
A Differentiable Point Process with Its Application to Spiking Neural Networks

Hiroshi Kajino 1

Abstract
This paper is concerned about a learning algo-
rithm for a probabilistic model of spiking neural
networks (SNNs). Jimenez Rezende & Gerst-
ner (2014) proposed a stochastic variational infer-
ence algorithm to train SNNs with hidden neurons.
The algorithm updates the variational distribution
using the score function gradient estimator, whose
high variance often impedes the whole learning
algorithm. This paper presents an alternative gra-
dient estimator for SNNs based on the path-wise
gradient estimator. The main technical difficulty
is a lack of a general method to differentiate a
realization of an arbitrary point process, which
is necessary to derive the path-wise gradient esti-
mator. We develop a differentiable point process,
which is the technical highlight of this paper, and
apply it to derive the path-wise gradient estimator
for SNNs. We investigate the effectiveness of our
gradient estimator through numerical simulation.

1. Introduction
A spiking neural network (SNN) is an artificial neural net-
work (ANN) where neurons communicate with each other
using spikes rather than real values as the conventional
ANNs do. The conventional ANN is a special case of SNN
where information is encoded into the firing rate of neu-
rons (which we call the rate coding) and the rate serves as
the communication currency. This specification facilitates
developing learning algorithms for ANNs, leading to the
recent great success of deep neural networks. On the other
hand, in the community of neuroscience, experimental evi-
dence on biological neurons indicates that the rate coding
alone cannot explain the whole brain activity (Bothe, 2004)
and more precise modeling of neural coding is anticipated.
Since there still exist performance gaps between the rate-
based ANNs and biological neural networks (i.e., brains)
in terms of inference capability and energy efficiency, this

1IBM Research - Tokyo, Tokyo, Japan. Correspondence to:
Hiroshi Kajino <kajino@jp.ibm.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

raises the following question: how much of the current per-
formance gaps can be attributed to this difference on neural
coding? This open problem motivates us to study SNNs.

One of the major obstacles towards answering it is a lack
of practical learning algorithms for SNNs, which discour-
ages us from empirical investigation. While there exist a
number of attempts to develop learning algorithms, most of
them have more or less limited applicability. We consider
a practical learning algorithm should at least be (i) theoret-
ically grounded, (ii) empirically confirmed to work well,
and (iii) easy to simulate (fewer hyperparameters, less com-
putation time, etc.)1. For example, theoretical aspects of
the algorithms based on spike-timing-dependent plastic-
ity (Chapter 19 (Gerstner et al., 2014)) are not well under-
stood. For another example, simulating learning algorithms
for continuous-time deterministic SNNs requires the step-
size parameter of time-axis discretization when the dynam-
ics of a neuron is described by differential equations (e.g.,
(Huh & Sejnowski, 2018)). The step-size parameter brings
about the trade-off between the simulation quality and com-
putation time, which makes the simulation more intricate.
These examples illustrate that even major approaches do not
satisfy all the requirements above, and therefore, there still
exists much room for improvement.

Among a number of approaches, we employ as a foundation
a probabilistic formulation of SNNs (Pfister et al., 2006),
which models spike trains (temporal sequence of spikes
emitted from neurons) as a realization of a multivariate
point process. It is easier for us to start from it than others
because it already satisfies requirements (i) and (iii), which
are more intrinsic properties than requirement (ii). In fact,
learning algorithms are formalized by maximum likelihood
estimation, and its exact simulation has no trade-off hyper-
parameter as will be explained in Section 2.2. Therefore,
the remaining concern is its empirical performance.

One of the state-of-the-art learning algorithms for proba-
bilistic SNNs is the work by Jimenez Rezende & Gerst-
ner (2014). The authors propose a stochastic variational
inference algorithm for SNNs with hidden neurons. Since
spike trains of hidden neurons are unobservable and it is
intractable to compute the marginal likelihood, an evidence

1Biological plausibility is of another great interest, but is not
mentioned because it is not mandatory for engineering purposes.

A Differentiable Point Process with Its Application to Spiking Neural Networks

lowerbound (ELBO) is instead used as the objective func-
tion (Section 4.2). The key factor for optimizing ELBO is
the way we estimate the gradient of ELBO. The authors
employed the score function gradient estimator, also known
as the REINFORCE estimator, which is widely applicable
but is often reported to suffer from its high variance.

Our main idea is to substitute a path-wise gradient estimator
for the score function gradient estimator. The path-wise gra-
dient estimator tends to have lower variance than the score
function gradient estimator (Mohamed et al., 2019), but it
is not widely applicable (and is not applicable to SNNs) be-
cause it requires a sample from the variational distribution
to be differentiable. Our contribution is that we develop a
differentiable point process (Section 3) and apply it to derive
the path-wise gradient estimator for SNNs (Section 4.2.2).

We empirically investigate the effectiveness of the proposed
learning algorithm in Section 5. We will confirm that (i) the
proposed gradient estimator has lower variance than the
existing one and (ii) this lower variance contributes to im-
prove the performance of the learning algorithm. By com-
paring the performance of the proposed and existing ones,
we obtain experimental results supporting these hypothe-
ses. Therefore, we conclude that our path-wise gradient
estimator improves empirical performance of SNNs.

