. By considering sizes other than powers
of 2, we can significantly reduce the required amount of padding.

For example, we can generalize the Kronecker product construction (49) to dimension

9A lower bound of ρ ≥ 1 applies as H is unitary – HTH = I, so 1 = (HTH)1,1 =
∑d
i H

2
i,1 ≤ d(

√
ρ/d)2 =

ρ.
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d = 12 · 2k for integers k ≥ 0:

H12·2k =
1√
12



H2k −H2k −H2k −H2k −H2k −H2k −H2k −H2k −H2k −H2k −H2k −H2k

H2k H2k −H2k H2k −H2k −H2k −H2k H2k H2k H2k −H2k H2k

H2k H2k H2k −H2k H2k −H2k −H2k −H2k H2k H2k H2k −H2k

H2k −H2k H2k H2k −H2k H2k −H2k −H2k −H2k H2k H2k H2k

H2k H2k −H2k H2k H2k −H2k H2k −H2k −H2k −H2k H2k H2k

H2k H2k H2k −H2k H2k H2k −H2k H2k −H2k −H2k −H2k H2k

H2k H2k H2k H2k −H2k H2k H2k −H2k H2k −H2k −H2k −H2k

H2k −H2k H2k H2k H2k −H2k H2k H2k −H2k H2k −H2k −H2k

H2k −H2k −H2k H2k H2k H2k −H2k H2k H2k −H2k H2k −H2k

H2k −H2k −H2k −H2k H2k H2k H2k −H2k H2k H2k −H2k H2k

H2k H2k −H2k −H2k −H2k H2k H2k H2k −H2k H2k H2k −H2k

H2k −H2k H2k −H2k −H2k −H2k H2k H2k H2k −H2k H2k H2k



.

(51)

The addition of this construction alone is sufficient to reduce the worst case for padding
from a factor of 2 to a factor of 1.5 – now 2k + 1 can be padded to 12 · 2k−3 = 1.5 · 2k.
The other desirable properties of the Hadamard matrices are also retained.

• A third solution is to move from the reals to complex numbers and use the discrete
Fourier transform. Our real vector of length d can be encoded as a complex vector
of length d/2 (two real entries become the real and imaginary components of one
complex entry). Instead of D being a diagonal matrix with random signs, the diagonal
entries are e

√−1·θ for a uniformly random θ ∈ [0, 2π). (In fact, it suffices to have
θ ∈ {0, π/2, π, 3π/2} uniform. This only requires one bit of shared randomness per
coordinate.10) Then H is the discrete Fourier transform matrix. This gives us a
complex vector of length d/2 that can be decoded back to a real vector of length d.
This transformation is unitary and linear and attains the optimal subgaussian flatness
constant ρ = 1 (i.e., matches the guarantee of a random rotation or unitary matrix
from Lemma 28). The only requirement is that the dimension must be even – i.e., we
must pad at most one zero.

If we wish to avoid thinking about complex numbers, the complex numbers can be
replaced with 2× 2 rotation matrices. That is

H ′′2d =
1√
d



W 0 W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2 W 3 · · · W d

W 0 W 2 W 4 W 6 · · · W 2d

W 0 W 3 W 6 W 9 · · · W 3d

...
...

...
...

. . .
...

W 0 W d W 2d W 3d · · · W d2


∈ R2d×2d, (52)

10Note that θ ∈ {0, π/2, π, 3π/2} corresponds to eiθ ∈ {1, i,−1,−i} and, in Equation 53, to Rθ ∈{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)}
.
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where W =

(
cos(2π/d) − sin(2π/d)
sin(2π/d) cos(2π/d)

)
∈ R2×2, and

DΘ =


Rθ1 0 0 · · · 0
0 Rθ2 0 · · · 0
0 0 Rθ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Rθd

 ∈ R2d×2d, (53)

where Θ ∈ [0, 2π)d and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ R2×2.

Proposition 30. Let d ∈ N be even and let Θ be uniformly random in either [0, 2π)d/2

or {0, π/2, π, 3π/2}d/2. Define U = H ′′dDΘ ∈ Rd×d where H ′′d and DΘ are given in
Equations 52 and 53. Then U is unitary and E [exp(t(Ux)i)] ≤ exp(t2‖x‖2

2/2d) for all
x ∈ Rd, all i ∈ [d], and all t ∈ R.

Proof. The fact that U is unitary follows from the fact that both H ′′d and DΘ are.

Since Rθi =

(
cos θi − sin θi
sin θi cos θi

)
∈ R2×2 is unitary, this implies DΘ is unitary. The

matrix H ′′d is a block matrix with the block in row i ∈ [d/2] and column j ∈ [d/2] being
W (i−1)(j−1) for W = R4π/d. Then H ′′d (H ′′d )T is also a block matrix. The block in row
i ∈ [d/2] and column j ∈ [d/2] is

(H ′′d (H ′′d )T )2i−1:2i,2j−1:2j =
2

d

d/2∑
k=1

W (i−1)(k−1)(W (k−1)(j−1))T

=
2

d

d/2∑
k=1

W (i−1)(k−1)−(k−1)(j−1)

=
2

d

{
d
2
I if i = j
0 if i 6= j

.

This follows from the fact that W is unitary (i.e., W T = W−1), the fact that W d/2 = I,
and the fact that, for any ` ∈ Z that is not a multiple of d/2, W ` − I is nonsingular

and, hence,
∑d/2

k=1W
`·(k−1) = 0.

