
Practical and Private (Deep) Learning without Sampling or Shuffling

A. Other Related Work
Differentially private empirical risk minimization (ERM) and private online learning are well-studied areas in the privacy
literature (Chaudhuri et al., 2011; Kifer et al., 2012; Jain et al., 2012; Smith & Thakurta, 2013; Song et al., 2013; Bassily
et al., 2014; Jain & Thakurta, 2014; Abadi et al., 2016; McMahan et al., 2017b; Wu et al., 2017; Agarwal & Singh, 2017;
Abernethy et al., 2019; Bassily et al., 2019b; Iyengar et al., 2019; Pichapati et al., 2019; Thakkar et al., 2019; Feldman
et al., 2020a; Papernot et al., 2020b)8. The connection between private ERM and private online learning was first explored
in (Jain et al., 2012), and the idea of using stability induced by differential privacy for designing low-regret algorithms
was explored in (Kalai & Vempala, 2005; Agarwal & Singh, 2017; Abernethy et al., 2019). To the best of our knowledge,
this paper for the first time explores the idea using a purely online learning algorithm for training deep learning models,
without relying on any stochasticity in the data for privacy.

B. Missing Details from Section 3
B.1. Details of the Tree Aggregation Scheme

In this section we provide the formal details of the tree aggregation scheme used in Algorithm 1 (Algorithm AFTRL).

1. InitializeTree (n, σ2, L): Initialize a complete binary tree T with 2dlg(n)e leaf nodes, with each node being
sampled i.i.d. from N (0, L2σ2 · Ip×p).

2. AddToTree (T , t,v): Add v to all the nodes along the path to the root of T , starting from t-th leaf node.

3. GetSum (T , t): Let [node1, . . . ,nodeh] be the list of nodes from the root of T to the t-th leaf node, with node1

being the root node and nodeh being the leaf node.

(a) Initialize s ← 0p and convert t to binary in h bit representation [b1, . . . , bh], with b1 being the most significant
bit.

(b) For each j ∈ [h], if bj = 1, then add the value in left sibling of nodej to s. Here if nodej is the left child, then
it is treated as its own left sibling.

(c) Return s.

Incorporating the iterative estimator from (Honaker, 2015): Here, we state a variant of the GetSum (T , t) function
(called GetSumReducedVariance (T , t)) based on the variance reduction technique used in (Honaker, 2015). The
main idea is as follows: In the estimator for GetSum (T , t) above, each nodej refers to a noisy/private estimate of all
the nodes in the sub-tree of T rooted at nodej . Notice that one can obtain independent estimates of the same, with
one for each level of the sub-tree rooted at nodej , by summing up the nodes at the corresponding level. Of course, the
variance of each of these estimates will be different. (Honaker, 2015) provided an estimator to combine these independent
estimates in order to lower the overall variance in the final estimate. In the following, we provide the formal description of
GetSumReducedVariance (T , t). The text colored in blue is the only difference from GetSum (T , t).

3. GetSumReducedVariance (T , t): Let [node1, . . . ,nodeh] be the list of nodes from the root of T to the t-th
leaf node, with node1 being the root node and nodeh being the leaf node.

(a) Initialize s ← 0p and convert t to binary in h bit representation [b1, . . . , bh], with b1 being the most significant
bit.

(b) For each j ∈ [h], if bj = 1, then do the following. Here if nodej is the left child, then it is treated as its own left
sibling.
i. For any two node indices left ≤ right, let rleft:right ← value in T corresponding to the least common

ancestor of left and right.
ii. For the sub-tree rooted at nodej , let [a : b] be the indices of the leaf nodes in the original tree T .

iii. Estimate s[x:z] recursively as follows, with y = b(x+ z)/2c

s[x:z] ←
r′[x:z]

2− (x− z + 1)−1
, where r′[x:z] ← r[x:z] +

r′[x:y] + r′[y+1:z]

2
.

8This is only a small representative subset of the literature.
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iv. Add s[x:z] to s.
(c) Return s.

B.2. Proof of Theorem 3.1

Proof. Notice that in Algorithm 1, all accesses to private information is only through the tree data structure T . Hence,
to prove the privacy guarantee, it is sufficient to show that for any data set V = {v1, . . . ,vn} (with each ‖vi‖2 ≤ L),
the operations on the tree data structure (i.e., the InitializeTree , AddToTree , GetSum ) provide the privacy
guarantees in the Theorem statement. First, notice that each vi affects at most dlg(n)e nodes in the tree T . Additionally,
notice that the computation in each node of the tree T is essentially a summation query. With these two observations, one
can use standard properties of Gaussian mechanism (Dwork et al., 2006a),(Mironov, 2017, Corollary 3), and adaptive RDP
composition (Mironov, 2017, Proposition1) to complete the proof.

While the original work on tree aggregation (Dwork et al., 2010; Chan et al., 2011) did not use either Gaussian mechanism
or RDP composition, it is not hard to observe that the translation to the current setting is immediate.

B.3. Missing details from Section 3.2 (Comparing Noise in DP-SGD and DP-FTRL)

Theorem B.1. Consider data set D = {d1, . . . , dn}, model space C = Rp and initial model θ0 = 0p. For t ∈ [n], let the

update of Noisy-SGD be θNoisy-SGD
t+1 ← θt − η ·

(
∇θ`

(
θNoisy-SGD
t ; dt

)
+ at

)
, where at’s are noise random variables. Let

the DP-FTRL (Algorithm 1) updates be θDP-FTRL
t+1 ← arg min

θ∈Rp

t∑
i=1

∇θ`
(
θDP-FTRL
i ; di

)
+ 〈bt, θ〉 + 1

2η ‖θ‖
2
2, where bt’s are

the noises added by the tree-aggregation mechanism.

If we instantiate at = bt − bt−1, and η = 1
λ , then for all t ∈ [n], θNoisy-SGD

t = θDP-FTRL
t .

Proof. Consider the non-private SGD and FTRL. Recall that the SGD update is θSGDt+1 ← θSGDt − η∇θ`(θSGDt ; dt), where η

is the learning rate. Opening up the recurrence, we have θSGDt+1 ← θ0−η
t∑
i=1

∇θ`(θSGDi ; di). If θSGD0 = 0p, then equivalently

θSGDt+1 ← arg min
θ∈Rp

〈
t∑
i=1

∇θ`(θSGDi ; di), θ〉 + 1
2η ‖θ‖

2
2. This is identical to the update rule of the non-private FTRL (i.e., with

σ set to 0 in DP-FTRL) with regularization parameter λ set to 1
η .

