
A Differentiable Point Process with Its Application to Spiking Neural Networks

𝜆 𝑡 𝒯!"!

𝑡𝑡#

𝜆∗ 𝑡 = 𝜆 𝑡 𝒯!"! "

𝑡𝑡#%&𝑡#

Figure 5. Conditional intensity functions of our definition (top)
and the standard one (bottom). The standard conditional intensity
function λ∗ can be obtained by joining multiple conditional inten-
sity functions of our definition in a left-continuous way.

A. Relation to the Standard Notation
Our notation is different from the standard one employed
by many others including a textbook (Daley & Vere-Jones,
2003). A major difference is the conditional intensity func-
tion as illustrated in Figure 5. Our conditional intensity
function λ(t | T ≤tn) is defined for t > tn and is consis-
tently conditioned on the history of events up to tn (the
top panel of Figure 5). On the other hand, the standard
conditional intensity function λ∗(t) is defined for all t, and
the history that conditions it is ambiguous and depends on
the context; it is sometimes conditioned on the history of
events that occured before (and not including) t, which is
represented as T ≤tn(t) (the bottom panel of Figure 5), and it
is sometimes equivalent to our definition of the conditional
intensity function.

While such an ambiguity helps to simplify equations (e.g.,
the compensator Λ[0,T ] =

∫ T
0
λ∗(t)dt can be represented by

a single integral), it is sometimes very confusing especially
for those who are not familiar with temporal point processes.
Therefore, we employ a less ambiguous definition. In order
to represent the standard conditional intensity function by
our conditional intensity function, we introduced the left-
continuous counting process n(t) as illustrated in Figure 1;
with this counting process, we obtain the relationship be-
tween the standard and our conditional intensity functions,
λ∗(t) = λ(t | T ≤tn(t)).

B. Conditions for Conditional Intensity
Function

This section provides a proof of Proposition 2, which states
several conditions under which the conditional intensity
function can specify a marked point process uniquely.

Proof of Proposition 2. Since Equation (3) reads as,

∫
X

dpλ(t,p | T ≤tnX ) =
f
(
t | T ≤tnX

)
1− F

(
t | T ≤tnX

)
= − d

dt
log(1− F (t | T ≤tnX )),

we can represent the cumulative distribution function by the
conditional intensity function as,

F (t | T ≤tnX ) = 1− exp

(
−
∫ t

tn

ds

∫
X

dpλ(s,p | T ≤tnX )

)
.

(14)

In order for the conditional intensity function to define a
proper cumulative distribution function, the function F (t |
T ≤tnX ) defined as Equation (14) must satisfy the following
four conditions:

1. lim
t→∞

F (t | T ≤tnX ) = 1,

2. lim
t→−∞

F (t | T ≤tnX ) = 0,

3. F (t | T ≤tnX ) is non-decreasing in t, and

4. F (t | T ≤tnX ) is right-continuous.

Condition 1 is satisfied by Assumption 2. Condition 2
is satisfied because F (t | T ≤tnX ) = 0 holds for any
t ≤ tn. Condition 3 holds because λ(t,p) ≥ 0 implies
that the integral in the exponential function in Equation (14)
is non-decreasing. Condition 4 holds because Assump-
tion 3 ensures that the exponent in Equation (14) is right-
continuous, which indicates that Equation (14) itself is right-
continuous.

C. Properties of Differentiable Point Processes
This section provides several properties of differentiable
point processes and their proofs. First, let us prove Proposi-
tion 4, which clarifies the conditional intensity function of a
differentiable point process.

Proof of Proposition 4. The following calculus clarifies the
relationship:

Pr
[
tn+1 ∈ [t, t+ dt],pn+1 = p | T <tconv0(1D)

]
= Pr

[
tn+1 ∈ [t, t+ dt] | T <tconv0(1D)

]
· p
(
pn+1 = p | tn+1 ∈ [t, t+ dt], T <tconv0(1D)

)
=λ̄dt · gτ

([
p

1− ‖p‖1

]
;πλ̄ ◦ λ

(
t | T ≤tn

conv0(1D)

))
,
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where let T <t
conv0(1D)

denote the event tn+1 /∈ (tn, t) and

T ≤tn
conv0(1D)

. This suggests that in a differentiable point pro-
cess, time stamps are distributed according to the homoge-
neous Poisson process with intensity λ̄, and each mark is
distributed according to the concrete distribution.

We then investigate two properties of the differentiable point
process. Proposition 5 states that a realization of the differ-
entiable point process is differentiable with respect to model
parameters under mild conditions. Proposition 6 states that
the differentiable point process becomes equivalent to the
original point process as temperature goes zero.

Proposition 5. Let λθ(t,p | T ≤tn1D ) be a conditional inten-
sity function of a multivariate point process parameterized
by θ. Assume that the conditional intensity function can be
calculated with T ≤tn

conv0(1D)
and is differentiable with respect

to any mark in T ≤tn
conv0(1D)

and θ. Then, the marks of a real-
ization of the corresponding differentiable point process is
differentiable with respect to θ.