Fix x ∈ Rd and i ∈ [d/2]. Now, by the properties of rotation matrices,(
(Ux)2i−1

(Ux)2i

)
=

√
2

d

d/2∑
j=1

W (i−1)(j−1)Rθj

(
x2i−1

x2i

)

=

√
2

d

d/2∑
j=1

R4π(i−1)(j−1)/d+θj+θ̃i

( √
x2

2i−1 + x2
2i

0

)
,
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where θ̃i ∈ [0, 2π) is such that cos θ̃i = x2i−1√
x22i−1+x22i

and sin θ̃i = x2i√
x22i−1+x22i

. For j ∈ [d/2],

define θ̂i,j = 4π(i− 1)(j− 1)/d+ θ̃i. Then (Ux)2i−1 =
√

2
d

∑d/2
j=1

√
x2

2i−1 + x2
2i · cos(θj +

θ̂i,j) and (Ux)2i =
√

2
d

∑d/2
j=1

√
x2

2i−1 + x2
2i · sin(θj + θ̂i,j). Fix t ∈ R. If Θ ∈ [0, 2π)d/2

follows a product distribution, then

E
Θ

[exp(t(Ux)2i−1)] =

d/2∏
j=1

E
θj

[
exp

(
t

√
2

d
(x2

2i−1 + x2
2i) cos(θj + θ̂i,j)

)]
(54)

and, similarly,

E
Θ

[exp(t(Ux)2i)] =

d/2∏
j=1

E
θj

[
exp

(
t

√
2

d
(x2

2i−1 + x2
2i) cos(θj + θ̂i,j − π/2)

)]
, (55)

as sin(ψ) = cos(ψ − π/2) for all ψ ∈ R. If we can show that E
θj

[exp(λ · cos(θj + ψ)] ≤

exp(λ2/4) for all λ, ψ ∈ R and all j, then we are done. Lemma 31 covers the case where
θj is uniform on {0, π/2, π, 3π/2} and Lemma 32 covers the case where it is uniform
on [0, 2π). Then the right sides of both Equations 54 and 55 become

≤
d/2∏
j=1

exp

(t√2

d
(x2

2i−1 + x2
2i)

)2

/4


= exp

 d/2∑
j=1

t2
2

d
(x2

2i−1 + x2
2i)

1

4


= exp(t2‖x‖2

2/2d).

Lemma 31. Let θ ∈ {0, π/2, π, 3π/2} be uniformly random. Let λ, ψ ∈ R be fixed.
Then E

θ
[exp(λ · cos(θ + ψ)] ≤ exp(λ2/4).

Proof. Let x = λ cosψ and y = λ cos(ψ+π/2). Then λ cos(ψ+π) = −x and λ cos(ψ+
3π/2) = −y. Note x2 + y2 = λ2. Thus

E
θ

[exp(λ · cos(θ + ψ)] =
ex + e−x + ey + e−y

4

= 1 +
∞∑
k=1

x2k + y2k

2 · (2k)!

≤ 1 +
∞∑
k=1

λ2k

4k · k!

= exp(λ2/4).
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The inequality follows from the fact that x2k + y2k ≤ (x2 + y2)k = (λ2 cos2 ψ +
λ2 sin2 ψ)k = λ2k and 2 · (2k)! ≥ 4k · k! for all integers k ≥ 1. The last fact can
be easily verified by induction: For k = 1 both sides are equal to 4. Moving from k
to k + 1 multiplies the right side by 4(k + 1) and the left side by (2k + 1)(2k + 2) =
4(k + 1)(k + 1/2) > 4(k + 1).

Lemma 32. Let θ ∈ [0, 2π) be uniformly random. Let λ, ψ ∈ R be fixed. Then
E
θ

[exp(λ · cos(θ + ψ)] ≤ exp(λ2/4).

Proof. Since θ is uniform on [0, 2π) and cos is a periodic function with period 2π, the
distribution of cos(θ+ψ) is the same as that of cos θ, so we may ignore ψ. Also the dis-
tribution is symmetric (i.e., the distribution of − cos θ = cos(θ+π) is the same as that

of cos θ). Thus E
[
cosk θ

]
= 0 for all odd k. We also have E [cos2 θ] = E

[
1+cos(2θ)

2

]
= 1

2
.

Integration by parts yields the recurrence E
θ

[
cosk θ

]
= k−1

k
E
θ

[
cosk−2 θ

]
for k ≥ 2. This

yields E
θ

[
cos2k θ

]
= (2k−1)!

22k−1·k!·(k−1)!
for all integers k ≥ 1. Thus

E
θ

[exp(λ · cos θ)] = 1 +
∞∑
k=1

λ2k

(2k)!
E
θ

[
cos2k θ

]
= 1 +

∞∑
k=1

λ2k · (2k − 1)!

(2k)! · 22k−1 · k! · (k − 1)!

= 1 +
∞∑
k=1

(λ2/4)k

k!
· 1

k!

≤ 1 +
∞∑
k=1

(λ2/4)k

k!

= exp(λ2/4).

We emphasize that the discrete fourier transform (i.e., matrix-vector multiplications
with H ′′2d from Equation 52) can be computed in O(d log d) operations for any d – not
just powers of 2. Although the exact efficiency (i.e., constants) depends on d [Wik21].