Now we consider the Noisy-SGD and DP-FTRL. Recall that Noisy-SGD has update rule θNoisy-SGD
t+1 ← θNoisy-SGD

t −
η
(
∇θ`(θNoisy-SGD

t ; dt) + at

)
, where at is the Gaussian noise added at time step t. Similar as before, this rule can be

written as

θNoisy-SGD
t+1 ← arg min

θ∈Rp

〈
t∑
i=1

∇θ`(θNoisy-SGD
i ; di), θ〉+ 〈

t∑
i=1

ai, θ〉+
1

2η
‖θ‖22 . (3)

The update rule of DP-FTRL can be written as

θDP-FTRL
t+1 ← arg min

θ∈Rp

〈
t∑
i=1

∇θ`
(
θDP-FTRL
i ; di

)
, θ〉+ 〈bt, θ〉+

λ

2
‖θ‖22 , (4)

where bt is the noise that gets added by the tree-aggregation mechanism at time step t + 1. If we 1) set λ = 1
η , 2) draw

data samples sequentially from D in Noisy-SGD, and 3) set at = bt − bt−1 so that
t∑
i=1

at = bt, we can establish the

equivalence between (3) and (4). This completes the proof.

C. Missing Details from Section 4
C.1. Proof of Theorem 4.1

We first present a more detailed version of Theorem 4.1 and then present its proof.
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Theorem C.1 (Regret guarantee (Theorem 4.1 in detail)). Let [θ1, . . . , θn] be the outputs of Algorithm AFTRL (Algo-
rithm 1), and L be a bound on the `2-Lipschitz constant of the loss functions. W.p. at least 1 − β over the randomness of
AFTRL, the following is true for any θ∗ ∈ C.

1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt) ≤
Lσ
√
pdlg ne ln(n/β) + L2

λ
+

λ

2n

(
‖θ∗‖22 − ‖θ1‖

2
2

)
Setting λ optimally and plugging in the noise scale σ from Theorem 3.1 to ensure (ε, δ)-differential privacy, we have

RD(AFTRL; θ∗) = O

L ‖θ∗‖2 ·
 1√

n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

 .

Proof. Recall that by Algorithm AFTRL, θt+1 ← arg min
θ∈C

t∑
i=1

〈∇i, θ〉+
λ

2
‖θ‖22 + 〈bt, θ〉︸ ︷︷ ︸

Jpriv
t (θ)

, where the Gaussian noise bt =

st −
t∑
i=1

∇i for st being the output of GetSum (T , t). By standard concentration of spherical Gaussians, w.p. at least

1 − β, ∀t ∈ [n], ‖bt‖2 ≤ Lσ
√
pdlg(n)e ln(n/β). We will use this bound to control the error introduced due to privacy.

Now, consider the optimizer of the non-private objective:

θ̃t+1 ← arg min
θ∈C

t∑
i=1

〈∇i, θ〉+
λ

2
‖θ‖22︸ ︷︷ ︸

Jnp
t (θ)

, where∇t = ∇`(θt; dt).

That is, post-hoc we consider the hypothetical application of non-private FTRL to the same sequence of linearized loss
functions ft(θ̃) = 〈∇t, θ̃〉 = 〈∇`(θt; dt), θ̃〉 seen in the private training run. In the following, we will first bound how
much the models output by AFTRL deviate from models output by the hypothetical non-private FTRL discussed above.
Then, we invoke standard regret bound for FTRL, while accounting for the deviation of the models output by AFTRL.

To bound
∥∥∥θ̃t+1 − θt+1

∥∥∥
2
, we apply Lemma C.2. We set φ1(θ) = Jnp

t (θ)/λ, φ2(θ) = Jpriv
t (θ)/λ, and both ‖ · ‖ and its

dual as the `2 norm. We thus have Ψ(θ) = 〈bt, θ〉/λ, with bt/λ being its subgradient. Therefore,∥∥∥θ̃t+1 − θt+1

∥∥∥
2
≤
‖bt‖2
λ

. (5)

Lemma C.2 (Lemma 7 from (McMahan, 2017) restated). Let φ1 : C → R be a convex function (defined over C ⊆ Rp) s.t.
θ1 ∈ arg min

θ∈C
φ1(θ) exists. Let Ψ(θ) be a convex function s.t. φ2(θ) = φ1(θ) + Ψ(θ) is 1-strongly convex w.r.t. ‖ · ‖-norm.

Let θ2 ∈ arg min
θ∈C

φ2(θ). Then for any b in the subgradient of Ψ at θ1, the following is true: ‖θ1 − θ2‖∗ ≤ ‖b‖∗. Here

‖ · ‖∗ is the dual-norm of ‖ · ‖.

We can now easily bound the regret. By standard linear approximation “trick” from the online learning literature (Shalev-
Shwartz, 2012; Hazan, 2019), we have the following. For∇t = ∇θ`(θt; dt),

1

n

n∑
t=1

`(θt; dt)−
1

n

n∑
t=1

`(θ∗; dt) ≤
1

n

n∑
t=1

〈∇t, θt − θ∗〉

=
1

n

n∑
t=1

〈∇t, θt − θ̃t + θ̃t − θ∗〉

=
1

n

n∑
t=1

〈∇t, θ̃t − θ∗〉︸ ︷︷ ︸
A

+
1

n

n∑
t=1

〈∇t, θt − θ̃t〉︸ ︷︷ ︸
B

. (6)
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One can bound the term A in (6) by (Hazan, 2019, Theorem 5.2) and get A ≤
(
L2

λ + λ
2n

(
‖θ∗‖22 − ‖θ1‖

2
2

))
. As for term

B, using (5) and the concentration on bt mentioned earlier, we have, w.p. at least 1− β,

B ≤ 1

n

n∑
t=1

‖∇t‖2 ·
∥∥∥θ̃t − θt∥∥∥

2
≤ 1

n

n∑
t=1

L ·
∥∥∥θ̃t − θt∥∥∥

2
≤
Lσ
√
pdlg ne ln(n/β)

λ
. (7)

Combining (6) and (7), we immediately have the first part of of Theorem 4.1. To prove the second part of the theorem, we
just optimize for the regularization parameter λ and plug in the noise scale σ from Theorem 3.1.

C.2. Additional Details for Section 4.2

In Algorithm 2, we present a version of DP-FTRL for least square loss. In this modified algorithm, the functions
InitializeTreeBias , AddToTreeBias , and GetSumBias are identical to InitializeTree , AddToTree ,
and GetSum respectively in Algorithm 1. The functions AddToTreeCov , AddToTreeCov , and GetSumCov are
similar to InitializeTree , AddToTree , and GetSum , except that the p-dimensional vector versions are replaced
by p×p-dimensional matrix version, and the noise in InitializeTreeCov is initialized by symmetric p×p Gaussian
matrices with each entry drawn i.i.d. from N

(
0, L4σ2

)
.