Proof. We prove Proposition 5 by induction. The first mark
is distributed according to πλ̄ ◦λθ (t | ∅), which is differen-
tiable with respect to θ. Assume that marks observed up to
(but not including) time t are differentiable with respect to
θ. A mark p at time t is a realization of the concrete distri-
bution with parameter π := πλ̄ ◦ λθ

(
t | T ≤tn

conv0(1D)

)
, and

thus, is differentiable with respect to π. π is differentiable
with respect to λθ, and λθ is assumed to be differentiable
with respect to θ and the past marks, which are differentiable
by assumption, and this completes the proof.

Proposition 6. Assume that λ
(
t,p | T ≤tn

conv0(1D)

)
=

λ
(
t,p | T ≤tn

conv0(1D)
\{(tk,pk)}

)
holds for any T ≤tn

conv0(1D)

and any k ∈ [n] such that pk = 0. Then, in the limit of
τ → +0, the output of Algorithm 2 is distributed according
toMPP(λ) if we discard the event with mark p = 0.

Proof. As proven by Maddison et al. 2017, the random
variable following the concrete distribution converges to the
one-hot representation of the categorical variate in the limit
of τ → +0. The random variable in line 6 of Algorithm 2
satisfies the following,

Pr

[
lim
τ→+0

[
p
r

]
= 1d | s, T

]
=
λ(s,1d | T )

λ̄
, (15)

for d ∈ [D + 1], where let λ(s,1D+1 | T ) ≡ λ̄ −∑D
d=1 λ(s,1d | T ). The above expression states that if

the value of the conditional intensity function is the same,
the random variable in line 6 of Algorithm 2 is equivalent to
that in line 6 of Algorithm 1. The only difference between
these algorithms is whether the event with zero mark p = 0

is discarded (Algorithm 1) or not (Algorithm 2). If the as-
sumption made in Proposition 6 is satisfied, zero marks do
not affect the conditional intensity function, and thus, the
output of Algorithm 2 is distributed according toMPP(λ)
if we discard the events with zero marks.

D. Properties of ∂SNNs
This section describes the properties of ∂SNNs. First, Propo-
sition 7 states that the conditional intensity function (Equa-
tion (13)) satisfies all of the conditions listed in Propo-
sition 2, and thus, it defines an N̄ -marked point process
uniquely.

Proposition 7. Assume that the filter functions
{fd′,d(s)}d,d′∈[D] are continuous with respect to s.
Then, the conditional intensity function (Equation (13))
uniquely defines an N̄ -marked point process.

Proof. We will confirm the assumptions of Proposition 2.
Observing that,∫ t

tn

ds

∫
N̄

dpλ
(
s,p | T ≤tnN̄

)
=

∫ t

tn

ds

[∫
conv0(H)

dpλ
(
s,p | T ≤tnN̄

)

+
∑
p∈O

λ
(
s,p | T ≤tnN̄

)
=

∫ t

tn

ds

λ̄+
∑
p∈O

λ
(
s,p | T ≤tnN̄

)
=λ̄(t− tn) +

∫ t

tn

ds
∑
p∈O

λ
(
s,p | T ≤tnN̄

)
,

the first condition is satisfied. By taking t → ∞ in the
above expression, we can confirm that the second condition
is satisfied (the first term λ̄(t− tn) goes to infinity and the
second term is guaranteed to be non-negative). The third
condition is satisfied because λ(s,p | T ≤tnN̄ ) is a continuous
function with respect to s > tn, which can be guaranteed
by the continuity of the filter functions.

Then, let us discuss two properties of ∂SNN. Proposition 8
states that the objective function is differentiable with re-
spect to φ. Proposition 9 states that ∂SNN becomes equiva-
lent to the vanilla SNN in the limit of τ → +0.

Proposition 8. Assume that the filter functions
{fd′,d(s)}d,d′∈[D] are differentiable with respect to
their parameters φ. The Monte-Carlo approximation of
ELBO (Equation (9)) is differentiable with respect to φ if
we employ ∂PP(λq(t,p | TN̄ ;φ); λ̄, τ) as the variational
distribution.
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Proof. We first show that marks of a realization of the vari-
ational distribution TH(φ) are differentiable with respect
to φ. We then show that both log p(TO, Tconv0(H)) and
log q(Tconv0(H)) are differentiable with respect to the marks
of TH(φ). We finally show that log q(Tconv0(H);φ) is differ-
entiable with respect to φ. By the fact that the composition
of differentiable functions is differentiable, the proposition
is implied by these three statements.

TH(φ) is sampled by Algorithm 2 using the conditional
intensity function λq(t,p | TN̄ ;φ), which is differentiable
with respect to any mark in TN̄ and φ (by the assumption).
Therefore, by Proposition 5, the marks of TH(φ) are differ-
entiable with respect to φ.