4.3 Modular Clipping

In this section we cover third and final source of error – modular arithmetic. This is intro-
duced by the secure aggregation procedure.

We first define the modular clipping operation in a convenient form for real numbers.

Definition 33. For a < b, define M[a,b] : R → [a, b] by M(x) = x + (b − a) · n where
n ∈ Z is chosen so that x+ (b− a) · n ∈ [a, b]. (Ties are broken arbitrarily.) We also define
M[a,b](x) = (M[a,b](x1),M[a,b](x2), · · · ,M[a,b](xd)) ∈ [a, b]d for x ∈ Rd.
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Modular arithmetic is usually performed over Zm, which we equate with the set of integers
{0, 1, 2, · · · ,m − 1}. Our algorithm maps real values to this set of integers. However, for
our analysis, it will be convenient to imagine the modular clipping operation taking place
directly over the real numbers. (This is completely equivalent to the usual view, but has
the advantage of allowing us to perform the analysis over a centered interval [−r, r], rather
than [0,m].) Specifically, our algorithm can be thought of as performing modular arithmetic
over {γ(1 − m/2), γ(2 − m/2), · · · ,−γ, 0, γ, · · · , γ(m/2 − 1), γ(m/2)} instead of Zm. This
operation is denoted as M[−mγ/2,mγ/2].

Note that definition 33 does not specify whether M[a,b](a) = a or M[a,b](a) = b (and
likewise for M[a,b](b)). Thus our analysis does not depend on how this choice is made.

A key property of the modular operation is that it is homomorphic:

∀a < b ∀x, y ∈ R M[a,b](x+ y) = M[a,b](M[a,b](x) +M[a,b](y)). (56)

Our goal is to analyze M[a,b](A(x)), where A is as in Proposition 26. The modular
clipping arises from the secure aggregation step, which works over a finite group. Note that
A discretizes the values (although this is not crucial for this part of the analysis).

We want to ensure that M[a,b](A(x)) ≈ x. We have already established that A(x) ≈ x
and our goal is now to analyze the modular clipping operation. If A(x) ∈ [a, b]d, then
M[a,b](A(x)) = A(x) and we are in good shape; thus our analysis centers on ensuring that
this is the case.

We will use the fact that the flattening operation, as well as the randomized rounding
and noise addition, result in each coordinate being a centered subgaussian random variable.
This allows us to bound the probability of straying outside [a, b].

First we present a technical lemma.

Lemma 34. Let r > 0 and x ∈ R. Then

|M[−r,r](x)− x| ≤ 2r ·
(

exp

(
1

2
t ·
(x
r
− 1
))

+ exp

(
1

2
t ·
(
−x
r
− 1

)))
and

(M[−r,r](x)− x)2 ≤ 4r2 ·
(

exp
(
t ·
(x
r
− 1
))

+ exp

(
t ·
(
−x
r
− 1

)))
for all t ≥ log 2.

Proof. We have |M[−r,r](x)− x| ≤ 2r ·
⌊
|x|+r

2r

⌋
for all x ∈ R. We also have bxc ≤ et·(x−1) for

all x ∈ R and all t ≥ log 2. (For x < 1, we have bxc ≤ 0 ≤ et·(x−1). For 1 ≤ x < 2, we have
bxc = e0 ≤ et(x−1). We have et(1−1) = 1 and et(2−1) ≥ 2; since et(x−1) is convex, this implies
bxc ≤ x ≤ et(x−1) for x ≥ 2.) Thus

|M[−r,r](x)− x| ≤ 2r · exp

(
t · |x| − r

2r

)
≤ 2r ·

(
exp

(
t · x− r

2r

)
+ exp

(
t · −x− r

2r

))
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and, hence,

(M[−r,r](x)− x)2 ≤ 4r2 · exp

(
t · |x| − r

r

)
≤ 4r2 · exp

(
t · x− r

r

)
+ 4r2 · exp

(
t · −x− r

r

)
for all t ≥ log 2 and x ∈ R, as required.

Now we have our bound on the error of modular clipping:

Proposition 35 (Error of Modular Clipping). Let a < b and ω, σ > 0 satisfy σ ≤ (b− a)/2.
Let X ∈ R satisfy E

[
etX
]
≤ ω · et2σ2/2 for all t ∈ R. Then

E
[∣∣M[a,b](X)−X

∣∣] ≤ (b− a) · ω · e−(b−a)2/8σ2 ·
(
e
a2−b2
4σ2 + e

b2−a2
4σ2

)
and

E
[(
M[a,b](X)−X

)2
]
≤ (b− a)2 · ω · e−(b−a)2/8σ2 ·

(
e
a2−b2
4σ2 + e

b2−a2
4σ2

)
.

Proof. First we center: Let c = (a+b)/2 and r = (b−a)/2. Then M[a,b](x) = M[−r,r](x−c)+c
and |M[a,b](x)− x| = |M[−r,r](x− c)− (x− c)| for all x ∈ R. Let X ′ = X − c.

By Lemma 34, for all t ≥ log 2,

E
[∣∣M[a,b](X)−X

∣∣] = E
[∣∣M[−r,r](X

′)−X ′
∣∣]

≤ 2r · E
[
exp

(
1

2
t ·
(
X ′

r
− 1

))
+ exp

(
1

2
t ·
(
−X ′

r
− 1

))]
≤ 2r · ω · et2σ2/8r2−t/2 ·

(
e−tc/2r + etc/2r

)
= (b− a) · ω · et2σ2/2(b−a)2−t/2 ·

(
e−

t
2
· a+b
b−a + e

t
2
· a+b
b−a

)
.