Algorithm 2 AFTRL-LS: Differentially Private Follow-The-Regularized-Leader (DP-FTRL) for least-squared losses

Require: Data set: D = {(x1, y1), · · · , (xn, yn)} arriving in a stream, constraint set: C, noise scale: σ, regularization
parameter: λ, upper bound on {‖xt‖2}

n
t=1

: L.
1: θ1 ← arg min

θ∈C

λ
2 ‖θ‖

2
2. Output θ1.

2: Tbias ← InitializeTreeBias (n, σ2, L), Tcov ← InitializeTreeCov (n, σ2, L2).
3: for t ∈ [n] do
4: Let vt ← yt · xt, and Mt ← xtx

>
t .

5: Tbias ← AddToTreeBias (Tbias, t,vt) and Tcov ← AddToTreeCov (Tcov, t,Mt).
6: st ← GetSumBias (Tbias, t), and Wt ← GetSumCov (Tcov, t).
7: θt+1 ← arg min

θ∈C

(
θ> ·Wt · θ − 2〈st, θ〉

)
+ λ

2 ‖θ‖
2
2. Output θt+1.

8: end for

We first present the privacy guarantee of Algorithm 2 in Theorem C.3. Its proof is almost identical to that of Theorem 3.1,
except that we need to measure the sensitivity of the covariance matrix in the Frobenius norm.
Theorem C.3 (Privacy guarantee). If ‖x‖2 ≤ L and |y| ≤ 1 for all (x, y) ∈ D and θ ∈ C, then Algorithm 1 (Algorithm

AFTRL) satisfies
(
α, αdlg(n)eσ2

)
-RDP. Correspondingly, by setting σ =

2
√
dlg(n)e ln(1/δ)

ε one can satisfy (ε, δ)-differential

privacy guarantee, as long as ε ≤ 2 ln(1/δ).

In Theorem C.4, we present the regret guarantee for Algorithm 2.
Theorem C.4 (Stochastic regret for least-squared losses). Let D = {(x1, y1), . . . , (xn, yn)} ∈ Dn be a data set drawn
i.i.d. from τ , with L = max

x∈D
‖x‖2 and max

y∼D
|y| ≤ 1. Let C be the model space and µ = max

θ∈C
‖θ‖2. Let θ∗ be any model in

C, and [θ1, . . . , θn] be the outputs of Algorithm AFTRL-LS (Algorithm 2). Then w.p. at least 1− β (over the randomness of
the algorithm), we have

ED [RD(AFTRL-LS; θ∗)] = ED

[
1

n

n∑
t=1

(yt − 〈xt, θt〉)2 − (yt − 〈xt, θ∗〉)2
]

=O

(
p ln2(n) ln(n/β)σ2 ·

(
L2 + L4µ2 + L3µ

)
λn

+
L4µ2

λ
+
λ ln(n)

n
· ‖θ∗‖22

)
.

Setting λ optimally and plugging in the noise scale σ from Theorem C.3 to ensure (ε, δ)-differential privacy, we have,

ED [RD(AFTRL-LS; θ∗)] = L2 · ‖θ∗‖2 ·O

√µ2 ln(n)

n
+

√
p ln5(n/β) · ln(1/δ) ·max{µ, µ2}

εn

 .
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Proof. Consider the following regret function: RD(AFTRL-LS; θ∗) = 1
n

n∑
t=1

(
(yt − 〈θt,xt〉)2 − (yt − 〈θ,xt〉)2

)
. We will

bound ED [RD(AFTRL-LS; θ∗)]. Following the notation in the proof of Theorem 4.1, recall the following two functions.

• θt+1 ← arg min
θ∈C

t∑
i=1

(
θ>xix

>
i θ − 2yi〈xi, θ〉

)
+
λ

2
‖θ‖22 + 〈bt, θ〉+ θ>Btθ︸ ︷︷ ︸

Jpriv
t (θ)

, where the noise bt =
t∑
i=1

yixi− st with

st being the output of GetSumBias (Tbias, t), and the noise Bt = Wt −
t∑
i=1

xix
>
i with Wt being the output of

GetSumCov (Tcov, t). By standard bound on Gaussian random variables, w.p. at least 1 − β, ∀t ∈ [n], ‖bt‖2 =

O
(
Lσ
√
p ln(n) ln(n/β)

)
and ‖Bt‖2 = O

(
L2σ

√
p ln(n) ln(n/β)

)
. We will use this bound to control the error

introduced due to privacy.

• θ̃t+1 ← arg min
θ∈C

t∑
i=1

(
θ>xix

>
i θ − 2yi〈xi, θ〉

)
+
λ

2
‖θ‖22︸ ︷︷ ︸

Jnp
t (θ)

.

By an analogous argument to (5) in the proof of Theorem 4.1, we have∥∥∥θ̃t+1 − θt+1

∥∥∥
2

= O

(
Lσ + L2σ · µ

λ
·
√
p ln(n) ln(n/β)

)
. (8)

Therefore,

Jnp
t (θ̃t+1) + 〈bt, θ̃t+1〉+ θ̃>t+1Btθ̃t+1 ≥ Jnp

t (θt+1) + 〈bt, θt+1〉+ θ>t+1Btθt+1︸ ︷︷ ︸
Jpriv
t (θt+1)

+
λ

2

∥∥∥θ̃t+1 − θt+1

∥∥∥2
2

(9)

⇒ Jnp
t (θt+1)− Jnp

t (θ̃t+1) = O
(
‖bt‖2 ·

∥∥∥θ̃t+1 − θt+1

∥∥∥
2

+ ‖Bt‖2 ·
∥∥∥θ̃t+1 − θt+1

∥∥∥
2
· µ
)

(10)

⇒ Jnp
t (θt+1)− Jnp

t (θ̃t+1) = O

(
(p ln(n) ln(n/β)σ2) · L

2 + L4µ2 + L3µ

λ

)
. (11)

(9) follows from the strong convexity of Jpriv
t and the fact that that θt+1 is the minimizer of Jpriv

t . (10) follows
from the bounds on ‖bt‖2, ‖Bt‖2, and (8). We now use Theorem 2 from (Shalev-Shwartz et al., 2009) to bound

E(x,y)∼D

[
(y − 〈x, θt+1〉)2 + λ

2 ‖θt+1‖22
]
− E(x,y)∼D

[
(y − 〈x, θ∗〉)2 + λ

2 ‖θ
∗‖22
]

for any θ∗ ∈ C.