The logarithm of the joint distribution log p(TO, Tconv0(H))
can be written as,

log p(TO, Tconv0(H); θ)

=
∑

(t,p)∈TO

log λSNN
(
t,p | T ≤tn(t)

N̄

)
+

∑
(t,p)∈Tconv0(H)

log λ∂

(
t,pH | T

≤tn(t)

N̄ ;λH, λ̄, τ
)

− λ̄T −
∫ T

0

ds
∑
p∈O

λSNN
(
s,p | T ≤tn(s)

N̄

)
.

The first and the last terms are differentiable with respect to
marks of Tconv0(H), and the third term does not depend on
Tconv0(H). For any (t,p) ∈ Tconv0(H), the summand of the
second term,

log λ∂

(
t,pH | T

≤tn(t)

N̄ ;λH, λ̄, τ
)

= log λ̄+ log gτ

([
pH

1− ‖pH‖1

]
;πλ̄ ◦ λH

(
t | T ≤tn(t)

N̄

))
,

is differentiable with respect to pH because the probabil-
ity density function of the concrete distribution is differ-
entiable with respect to pH. It is also differentiable with
respect to the past marks in T ≤tn(t)

N̄ because the probabil-
ity density function gτ is differentiable with respect to its
parameter π := πλ̄ ◦ λH

(
t | T ≤tn(t)

N̄

)
, which is differ-

entiable with respect to the marks in T ≤tn(t)

N̄ . Therefore,
log p(TO, Tconv0(H); θ), is differentiable with respect to the
marks of Tconv0(H).

The logarithm of the variational distribution
log q(Tconv0(H)) can be written as,

log q(Tconv0(H))

=
∑

(t,p)∈Tconv0(H)

log λ∂

(
t,pH | T

≤tn(t)

N̄ ;λH, λ̄, τ
)
− λ̄T,

(16)

which is also differentiable with respect to the marks of
Tconv0(H) in the same way as the above discussion.

Finally, log q(Tconv0(H);φ) is differentiable with respect to
φ, because the first term of Equation (16) is differentiable
with respect to λH, which is differentiable with respect to
φ (partially by the assumption that the filter functions are
differentiable with respect to φ).

The proposition follows from the three statements above.

Proposition 9. In the limit of τ → +0, a realization of
∂SNN (Equation (13)) is distributed according to the vanilla
SNN (Equation (7)) if we discard events with mark p = 0.

Proof. Since for any event (tk,pk) (k ∈ [n]) such that
pk = 0,

λSNN
(
t,p | T ≤tnN̄

)
= λSNN

(
t,p | T ≤tnN̄ \{(tk,pk)}

)
,

holds, the event with mark p = 0 has no influence on the
conditional intensity function. In the limit of τ → +0,

λ∂SNN
(
t,p | T ≤tnN̄

)

=


λSNN

(
t,p | T ≤tnN̄

)
(p ∈ O ∪H),λ̄−∑

p∈H
λSNN

(
t,p | T ≤tnN̄

) (p = 0),

holds. As discussed above, the event with mark p = 0 has
no influence on computing the conditional intensity function,
and can be removed without changing the conditional in-
tensity function. Therefore, a realization ofMPP(λ∂SNN)
is equivalent to that ofMPP(λSNN) if we discard all the
events with mark p = 0.

E. Numerically Stable Implementation
For numerical stability, we recommend to represent all prob-
ability and subprobability vectors and conditional inten-
sity functions in the logarithmic scale. In this section, we
describe an accurate computation of the parameter of the
concrete distribution.

When computing the parameter of the concrete distribution
shown below in the logarithmic scale,

πλ̄ ◦ λ
(
t | T ≤tn

conv0(1D)

)
=

1

λ̄

[
λ
(
t | T ≤tn

conv0(1D)

)
λ̄−

∥∥∥λ(t | T ≤tnconv0(1D)

)∥∥∥
1

]
,

it is straightforward to compute the first D elements
with the logarithm of the conditional intensity function,
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log λ
(
t,p | T <t

conv0(1D)

)
. However, the last element,

1−

∑
p′∈1D λ

(
t,p′ | T <t

conv0(1D)

)
λ̄

, (17)

is not trivial to compute accurately in the logarithmic scale.

We resort to log1mexp (Mächler, 2012) to compute it,
which allows us to compute log(1− exp(−|a|)) accurately
for a 6= 0 as follows:

log1mexp(a) =

{
log(−expm1(−a)) (0 < a ≤ log 2),

log1p(− exp(−a)) (a > log 2),

where expm1(x) and log1p(x) approximately compute
exp(x) − 1 and log(1 + x) respectively by using a few
terms of their Taylor series. Since we can compute
log p := log

[∑
p′∈1D λ

(
t,p′ | T <t

conv0(1D)

)]
− log λ̄ by

logsumexp, the computation of Equation (17) boils down to
the computation of log(1−p) given log p (p ∈ [0, 1)). Since
log(1− p) = log(1− exp(−| log p|)) holds for p ∈ [0, 1),
we can utilize log1mexp to compute it.