Set t = (b− a)2/2σ2 ≥ log 2 to obtain the first part of the result.
By Lemma 34, for all t ≥ log 2,

E
[(
M[a,b](X)−X

)2
]

= E
[(
M[−r,r](X

′)−X ′
)2
]

≤ 4r2 · E
[
exp

(
t ·
(
X ′

r
− 1

))
+ exp

(
t ·
(
−X ′

r
− 1

))]
≤ 4r2 · ω · et2σ2/2r2−t ·

(
e−tc/r + etc/r

)
= (b− a)2 · ω · e2t2σ2/(b−a)2−t ·

(
e−t

a+b
b−a + et

a+b
b−a

)
.

Set t = (b− a)2/4σ2 ≥ log 2 to obtain the second part of the result.
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4.4 Putting Everything Together

We have now analyzed the three sources of error – randomized rounding, privacy-preserving
noise, and modular arithmetic. It remains to combine these results. This yields our main
result:

Theorem 36 (Main Theoretical Result). Let β ∈ [0, 1), σ2 ≥ 1
2
γ > 0, and c > 0. Let

n, d ∈ N and ρ ≥ 1. Let U ∈ Rd×d be a random unitary matrix such that

∀x ∈ Rd ∀i ∈ [d] ∀t ∈ R E [exp(t(Ux)i)] ≤ exp(t2ρ‖x‖2
2/2d).

Let

∆2
2 := min

 c2 + 1
4
γ2d+

√
2 log(1/β) · γ ·

(
c+ 1

2
γ
√
d
)
,(

c+ γ
√
d
)2

 , (57)

G :=
{
y ∈ Rd : ‖y‖2

2 ≤ ∆2
2

}
, (58)

τ := 10 ·
n−1∑
k=1

e
−2π2 σ2

γ2
· k
k+1 , (59)

ε := min

{ √
∆2

2

nσ2 + 1
2
τd,

∆2√
nσ

+ τ
√
d

}
. (60)

Let RG
γ be as in Definition 20. Let r > 0 and let M[−r,r] be as in Definition 33. Define a

randomized algorithm Ã : (Rd)n → γZd by

Ã(x) = UTM[−r,r]

(
n∑
i

RG
γ

(
min

{
1,

c

‖xi‖2

}
· Uxi

)
+ γ · Yi

)
, (61)

where Y1, · · · , Yn ∈ Zd are independent random vectors with each entry drawn independently
from NZ(0, σ2/γ2).

Then Ã satisfies 1
2
ε2-concentrated differential privacy.11

Let x1, · · · , xn ∈ Rd with ‖xi‖2 ≤ c for all i ∈ [n]. Let

σ̂2(x) :=
ρ

d

∥∥∥∥∥
n∑
i

xi

∥∥∥∥∥
2

2

+

(
γ2

4
+ σ2

)
· n ≤ ρ

d
c2n2 +

(
γ2

4
+ σ2

)
· n (62)

If σ̂2(x) ≤ r2, then

E

∥∥∥∥∥Ã(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ d · n
1− β

·

(
2
√

2 · r · e−r2/4σ̂2(x)√
n · (1− β)n−1

+

√
γ2

4
+
β2γ2n

1− β
+ (1− β)σ2

)2

.

(63)

11Note that this is with respect to the addition or removal of an element, not replacement. To keep n
fixed, we would need addition/removal to be defined to simply zero-out the relevant vectors.
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There is a lot to unpack in Theorem 36. Let us work through the parameters:

• n is the number of individuals and d is the dimension of the data.

• c is the bound on 2-norm of the individual data vectors.

• γ is the granularity of the discretization – we round data vectors to the integer grid
γZd.

• r is the range for the modular clipping – our final sum ends up being clipped to
γZd ∩ [−r, r]d. The secure aggregation does modular arithmetic over a group of size
m = 2r/γ (note r should be a multiple of γ). This ratio determines the communication
complexity.

• σ2 is the variance of the individual discrete Gaussian noise that we add; the sum will
have variance nσ2. This determines the privacy; specifically ε ≈ c√

nσ
and we attain

1
2
ε2-concentrated differential privacy.

• β is a parameter that controls the conditional randomized rounding. β = 0 yields
unconditional randomized rounding, and larger β entails more aggressive conditioning.
It will be helpful to think of β =

√
γ/n; although, in practice, slightly larger β may

be preferable.

• ρ measures how good the flattening matrix U is (cf. Lemma 29). Think of ρ = 1 or at
most ρ ≤ 2.

• The other parameters – ∆2, G, τ , σ̂ – are not important, as they are determined by
the previous parameters. ∆2 and G determine how much the conditional randomized
rounding can increase the norm (initially the norm is c). τ quantifies how far the sum
of discrete Gaussians is from just a single discrete Gaussian and how this affects the
differential privacy guarantee. The ratio σ̂/r measures how much error the modular
clipping contributes. σ̂ is determined by other parameters, but note that ‖

∑n
i xi‖ ≤∑n

i ‖xi‖ ≤ cn may be a loose upper bound, in which case, the clipping error is less.