Using Theorem 2 from (Shalev-Shwartz et al., 2009) and (11), we have that w.p. at least 1− β over the randomness of the
algorithm,

E(x,y)∼τ

[
(y − 〈x, θt+1〉)2 +

λ

2
‖θt+1‖22

]
− E(x,y)∼τ

[
(y − 〈x, θ∗〉)2 +

λ

2
‖θ∗‖22

]
≤ 2

t
· E
[
Jnp
t (θt+1)− Jnp

t

(
θ̃t+1

)]
+O

(
L4µ2

λ

)
= O

(
(p ln(n) ln(n/β))σ2) · L

2 + L4µ2 + L3µ

λt
+
L4µ2

λ

)
. (12)

(12) immediately implies the following:

ED [RD(AFTRL-LS; θ∗)] = O

((
p ln2(n) ln(n/β)σ2

) L2 + L4µ2 + L3µ

λn
+
L4µ2

λ
+
λ ln(n)

n
· ‖θ∗‖22

)
. (13)

We get the regret guarantee in Theorem C.4 by optimizing for λ.
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C.3. Formal Statement of Online-to-batch Conversion for Excess Population Risk

Theorem C.5 (Corollary to Theorem 4.1 and (Shalev-Shwartz et al., 2009)). Recall the setting of parameters from Theo-

rem 4.1, and let θpriv = 1
n

n∑
t=1

θt (where [θ1, . . . , θn] are outputs of Algorithm AFTRL (Algorithm 1). If the data set D is

drawn i.i.d. from the distribution τ , then we have that w.p. at least 1− β (over the randomness of the algorithm AFTRL),

ED
[
PopRisk(θpriv )

]
= Lµ ·O

√ ln(1/β)

n
+

√
p1/2 ln2(1/δ) ln(1/β)

εn

 .

Here, µ = max
θ∈C
‖θ‖2 is an upper bound on the norm of any model in C.

D. Multi-pass and Mini-batch DP-FTRL
We introduce two extensions to Algorithm AFTRL (Algorithm 1) that we will use for our empirical evaluation: i) Multi-
pass, and ii) Mini-batching. While DP-FTRL (Algorithm 1) is stated for a single epoch of training, i.e., where each sample
in the data set is used once for obtaining a gradient update, there can be situations where E > 1 epochs of training are
preferred. There are two natural ways that Algorithm 1 can be extended to the following.

DP-FTRL with Tree Restart (DP-FTRL-TR): Restarting the tree at every epoch of training. Since this amounts to
adaptive composition of Algorithm 2 for E times, the privacy guarantee for this method can be obtained from Theorem 3.1
and the adaptive sequential composition property of RDP (Mironov, 2017).

Theorem D.1 (Privacy guarantee for DP-FTRL-TR). If ‖∇θ`(θ; d)‖2 ≤ L for all d ∈ D and θ ∈ C, then DP-FTRL

(Algorithm 1) with Tree Restart (DP-FTRL-TR) for E epochs satisfies
(
α, αEL

2dlg(n)e
2σ2

)
-RDP. Correspondingly, by setting

σ =

√
EL2dlg(n)e ln(1/δ)

ε one can satisfy (ε, δ)-differential privacy guarantee, as long as ε ≤ 2 ln(1/δ).

DP-FTRL with No Tree Restart (DP-FTRL-NTR): Build a single tree for all the E epochs of training.

Theorem D.2 (Privacy guarantee for DP-FTRL-NTR). If ‖∇θ`(θ; d)‖2 ≤ L for all d ∈ D and θ ∈ C, then DP-FTRL

(Algorithm 1) with No Tree Restart (DP-FTRL-NTR) for E epochs satisfies
(
α, αEL

2dlg(nE)e
2σ2

)
-RDP. Correspondingly, by

setting σ =

√
EL2dlg(nE)e ln(1/δ)

ε one can satisfy (ε, δ)-differential privacy guarantee, as long as ε ≤ 2 ln(1/δ).

The proof of Theorem D.2 follows from that of Theorem 3.1, and the additional observation that any aggregation step can
involve at most E gradients from any data sample d ∈ D, which results in

∥∥∥∑e∈[E]∇θ`e(θ; d)
∥∥∥
2
≤ EL from the triangle

inequality. Another difference in the proof is that any data sample d ∈ D now can affect dlg(nE)e nodes of the tree T .

Mini-batch DP-FTRL: So far, for simplicity we have focused on DP-FTRL with model updates corresponding to new
gradient from a single sample. However, in practice, instead of computing the gradient on a single data sample dt at

time step t, we will estimate gradient over a batch Mt =
{
d
(1)
t , . . . , d

(k)
t

}
as ∇t = 1

k

k∑
i=1

clip
(
∇θ`

(
θt; d

(1)
t

)
, L
)

. This

immediately implies the number of steps per epoch to be dn/ke. Furthermore, since the `2-sensitivity in each batch gets
scaled down to L

k instead of L (as in Algorithm AFTRL). W will take the above two observations into consideration in our
privacy accounting accordingly.

E. Omitted Details for Experiment Setup (Section 5.1)
E.1. Additional Details on Model Architectures

Table 2a shows the model architecture for MNIST and EMNIST, Table 2b shows that for CIFAR-10, and Table 2c shows
the neural networks adopted from (Reddi et al., 2020).
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Table 2. Model architectures for all experiments.

(a) Model architecture for MNIST and EMNIST.

Layer Parameters

Convolution 16 filters of 8× 8, strides 2
Convolution 32 filters of 4× 4, strides 2

Fully connected 32 units
Softmax -

(b) Model architecture for CIFAR-10.

Layer Parameters

Convolution ×2 32 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 64 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Convolution ×2 128 filters of 3× 3, strides 1
Max-Pooling 2× 2, stride 2

Fully connected 128 units
Softmax -

(c) Model architecture for StackOverflow. (Reddi et al., 2020)

Layer Output Shape Parameters

Input 20 0
Embedding (20, 96) 960384

LSTM (20,670) 2055560
Dense (20, 96) 64416
Dense (20, 10004) 970388

Softmax - -

E.2. Comparison of Optimizers with their Momentum Variants

Figures 3 and 4 show a comparison between the original and the momentum versions of DP-SGD (denoted by “DP-SGD”
and “DP-SGDM”) and DP-FTRL-vanilla (denoted as “DP-FTRL-vanilla” and “DP-FTRLM-vanilla”), respectively, on the
three centralized example-level DP image classification tasks. We can see that for any privacy level, the utility of DP-
SGD is at least that of DP-SGDM (sometimes even more). Moreover, we see that DP-FTRLM-vanilla always outperforms
DP-FTRL-vanilla.
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Figure 3. Final test accuracy vs. privacy (example-level ε) for various noise multipliers. DP-SGD is always not worse than DP-SGDM.