Now we look at the error bound. If we assume β ≤ 1/
√
n and σ̂2(x) ≤ r2/4 log(r

√
n/γ2),

then the guarantee (63) is simply

E

∥∥∥∥∥Ã(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ O
(
dn
(
σ2 + γ2

))
.

The first term is roughly the cost of privacy – dnσ2 ≈ d c
2

ε2
. The second term, dnγ2, is the cost

of randomized rounding and modular clipping. (We have assumed β and σ̂ are sufficiently
small to avoid any additional terms.)
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Proof of Theorem 36. The differential privacy guarantee follows from the postprocessing
property of differential privacy and Proposition 26 (which, in turn, applies Proposition 14).

Now we turn to the utility analysis. Let A be as in Proposition 26. Then Ã(x) =
UTM[−r,r](A(Ux)), where Ux = (Ux1, Ux2, · · · , Uxn). Proposition 26 gives us the following
guarantees. ∥∥∥∥∥E [A(Ux)]− U

n∑
i

xi

∥∥∥∥∥
2

≤ β · γ ·
√
d · n

1− β
.

E
[
‖A(Ux)− E [A(Ux)]‖2

2

]
≤ γ2 · d · n

4(1− β)
+ n · d · σ2.

E

∥∥∥∥∥A(Ux)− U
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ n · d · σ2

∀t ∈ R ∀j ∈ [d] E

exp

t ·(A(Ux)− U
n∑
i

xi

)
j

 ≤ exp
((

γ2

8
+ σ2

2

)
· t2 · n

)
(1− β)n

.

By our assumption on U (and independence) we have

∀t ∈ R ∀j ∈ [d] E
[
exp

(
t · (A(Ux))j

)]
≤ exp

t2ρ
2d

∥∥∥∥∥
n∑
i

xi

∥∥∥∥∥
2

2

 · exp
((

γ2

8
+ σ2

2

)
· t2 · n

)
(1− β)n

.

Recall σ̂2(x) = ρ
d
‖
∑n

i xi‖
2

2 +
(
γ2

4
+ σ2

)
· n. By Proposition 35, for all j ∈ [d],

E
[∣∣M[a,b](A(Ux))j − A(Ux)j

∣∣] ≤ (b− a) · 1

(1− β)n
· e−(b−a)2/8σ̂2(x) ·

(
e
a2−b2
4σ̂2 + e

b2−a2
4σ̂2

)
and

E
[(
M[a,b](A(Ux))j − A(Ux)j

)2
]
≤ (b− a)2 · 1

(1− β)n
· e−(b−a)2/8σ̂2(x) ·

(
e
a2−b2
4σ̂2 + e

b2−a2
4σ̂2

)
,

where a = −r and b = r here. Summing over j ∈ [d] yields

E
[∥∥M[−r,r](A(Ux))− A(Ux)

∥∥2

2

]
≤ 4r2 · d

(1− β)n
· e−r2/2σ̂2(x) · 2.
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For all u, v ∈ R, we have (u+ v)2 = infλ>0(1 + λ)u2 + (1 + 1/λ)v2. Thus

E

∥∥∥∥∥Ã(x)−
n∑
i

xi

∥∥∥∥∥
2

2


= E

∥∥∥∥∥(UTM[−r,r](A(Ux))− UTA(Ux)
)

+

(
UTA(Ux)− UT

n∑
i

Uxi

)∥∥∥∥∥
2

2


= E

∥∥∥∥∥(M[−r,r](A(Ux))− A(Ux)
)

+

(
A(Ux)−

n∑
i

Uxi

)∥∥∥∥∥
2

2


≤ inf

λ>0
(1 + λ)E

[∥∥M[−r,r](A(Ux))− A(Ux)
∥∥2

2

]
+ (1 + 1/λ)E

∥∥∥∥∥A(Ux)−
n∑
i

Uxi

∥∥∥∥∥
2

2


≤ inf

λ>0
(1 + λ) · 4r2 · d

(1− β)n
· e−r2/2σ̂2(x) · 2 + (1 + 1/λ) ·

(
γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ n · d · σ2

)

=

√8r2 · d

(1− β)n
· e−r2/2σ̂2(x) +

√
γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ n · d · σ2

2

=
d · n
1− β

·

(
2
√

2 · r · e−r2/4σ̂2(x)√
n(1− β)n−1

+

√
γ2

4
+
β2γ2n

1− β
+ (1− β)σ2

)2

.

We gave an asymptotic version of Theorem 36 in the introduction.
Finally, we analyse how to set the parameters to obtain this bound. Note that we do not

attempt to optimize constants here at all.
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Proof of Theorem 2. Theorem 36 gives the following parameters.

∆2
2 := min

 c2 + 1
4
γ2d+

√
2 log(1/β) · γ ·

(
c+ 1

2
γ
√
d
)
,(

c+ γ
√
d
)2

 ,

τ := 10 ·
n−1∑
k=1

e
−2π2 σ2

γ2
· k
k+1 ,

ε := min

{ √
∆2

2

nσ2 + 1
2
τd,

∆2√
nσ

+ τ
√
d

}
,

σ̂2(x) :=
ρ

d

∥∥∥∥∥
n∑
i

xi

∥∥∥∥∥
2

2

+

(
γ2

4
+ σ2

)
· n

≤ ρ

d
c2n2 +
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Note that r = 1
2
γm. All we must do is verify that setting the parameters as specified in

Theorem 2 yields 1
2
ε2-concentrated DP and the desired accuracy. First,

ε2 ≤ ∆2
2

nσ2
+
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2
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√
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Thus the privacy requirement is satisfied as long as σ ≥ 2c/ε
√
n and (σ/γ)2 ≥ 8d/ε2n, and

5ndeπ
2(σ/γ)2 ≤ ε2/4. So we can set
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{
2c

ε
√
n
,
γ
√

8d

ε
√
n
,
γ

π2
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.