The experiments in Table 3 and Figure 5 show the advantages of the momentum variant for the federated StackOverflow
task in practice. We compare DP-SGD and its momentum variant DP-SGDM, DP-FTRL and its momentum variant DP-
FTRLM under two different privacy epsilons. Privacy epsilon is infinite when noise multiplier is zero; privacy epsilon is
8.53 when noise multiplier is 0.4 for DP-SGD and DP-SGDM; privacy epsilon is 8.5 when noise multiplier is 2.33 for
DP-FTRL and DP-FTRLM. We tune and select the hyperparameter with the best validation accuracy 9. We then run the
experiment with the specific set of hyperparameters for five times to estimate mean and standard deviation of the accuracy.

9The accuracy for StackOverflow next word prediction task excludes the end of sequence symbol and the out of vocabulary symbol
following (Reddi et al., 2020). The hyperparameters tuning range are described in Appendix F.1.
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Figure 4. Final test accuracy vs. privacy (example-level ε) for various noise multipliers. DP-FTRLM-vanilla outperforms DP-FTRL-
vanilla.

Server Optimizer Epsilon Accuracy Hyperparameters
Validation Test ServerLR ClientLR Clip

DP-SGD

∞

19.62 ± .12 20.99 ± .11 3 0.5 1
DP-SGDM 23.87 ± .22 24.89 ± .27 3 0.5 1
DP-FTRL 19.95 ± .05 21.12 ± .14 3 0.5 1

DP-FTRLM 23.89 ± .03 25.15 ± .07 3 0.5 1
DP-SGD 8.53 16.83 ± .05 18.25 ± .05 3 0.5 0.3

DP-SGDM 16.92 ± .03 18.27 ± .04 0.1 0.5 1
DP-FTRL 8.50 15.04 ± .16 15.46 ± .39 3 0.5 0.3

DP-FTRLM 17.78 ± .08 18.86 ± .15 1 0.5 0.3

Table 3. Validation and test accuracy for the StackOverflow next word prediction task. Each experiment is run five times to calculate the
mean and standard deviation. Vanilla tree aggregation (Dwork et al., 2010) is used in DP-FTRLM. The momentum variant DP-FTRLM
performs better than DP-FTRL.
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Figure 5. Training curves show validation accuracy of StackOverflow. The curve of the best validation accuracy out of the five runs is
presented. Vanilla tree aggregation (Dwork et al., 2010) is used in DP-FTRL-vanilla and DP-FTRLM-vanilla. The momentum variant
converges faster and performs better.
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The momentum variant helps in two ways for StackOverflow: momentum significantly improve the performance of both
SGD and FTRL when the noise is relatively small; moreover, momentum stabilizes DP-FTRL when the noise is relatively
large. Note that the tree aggregation method in DP-FTRL use different privacy calculation method compared to DP-SGD.
A relatively large noise multiplier has to be used to achieve the same privacy ε guarantee. While tree aggregation in DP-
FTRL exploits the O(log n) accumulated noise, it also introduces unstable jump for the noise added in each round, which
could be mitigated by the momentum γ introduced in DP-FTRLM. In the experiments of StackOverflow, we will always
use the momentum variant unless otherwise specified.

E.3. Efficient Tree Aggregation

Figure 6 shows a comparison between the efficient (“FTRLM”) (Honaker, 2015) and the original version (“FTRLM-
vanilla”) (Dwork et al., 2010) of FTRLM for the three centralized example-level DP image classification tasks. We can see
clearly that the efficient version always outperforms the vanilla version.
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Figure 6. Comparison of two variants of DP-FTRL with efficient tree aggregation (“DP-FTRLM”) and vanilla tree aggregation (“DP-
FTRLM-vanilla”).
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Figure 7. Comparison of two variants of DP-FTRL with efficient tree aggregation (Honaker, 2015) and vanilla tree aggregation (Dwork
et al., 2010) on StackOverflow for (a) test accuracy under different privacy epsilon; (b) test accuracy with various noise multipliers; (c)
relationship between user-level privacy ε (when δ ≈ 1/population) and computation cost (report goal) for two fixed accuracy targets (see
legend).

Figure 7 shows the advantage of the efficient tree aggregation algorithm in the StackOverflow simulation for the federated
learning setting. In Figure 7b, to meet the targeted StackOverflow test accuracies (23%, 24.5%), the noise multipliers for
DP-FTRLM can increase from (0.268, 0.067) to (0.387, 0.149) after implementing the efficient tree aggregation (Honaker,
2015). The noise multipliers are used to generate Figure 7c.
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Figure 8. Final test accuracy vs. ε. The lines show the mean and standard deviation over 5 runs. The full plot of Figure 1.

F. Omitted Details for Experiments in Section 5.2
F.1. Details of Hyperparameter Tuning

Image classification experiments For the three image classification experiments, we tune the learning rate (1/λ for
FTRL) over a grid of the form ∪i∈{−3,−2,...,3}{10i, 2 × 10i, 5 × 10i}, selecting the value that achieves the highest test
accuracy averaged over the last 5 epochs while ensuring this chosen value is not an endpoint of the grid. We use a clipping
norm 1.0 for all the image classification experiments following previous work (Papernot et al., 2020a).

The parameter search for non-private baseline is the same as that for the DP algorithms. We use regular SGD (with and
without momentum) for the image classification tasks. The chosen hyperparameters and privacy parameters are summa-
rized in Table 6.

StackOverflow experiments The StackOverflow benchmark dataset of the next word prediction task has 342,477 users
(clients) with training 135,818,730 examples. A validation set of 10,000 examples, and a test set of 16,576,035 examples
are constructed following (Reddi et al., 2020). The one layer LSTM described in (Reddi et al., 2020) is used. We compare
with DP-FedAvg where DP-SGD is used on server.

There are many hyperparameters in federated learning. We fix the number of total rounds to be 1,600 for StackOverflow,
and sample 100 clients per round for DP-SGD, and take 100 clients from the shuffled clients for DP-FTRL to make sure the
clients are disjoint across rounds. Note that DP-FTRL would run less than one epoch for StackOverflow. On each client,
the number of local epochs is fixed to be one and the batch size is sixteen, and we constrained the maximum number of
samples on each client to be 256. The momentum for both DP-SGDM and DP-FTRLM is fixed to 0.9.