We set β = min{1/n, 1/2} = Θ
(

1
n

)
.
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Next
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Now we work out the asymptotics of the accuracy guarantee:
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Now we wish to set γ so that m2

n
exp

(
−γ2m2

8σ̂2

)
≤ 1 – i.e., γ ≥ σ̂

m

√
8 log(1 +m2/n). However,

simply setting γ = σ̂∗

m

√
8 log(1 +m2/n), where σ̂∗ is our upper bound on σ̂, is cyclic, because

our bound on σ̂ depends on γ. Fortunately, we can resolve this as long as the coefficient in

this cycle is ≤ 1−Ω(1). That coefficient is O
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Figure 1: Distributed mean estimation with the distributed discrete Gaussian. n: number of
clients. d: vector dimension. k: number of stddevs of

∑n
i x̃i+yi to bound. B: per-coordinate

bit-width. General/Optimistic: assumes ‖
∑n

i xi‖2 ≤ cn or ≤ c
√
n for choosing γ.
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Thus, if

m2 ≥ O

(
log(1 +m2/n) ·
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log2
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then the mean squared error is O(c2d/ε2), as required.

5 Experiments

We empirically evaluate the distributed discrete Gaussian mechanism (DDGauss) on two
tasks: distributed mean estimation (DME) and federated learning (FL). Our goal is to
demonstrate that the utility of DDGauss matches that of the continuous Gaussian mechanism
under the same privacy guarantees when given sufficient communication budget. For both
tasks, the top-level parameters include the number of participating clients n, the `2 norm
bound for the client vectors c, the dimension d, the privacy budget ε, and the bit-width B
which determines the modulo field size m = 2B. For FL, we also consider the number of
rounds T and the total number of clients N from which we randomly sample n clients in
each round. We fix the conditional rounding bias to β = e−1/2 unless otherwise stated.
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To select the granularity parameter γ, we carefully balance the errors from randomized
rounding and modular clipping. From the earlier sections, we know that each entry of∑n

i x̃i + yi is subgaussian with known constants. Thus, for a fixed B, we can choose γ
to ensure that the modular clipping range includes k standard deviations of

∑n
i x̃i + yi.

Specifically, the heuristic is to select γ such that 2kσ̂ is bounded within the modulo field size

2B where σ̂2 = c2n2

d
+
(
γ2

4
+ σ2

)
· n. Here, k captures the trade-off between the errors from

quantization and modular clipping and should be application-dependent. A small k leads to
a small γ and thus less error from rounding but more error from modular clipping; a large k
means modular clipping happens rarely but at a cost of more rounding error.

5.1 Distributed Mean Estimation

In this experiment, n clients each hold a d-dimensional vector xi uniformly randomly sampled
from the `2 sphere with radius c = 10. We compute the ground truth mean vector x̄ =
1
n

∑n
i xi as well as the differentially private mean estimates x̂ across different mechanisms

and communication/privacy budgets. We use the analytic Gaussian mechanism [BW18] as
the strong baseline. Figure 1 shows the mean MSE ‖x̄− x̂‖2

2/d with 95% confidence interval
over 10 random dataset initializations.12 The first two plots assume a general norm bound
‖
∑n

i xi‖2
≤ cn when choosing γ (generally applicable to FL applications), while the third

plot assumes an optimistic bound ‖
∑n

i xi‖2 ≤ c
√
n as xi’s are sampled uniformly randomly

on the `2 sphere. Note that the bit-width B applies to each coordinate of the quantized
and noisy aggregate. Results indicate that DDGauss achieves a good communication-utility
trade-off and matches the Gaussian with sufficient bit-widths.

In Figure 2, we additionally investigate the trade-off between quantization errors and
modular clipping errors by trying different values of k. Here, we use the optimistic norm
bound on the vector sum as the general norm bound could be loose (thus γ would be chosen
conservatively such that modular wrap-around rarely happens). At k = 2, the effect of mod-
ular clipping is now evident (the gap between DDGauss and Gaussian). With increasingly
larger k (larger γ), we incur more quantization errors (thus worse low bit-width performance)
but less modular wrapping and can close the utility gap to Gaussian at high bit-widths.

5.2 Federated Learning

We evaluate on three public FL benchmarks: Federated EMNIST [CATVS17; CDWLKMST18],
Stack Overflow Tag Prediction (SO-TP, [Aut19]), and Stack Overflow Next Word Prediction
(SO-NWP, [Aut19]).

12The kinks on the low bit-width curves are due to the TensorFlow implementation of the discrete Gaus-
sian sampler taking integer noise scales; to preserve privacy, noise scales are rounded up as dσ/γe in all
experiments.
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Figure 2: Distributed mean estimation with the distributed discrete Gaussian, assuming an
optimistic bound ‖

∑n
i xi‖2

≤ c
√
n as vectors are sampled uniformly randomly from a sphere.

The first, second, and third row uses k = 2, k = 3, and k = 4, respectively. δ = 10−5.

5.2.1 Datasets

Federated EMNIST is an image classification dataset containing 671,585 training hand-
written digit/letter images over 62 classes grouped into N = 3400 clients by their writer.
Stack Overflow is a large-scale text dataset based on the question answering site Stack
Overflow. It contains over 108 training sentences extracted from the site grouped by the N =
342477 users, and each sentence has associated metadata such as tags. The task of SO-TP
involves predicting the tags of a given sentence, while the task of SO-NWP involves predicting
the next words given the preceding words in a sentence. For more details on the datasets and
tasks, we refer the reader to [RCZGRKKM20]. We note that these datasets differ from those
commonly used in related work (e.g. MNIST [LCB10] and CIFAR-10 [Kri+09]) in that they
are substantially larger, more challenging, and involve user-level (instead of example-level)
DP with real-world client heterogeneity and label/size imbalance. Obtaining a small ε on
EMNIST is also harder due to the relatively large sampling rate q = n/N needed for stable
convergence under noising.
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5.2.2 Models

For EMNIST, We train a small convolutional net with two 3×3 conv layers with 32/64
channels followed by two fully connected layers with 128/62 output units; a 2×2 max pooling
layer and two dropout layers with drop rate 0.25/0.5 are added after the first 3 trainable
layers, respectively. The total number of parameters is d = 1018174, which is slightly under
220 to avoid excessive zero padding for the Walsh-Hadamard transform. For SO-TP, we
follow [RCZGRKKM20] and train a simple logistic regression model for tag prediction. The
vocabulary size is limited to 10000 for word tokens and 500 for tags, and each sentence is
represented as a bag-of-words vector. The resulting model size is d = 5000500. For SO-NWP,
we use the LSTM architecture defined in [RCZGRKKM20] directly, which has a model size
of d = 4050748 parameters.

5.2.3 Setup

For all benchmarks, we used the standard dataset split provided by TensorFlow. For EM-
NIST, the dataset is split into training and test set and performance is reported on the test
set. For Stack Overflow (SO-TP and SO-NWP), the dataset is split into training, valida-
tion, and test sets. Validation accuracies and test accuracies are reported on the validation
and test sets respectively. Note that using the dataset splits from TensorFlow is standard
practice as in previous work (e.g. [RCZGRKKM20; MRTZ18; ASGXR21]), and it allows our
results to be comparable in similar settings. Note also that validation techniques such as
k-fold validation can incur additional privacy costs.

We adopt most hyperparameters from previous work [RCZGRKKM20; ATMR19; KM-
STTX21]. For all tasks, we train with federated averaging with server momentum of 0.9 [MM-
RHA17; HQB19]. In each round, we uniformly sample n = 100 clients for EMNIST and
SO-NWP following [ATMR19] and n = 60 clients for SO-TP due to memory limit. We train
1 epoch over clients’ local datasets. Each client’s model updates are weighted uniformly
(instead of by their number of samples) to maintain privacy. Clients are sampled without
replacement within each round, and with replacement across rounds. For EMNIST, SO-TP,
and SO-NWP respectively, we set the number of rounds T to 1500, 1500, and 1600, c to 0.03,
2.0, and 0.3, client learning rate ηc to 0.032, 316, and 0.5, and client batch size to 20, 100,
and 16. Server LR ηs is set to 1 for EMNIST, 0.56 for SO-TP, and selected from a small grid
{0.3, 1} for SO-NWP and reports the best performance. Tuning is limited to c (to tradeoff
between the bias from clipping and the noise from privacy) and ηs (to match the selected c
and n). For SO-NWP, we limit the max number of examples per client to 256.

The reported privacy guarantees ε rely on privacy amplification via sampling [KLNRS11;
BST14; ACGMMTZ16], which is necessary to obtain reasonable privacy-accuracy tradeoffs
in differentially private deep learning. This assumes that the identities of the users sampled
in every round are hidden from the adversary. This does not hold for the entity initiating
connection with the clients (typically the server running the FL protocol) but is applicable
to participating clients and the analysts that have requested the model. We adopt the tight
amplification bound from [MTZ19] for the Gaussian baseline and use the generic upper
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Figure 3: Summary of test accuracies (averaged over last 100 rounds) on EMNIST at k = 3
across different values of ε and B. d is the padded model size. δ = 1/N .
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Figure 4: Test accuracies during training for EMNIST across different ε, B, and k. δ = 1/N .

bound from [ZW19] for DDGauss (we do not explore a precise analysis in this work). The
generic amplification upper bound could lead to more noise being added for DDGauss to
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Figure 5: Summary of test performance on Stack Overflow. Left: Tag Prediction with
logistic regression. Note that all runs of B = 12 except at ε = 15 did not converge. Middle
and Right: Next Word Prediction with k = 3 and k = 4, respectively. d is the padded
model size. δ = 1/N for SO-TP and δ = 10−6 for SO-NWP.
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Figure 6: Validation accuracies during training for SO-NWP across different ε, B, and k.

achieve the same privacy as Gaussian.

5.2.4 Results

For EMNIST, Figure 3 summarizes the test accuracies across different values of ε and B for
k = 3, and Figure 4 shows the accuracies during training. For Stack Overflow, Figure 5 sum-
marizes the test performance on SO-TP (recall@5) and SO-NWP (accuracy), and Figure 6
shows the validation accuracies on SO-NWP.