In most of the experiments, we will tune server learning rate, client learning rate and clip norm for a certain noise multiplier.
We tune a relative large grid (client learning rate in {0.1, 0.2, 0.5, 1, 2}, server learning rate in {0.03, 0.1, 0.3, 1, 3}, clip
norm in {0.1, 0.3, 1, 3, 10}) when the noise multiplier is zero. And we have several observation: the best accuracy of clip
norm 0.3 and 1.0 are slightly better than larger clip norms, which suggests that clip norm could generally help for this
language task; increasing server learning rate could complement decreasing clip norm when clip norm is effective; the
largest client learning rate that does not diverge often leads to good final accuracy. As adding noise increases the variance
of gradients, we often have to decrease learning rate in practice. Based on this heuristic and the observation from tuning
when noise multiplier is zero, we choose client learning rate from {0.1, 0.2, 0.5}, server learning rate from {0.1, 0.3, 1, 3}
and clip norm from {0.3, 1, 3} unless otherwise specified. We use DP-SGD with zero noise for StackOverflow, as gradient
clipping can improves accuracy for language tasks.

F.2. Omitted Details for Image Classification Experiments

In Figure 8, we plot a comparison between DP-FTRL and DP-SGD with amplification for two batch sizes, i.e., in addition
to the curves in Figure 1, we plot the DP-SGD with amplification at the higher batch size. We can see that for both batch
sizes, DP-SGD with amplification outperform DP-FTRLM at small ε, while DP-FTRLM outperforms DP-SGD when ε
increases.
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One might notice that the crossover point at which DP-FTRLM starts to outperform DP-SGD changes with batch size,
and one might wonder if the point should shift to the left or right as batch size increases. We can see the crossover point
shifts to the left for CIFAR-10, shifts to the right for EMNIST, and remains roughly the same for MNIST. We conjecture
that the direction of shift highly depends on the batch size and the number of training examples, which affects the privacy
amplification analysis. When the ratio between the batch size and the training set size is small, we would likely see a
shifting towards the right; and when the ratio is larger, we would likely observe a left shifting. This can be backed up
by Figure 11, which shows for a specific accuracy α, the two ε-batch curves crossing at two points. Denote the crossing
points as (b1, ε1) and (b2, ε2). We know that for batch size b1 (resp. b2), if we plot the accuracy-ε curves for DP-SGD and
DP-FTRL as in Figure 1, we would see the crossover points at ε1 (resp. ε2).

Now we consider batch size b3 ' b1 that corresponds to privacy levels εS3 for DP-SGD and εF3 for DP-FTRL. From the
shape of the curves, we have εS3 < εF3 ≈ ε1. Considering the accuracy-ε curve for b3, we know that DP-SGD has reached
accuracy α at εS3 while DP-FTRL only reaches α at a larger privacy level εF3 . Therefore, we know that at εF3 ≈ ε2, DP-SGD
still reaches higher accuracy than DP-FTRL, i.e., the crossover has not yet happen at this privacy level. Therefore, when
we increase batch size from b1 to b3, we would likely see the crossover point shifting toward the right.

Then we consider batch size b4 ' b2 that corresponds to privacy levels εS4 for DP-SGD and εF4 for DP-FTRL. As the
DP-SGD curve is pretty flat in this regime, we have ε2 > εS4 > εF4 . Considering the accuracy-ε curve for b4, we know
that DP-FTRL has reached accuracy α at εF4 while DP-SGD only reaches α at a larger privacy level εS4 . Therefore, we
know that at εF4 , DP-FTRL have already reached a higher accuracy than DP-SGD, i.e., the crossover has already happened
before εF4 . Therefore, when we increase batch size from b2 to b4, we would see the crossover point shifting toward the left.

F.3. Omitted Details for StackOverflow Experiments
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Figure 9. Test and Validation accuracy for the StackOverflow next word prediction task under different privacy epsilon by varying noise
multipliers.

We compare the accuracy of the momentum variant of DP-FTRL with the momentum variant of DP-SGD as baseline under
different privacy epsilon. We tune hyperparameters as described in Appendix F.1 and select the hyperparameters achieve
the best validation accuracy for StackOverflow (see Table 4 and Figure 9). DP-FTRLM performs better than DP-SGDM
when the epsilon is relatively large, but performs worse when the epsilon is small (ε < 2.95 in Table 4). More noise
are added to DP-FTRLM to achieve the same privacy epsilon as DP-SGDM. However, DP-FTRLM can result in utility
(accuracy) not (much) worse than DP-SGDM without relying on amplification by sampling, which makes it appealing
for practical federated learning setting where population and sampling is difficult to estimate (Balle et al., 2020). Note
that the noise added for both DP-FTRLM and DP-SGDM are considered large for federated learning tasks. The effective
noise could be significantly reduced by sampling more clients each round in practice (McMahan et al., 2017b), and more
discussion on this front is in Appendix G.
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Server Optimizer Epsilon Accuracy Hyperparameters
Validation Test Noise ServerLR ClientLR Clip

DP-SGDM 19.74 17.52 18.89 0.3 1 0.5 0.3
DP-FTRLM 19.74 20.10 21.33 1.13 0.3 0.5 1
DP-SGDM 8.53 16.94 18.30 0.4 0.1 0.5 1
DP-FTRLM 8.50 19.01 20.22 2.33 1 0.5 0.3
DP-SGDM 4.66 16.39 17.94 0.5 0.3 0.5 0.3
DP-FTRLM 4.66 17.34 18.49 4.03 0.1 0.5 1
DP-SGDM 2.95 16.08 17.48 0.6 0.3 0.5 0.3
DP-FTRLM 2.95 16.45 17.60 6.21 0.1 0.5 1
DP-SGDM 2.05 15.78 17.13 0.7 0.3 0.5 0.3
DP-FTRLM 2.04 15.43 16.52 8.83 0.3 0.5 0.3

Table 4. Validation and test accuracy for the StackOverflow next word prediction task under different privacy epsilon.

G. Omitted Details for Experiments in Section 5.3
G.1. Effect of batch size for privacy/computation trade-offs

We set a target utility level based on what might be achieved at large ε in Figure 1, and examine if increasing batch size
can lead to better privacy-utility trade-offs.

First, for all three datasets, Figure 10 shows the accuracy trajectories of three different batch sizes with scaled noise, i.e.,
for batch sizes b1, b2, b3 and noise σ1, σ2, σ3, we have σ1/b1 = σ2/b2 = σ3/b3. We can observe that for both FTRL
with momentum and DP-SGD, the training trajectories for noise and batch size pairs (b1, σ1), (b2, σ2), and (b3, σ3) are
roughly the same. Notice that different (bi, σi) leads to different ε values. The hyperparameters and privacy parameters in
the experiments can be found in Table 6.