Overall, with more communication bits (B) and privacy budget (ε), DDGauss achieves
a better utility both relative to the Gaussian baseline and in absolute performance, and it
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Figure 7: Validation accuracies on SO-NWP (averaged every 100 rounds) with n = 1000 and
B = 18. z is the approximate noise multiplier.

can essentially match Gaussian as long as B is sufficient.
In particular, note from Figure 4 and 5 that a small k can be sub-optimal for learning

as the cost of modular wrap-around is more pronounced than quantization errors; using
a larger k allows DDGauss to match the Gaussian baseline at the expense of worse low
bit-width performance (as γ is larger). Note also that for EMNIST (Figure 4), there is a
slight performance gap between Gaussian and DDGauss in the extreme setting with ε = 3
and k = 4. We believe this minor mismatch, on top of the errors from rounding and
modular clipping, is due to the use of the generic upper bound for privacy amplification via
subsampling as discussed earlier in this section.

5.3 Additional Results

Large-Scale Training We additionally consider scaling up the SO-NWP experiments to
n = 1000 clients per round (similar to production settings described in [HRMRBAEKR18;
MRTZ18; RMRB19]), and we show the validation accuracies during training across different
noise multipliers13 in Figure 7. We set c = 1 and ηs = 1 for z ≈ 0.3 and z ≈ 0.5, and
we set ηs = 3 otherwise. z ≈ 0.07 gives a target test accuracy of around 25.2% (utility-
first approach to limit performance degradation from DP [KMSTTX21]) while z ≈ 0.5 and
z ≈ 0.3 give ε of 10 and 234 respectively. The results bear significant practical relevance as
they indicate that as long as DDGauss is parameterized properly, it can perform as good as
the continuous Gaussian in real-world settings (with large n, large model size d, and natural
client heterogeneity from Stack Overflow).

13z = σ̂/c where σ̂ is the equivalent central noise standard deviation (
√
nσ for DDGauss). The values of z

are aligned on privacy budgets and thus z is in fact slightly larger for DDGauss compared to Gaussian due
to effects of rounding, generic amplification, etc.
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Figure 8: Effects of β on Federated EMNIST. The number of clients per round is n = 100
and the user-level privacy budget is fixed at ε = 3. δ = 1/N .
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Figure 9: Effects of client dropouts on the server observed privacy. δ = 10−5.

Effects of β Recall from Section 4.1 that the hyperparameter β controls the growth of the
client vector norm from conditional randomized rounding. Here, we are interested to know
how β and the bias and variance it introduces influence the communication-utility trade-
off in practice. Figure 8 shows the results on Federated EMNIST with β ∈ {0, 1√

n
, e−1/2}

across B ∈ {14, 16, 18} and k ∈ {2, 4} with user-level privacy budget fixed at ε = 3; other
parameters follow those described earlier.14 We note that when the communication budget
is tight (i.e. large k and small B, where the “room” for larger norm and noise variance
is limited), the bounded norm growth from conditional rounding can be pivotal to model
learning and convergence. When the communication budget is sufficient (i.e. small k and
large B, where we can afford unconditional rounding), the bias introduced by β > 0 have

14β = 0 leads to unconditional rounding, in which case we use the worst case bound ∆2 ≤ ‖x‖2 + γ
√
d.
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insignificant impact on the model utility (e.g. β = e−1/2 ≈ 0.607 and β = 1/
√
n = 0.1 give

similar performance and convergence speed).

Privacy Degradation from Client Dropouts Figure 9 shows the privacy degradation as
observed by the server if a certain percentage of the clients drops out during aggregation (thus
there will be missing local noise shares). Note that for the external analyst, the server can
always add the missing shares of noise onto the aggregate to prevent this degradation. Note
also that the values of the parameters (γ, β,B, c, d, k, n, T ) does not affect the degradation
as they influence each other to arrive at the same initial ε. The sampling rate q is also fixed
at 1.0 as subsampling does not apply from the server’s perspective.

6 Concluding Remarks

We have presented an complete end-to-end protocol for federated learning with distributed
DP and secure aggregation. Our solution relies on efficiently flattening and discretizing the
client model updates before adding discrete Gaussian noise and applying secure aggregation.
A significant advantage of this approach is that it allows an untrusted server to perform
complex learning tasks on decentralized and privacy-sensitive data while achieving the accu-
racy of a trusted server. Our theoretical guarantees highlight the complex tension between
communication, privacy, and accuracy. Our experimental results demonstrate that our solu-
tion is essentially able to match the accuracy of central differential privacy with 16 or fewer
bits of precision per value.

Several questions remain to be addressed, including (a) tightening the generic RDP am-
plification via sampling results or conducting a precise analysis of the subsampled distributed
discrete Gaussian mechanism, (b) exploring the use of a discrete Fourier transform or other
methods instead of the Walsh-Hadamard transform to avoid having to pad by (up to) d− 1
zeros, (c) developing private self-tuning algorithms that learn how to optimally set the pa-
rameters of the algorithm on the fly, and (d) proving a lower bound on m that either confirms

that the distributed discrete Gaussian’s m ≥ Õ

(
n+

√
ε2n3

d
+
√
d
ε

)
is order optimal or sug-

gests the existence of a better mechanism.
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