As we have confirmed that scaling the batch size and noise together does not affect the accuracy, in Figure 11, we plot the ε
value versus batch size b such that σ/b is a fixed value. We can see that as batch size grows, FTRL achieves better privacy
than DP-SGD at the same level of accuracy.

G.2. Details of Hyperparameter Tuning

In Appendix F.3, a significant amount of noise has to be added in both DP-FTRLM and DP-SGDM to achieve nontrivial
privacy epsilons, which leads to undesired accuracy degradation. For example, the test accuracy of DP-FTRLM on Stack-
Overflow dataset decreases from 25.15% when ε = ∞ to 20.22% when ε = 8.5 when the number of clients per round
is fixed at 100. In practical federated learning tasks, the total population is very large and many more clients could be
sampled every round. In this section, taking StackOverflow as an example, we study the minimum number of sampled
clients per round (report goal in (Bonawitz et al., 2019)) to achieve a target accuracy under certain privacy budget.

Fix the clip norm and client learning rate to reduce hyperparameter tuning complexity. We first find the largest
noise multiplier that would meet the target accuracy based on selecting 100 clients per round. As an extensive grid search
over noise multiplier while simultaneously tuning server learning rate, client learning rate and clip norm is computationally
intensive, we fix the clip norm to 1 and the client learning rate to 0.5 based on Figure 12. We then tune the server learning
rate from {0.3, 1, 3} for each noise multiplier.

Grid search for the largest noise multiplier to meet the target. We use a grid of ten noise multipliers between 0
(ε = ∞, test accuracy=24.89) and 0.3 (ε = 18.89, test accuracy=18.89) for DP-SGDM, and between 0 (ε = ∞, test
accuracy=25.15) and 1.13 (ε = 19.74, test accuracy=21.33) for DP-FTRLM. And we further add five noise multipliers
between 0 and 0.035 for DP-SGDM, and between 0 and 0.149 for DP-FTRLM based on the results of the previous grid
search on ten noise multipliers. The test accuracy is presented in Figure 2b. We set the target test accuracy as 24.5% and
select noise multiplier 0.007 (with server learning rate 3) for DP-SGDM and noise multiplier 0.149 (with server learning
rate 3) for DP-FTRLM.
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Figure 10. Batch size with noise scaled proportionally (so the amount of noise in the average gradient remains constant) does not affect
accuracy. Thus, we can use a single run with a given noise level σ and batch size b to estimate the accuracy we would get with noise
level ασ and batch size αb for small α.
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(b) CIFAR-10.
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Figure 11. ε vs. batch size. According to Figure 10, DP-FTRL and DP-SGD with the corresponding noises achieve roughly the same
accuracy.
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Figure 12. Training curve of the best validation accuracy under various clip norm for StackOverflow.

Report goal for the nontrivial privacy epsilon in practice. The standard deviation of noise added in each round is
proportional to the inverse of the number of clients per round (report goal). The practical federated learning tasks often
have a very large population and report goal, and we could simultaneously increase the noise multiplier and report goal,
so that the utility (accuracy for classification and prediction tasks) will likely not degrade (McMahan et al., 2017b) while
the privacy guarantee is improved. The validation accuracy of simulation performance with two different report goals for
StackOverflow is presented in Figure 13. The noise multiplier 0.149 is used for DP-FTRLM and 0.007 is used for DP-SGD
when report goal is 100, which is the largest noise multiplier to meet the target test accuracy determined by Figure 2b. We
run each experiment for five times and plot the curves for the median validation accuracy, the corresponding test accuracy
are 24.73% for DP-SGDM and 24.51% for DP-FTRLM. We then run the same experiments with report goal of 1000,
and proportionally increase the corresponding noise multiplier to be 1.49 for DP-FTRLM and 0.07 for DP-SGDM. The
performance of 1000 report goal is slightly better with test accuracy 25.19% for DP-SGDM and 24.67% for DP-FTRLM.
We will assume the utility will not decrease if report goal and noise multiplier are simultaneously and proportionally
increased.

As shown in Table 5, both report goals 100 and 1000 would provide trivial privacy guarantee of large epsilon for the target
utility. We have to increase the report goal to 2.06e4 to get a nontrivial privacy epsilon (less than 10) with DP-FTRLM and
the StackOverflow population of 3.42e5 10. Smaller report goal could achieve similar privacy guarantee if the population
becomes larger. In Figure 2c, the relationship between privacy guarantee and report goal for DP-FTRLM and DP-SGDM
are presented. DP-FTRLM provides better privacy guarantee by smaller report goal when the privacy epsilon is relatively
large or very small. The range where DP-FTRLM outperforms DP-SGDM in report goals and privacy guarantees are larger
when the population is relatively small or very large.

G.3. Increasing population size for privacy/computation trade-off

Though the plots in Figure 2c use the actual population size of 340k in StackOverflow for their privacy computation,
in Figure 14 we show a similar plot for a hypothetical population size of 1M clients. It is easy to see that the privacy-
computational cost trade-off for both the techniques improves11, more so for DP-SGD since the amplification improves
due to lower sampling rate. However, it is still the case that DP-FTRLM provides a better trade-off than DP-SGDM for
privacy parameter ε > 3.2 at δ = 10−6 for utility target 24.5%, and nearly all ε ∈ (0, 50] for utility target 23%.

10The best epsilon DP-SGDM can achieve is 10.16 by increasing report goal to be as large as the population 3.42e5
11The “kink” at ε ≈ 15 in the curve labelled “DP-FTRLM 24.5%” is due to the fact that the privacy accounting in DP-FTRL depends

on the maximum number of times any client participates in training. For report goal 500, all clients need to participate at most once,
whereas for report goal 700, the required number of rounds are just enough for a few clients to need to participate twice, which accounts
for the visibly increased privacy cost. In fact, for a higher report goal of 1000, still no client needs to participate more than twice to
complete 1600 training rounds.
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Figure 13. Training curves of validation accuracy for DP-SGDM and DP-FTRLM for StackOverflow for report goal 100 and 1000 (suffix
C100 and C1000 in the legend). DP-FTRLM with restart (see Appendix D) is used when report goal is 1000 (less than five epochs of
data). Simultaneously increasing noise multiplier and report goal by 10x could significantly improve the privacy guarantee without
sacrificing the utility. The noise multiplier for DP-SGDM-C100, DP-FTRLM-C100, DP-SGDM-C1000, DP-FTRLM-C1000 are 0.007,
0.149, 0.07, and 1.49, respectively. The corresponding test accuracy are 24.73%, 24.51%, 25.19% and 24.67%. The corresponding
privacy ε can be found in Table 5

.

Server Optimizer Privacy Setting
Epsilon Delta Noise Report goal Population

DP-SGDM 1.78e7 1e-6 0.007 100 3.42e5
DP-FTRLM 364.74 1e-6 0.149 100 3.42e5
DP-SGDM 7.71e4 1e-6 0.07 1000 3.42e5
DP-FTRLM 33.80 1e-6 1.49 1000 3.42e5
DP-SGDM 10.16 1e-6 23.97 3.42e5 3.42e5
DP-FTRLM 10.53 1e-6 7.53 5.06e3 3.42e5
DP-FTRLM 4.57 1e-6 24.29 1.63e4 3.42e5
DP-SGDM 8.98 1e-6 0.67 9.56e3 1e6
DP-FTRLM 8.24 1e-6 5.73 3.85e3 1e6
DP-SGDM 4.17 1e-6 1.20 1.71e4 1e6
DP-FTRLM 4.00 1e-6 15.29 1.03e4 1e6

Table 5. The (ε, δ) privacy guarantee for DP-FTRLM and DP-SGDM under realistic and hypothetical report goal and population of
StackOverflow that would meet the target test accuracy 24.5%. Note that the DP-FTRLM privacy accounting is based on the restart
strategy in Appendix D.
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Figure 14. Relationship between privacy ε (when δ = 1/population) and report goal for a fixed accuracy target for DP-FTRLM and DP-
SGDM on the StackOverflow dataset with a hypothetically larger population of 1M users.
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Table 6. Parameters for the image classification experiment in Figure 1 (and the full version Figure 8) and Figure 10. Clipping norm is
1.0. The “learning rate” reported for FTRL(M) is λ. For FTRL(M), we used “-v” as an abbreviation for “-vanilla”.

(a) MNIST

b = 250
20 epochs

FTRL-v/FTRLM-v/FTRL
noise 4.0 7.0 20.0 50.0
ε 26.21 12.76 3.70 1.34
learning rate 1.0/10.0/10.0 2.0/20.0/10.0 5.0/50.0/50.0 10.0/100.0/100.0

SGD/SGDM
noise 0.42 0.52 0.74 1.14
ε 26.90 12.26 3.75 1.35
learning rate 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02

SGD
unamplified

noise 1.08 1.89 5.48 13.7
ε 27.15 13.19 3.75 1.35
learning rate 0.2 0.2 0.05 0.02

b = 1000
80 epochs

FTRLM-v/FTRLM
noise 8.0 14.0 40.0 100.0
ε 26.21 12.76 3.70 1.34
learning rate 5.0/5.0 10.0/10.0 20.0/20.0 50.0/50.0

SGD/SGDM
noise 0.62 0.8 1.61 3.67
ε 26.48 13.12 3.71 1.34
learning rate 2.0/0.2 2.0/0.1 0.5/0.05 0.2/0.02

SGD
unamplified

noise 2.2 3.67 11.06 27.68
ε 26.50 13.68 3.71 1.34
learning rate 0.5 0.2 0.1 0.05

(b) CIFAR-10

b = 500
100 epochs

FTRL-v/FTRLM-v/FTRL
noise 10 12.1 18.1 27 50
ε 23.73 18.51 11.17 6.91 3.40
learning rate 2.0/20.0/10.0 2.0/20.0/20.0 5.0/50.0/20.0 5.0/50.0/50.0 20.0/100.0/50.0

SGD/SGDM
noise 0.61 0.66 0.79 0.98 1.51
ε 23.81 18.60 11.29 6.98 3.43
learning rate 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02 0.2/0.02

SGD
unamplified

noise 2.66 3.22 4.79 7.15 13.26
ε 23.88 18.61 11.30 6.99 3.43
learning rate 0.1 0.1 0.05 0.02 0.02

b = 2000
400 epochs

FTRLM-v/FTRLM
noise 20 24.2 36.2 54 100
ε 23.73 18.51 11.17 6.91 3.40
learning rate 10.0/5.0 10.0/10.0 20.0/10.0 20.0/20.0 50.0/50.0

SGD/SGDM
noise 1.26 1.46 2.06 2.98 5.4
ε 23.89 18.67 11.22 6.92 3.41
learning rate 1.0/0.1 0.5/0.05 0.5/0.05 0.5/0.05 0.2/0.02

SGD
unamplified

noise 5.4 6.42 9.63 14.4 26.68
ε 23.42 18.68 11.23 6.93 3.41
learning rate 0.2 0.2 0.1 0.05 0.02

(c) EMNIST

b = 500
50 epochs

FTRL-v/FTRLM-v/FTRL
noise 8.0 16.0 30.0 100.0
ε 24.64 10.46 5.06 1.35
learning rate 2.0/20.0/10.0 2.0/20.0/20.0 5.0/50.0/50.0 10.0/100.0/100.0

SGD/SGDM
noise 0.41 0.5 0.6 0.97
ε 25.34 10.50 5.08 1.36
learning rate 0.5/0.05 0.5/0.05 0.2/0.02 0.2/0.02

SGD
unamplified

noise 1.89 3.86 7.24 24.06
ε 25.50 10.53 5.08 1.36
learning rate 0.1 0.05 0.02 0.01

b = 2000
200 epochs

FTRLM-v/FTRLM
noise 16.0 32.0 60.0 200.0
ε 24.64 10.46 5.06 1.35
learning rate 10.0/5.0 20.0/10.0 20.0/20.0 50.0/50.0

SGD
noise 0.56 0.73 1.02 2.69
ε 25.58 10.63 5.07 1.35
learning rate 1.0/0.1 1.0/0.1 1.0/0.05 0.2/0.02

SGD
unamplified

noise 3.77 7.65 14.5 48.42
ε 25.59 10.64 5.08 1.35
learning rate 0.2 0.1 0.05 0.02
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Table 7. Parameters for the image classification experiment in Figure 10. Clipping norm is 1.0. The “learning rate” reported for
FTRL(M) is λ.

Data Batch size FTRLM-vanilla DPSGD

MNIST

500
noise 14.0 1.04
ε 8.37 3.40
learning rate 20.0 0.05

1000
noise 28.0 2.08
ε 5.57 2.64
learning rate 20.0 0.05

CIFAR-10

100
noise 2.42 0.132
ε 55.44 2389.37
learning rate 20.0 0.05

1000
noise 24.2 1.32
ε 11.96 9.35
learning rate 20.0 0.05

EMNIST

100
noise 3.2 0.1
ε 28.51 10051.63
learning rate 20.0 0.05

1000
noise 32.0 1.0
ε 6.97 2.44
learning rate 20.0 0.05