One of the limitations of our learning algorithm as compared
to the existing algorithm (Jimenez Rezende & Gerstner,
2014) is computation time. Since our algorithm generates
more hidden spikes than the existing one does, our algorithm
requires more computation time. We empirically examine
the computational overhead of our algorithm against the
existing one, and find that our algorithm requires 2.8 times
more computation time than the existing one.

Notation. Let [N] = {1, 2, . . . , N}. For any vector x,
its d-th element is represented by xd.

[
xd
]
d∈[D]

denotes
a D-dimensional vector whose d-th element is xd. For
any vector x ∈ RD and scalar c ∈ R,

[
x> c

]>
de-

notes the (D + 1)-dimensional vector concatenating x
and c. Let R≥0 = {x ≥ 0} and R>0 = {x > 0}. Let
1D = {1d}d∈[D] be the set of D-dimensional one-hot vec-
tors, where 1d ∈ {0, 1}D is the one-hot vector whose d-
th element is 1 and the others are 0. For any set A, let
conv(A) be its convex hull, let conv0(A) := conv(A∪{0}).
Let Cat(p) be the categorical distribution with parameter
p ∈ conv(1D), whose random variable takes 1d ∈ 1D with
probability pd. Let U [a, b] denote the uniform distribution
over [a, b]. For any expectation operator Ep, let Êp be its
Monte-Carlo approximation using an i.i.d. sample from p.

2. Preliminaries
This section introduces temporal point processes along with
their parameter estimation and sampling methods.

2.1. Point Processes

A point process (Daley & Vere-Jones, 2003) is a probabilis-
tic model of an event collection. It is called a temporal point
process when the event collection evolves in time. This
paper only deals with a temporal point process, and there-
fore, we refer to it as a point process. We assume that point
processes are simple, i.e., no events coincide.

2.1.1. UNIVARIATE POINT PROCESS

Assume we observe a sequence of N ∈ N discrete events
during time interval [0, T], and let T denote such an ob-
servation. T can be represented by a series of event time
stamps {tn ∈ [0, T]}n∈[N] as well as the information that
we observe no event during [0, t1), {(tn, tn+1)}N−1

n=1 , and
(tN , T]. Let T ≤tn represents a partial observation of T up
to and including time tn. One way of modeling T is to spec-
ify the probability density function of the event time stamp
tn+1 given the collection of its past events T ≤tn , which
we describe, f(t | T ≤tn). Note that the probability den-
sity function must satisfy f(t | T ≤tn) = 0 for t ≤ tn and∫∞
tn
f(t | T ≤tn)dt = 1. The cumulative distribution func-

tion can be defined accordingly: F (t | T ≤tn) =
∫ t
tn
f(s |

T ≤tn)ds = Pr[tn+1 ∈ (tn, t) | T ≤tn].

Another way of modeling it is to specify the conditional
intensity function, which is related to the distributions as,

λ(t | T ≤tn) =

f
(
t | T ≤tn

)
1− F (t | T ≤tn)

(t > tn),

0 (t ≤ tn).

(1)

In the following, let tn denote an arbitrary event time stamp
and we only specify the conditional intensity function for
t > tn, because its value for t ≤ tn is trivially 0. Observ-
ing that λ(t | T ≤tn)dt = Pr[tn+1 ∈ [t, t + dt] | tn+1 /∈
(tn, t), T ≤tn] holds as dt → +0 (Rasmussen, 2018), the
conditional intensity function represents how likely the
event occurs at time t given that we have observed n events
so far and no event has been observed during (tn, t).

A point process is more often specified by the conditional
intensity function than the time interval distribution. Let
PP(λ) be the point process with the conditional intensity
function λ. Corollary 1, which is an immediate consequence
of Proposition 2, states the conditions under which the con-
ditional intensity function uniquely specifies a point process.

Corollary 1. A conditional intensity function λ uniquely
defines a point process if it satisfies the following conditions
for any observation of discrete events T ≤tn and any t > tn:

1. λ(t | T ≤tn) is non-negative and integrable on any
interval starting at tn,

2.
∫ t
tn
λ(s | T ≤tn)ds→∞ as t→∞, and

A Differentiable Point Process with Its Application to Spiking Neural Networks

𝑡

1
2

𝑡

𝑡! 𝑡" 𝑡# 𝑡$

3
4 𝑛 𝑡

Figure 1. Realization of a temporal point process (bottom) and its
corresponding left-continuous counting process (top).

𝑡

𝑡

𝑡
Marked

point process

Multivariate
point process

Figure 2. Illustration of a multivariate point process (top) and its
equivalent marked point process (bottom).

3.
∫ t
tn
λ(s | T ≤tn)ds is right continuous w.r.t. t.

The log-likelihood of observation T on PP(λ) is given as,

log p(T) =
∑
t∈T

log λ
(
t | T ≤tn(t)

)
− Λ[0,T](T), (2)

where let Λ[0,T](T) =
∫ T

0
λ(t | T ≤tn(t))dt be the inte-

grated conditional intensity function, also known as the
compensator, which accounts for no-event periods, and let
n(t) : R≥0 → Z≥0 be the left-continuous2 counting process
of the observation T , which counts the number of events up
to but not including time t. The latest event time stamp at
time t can be denoted by tn(t) ∈ [0, t). Figure 1 illustrates a
realization of a point process and its counting representation.
A typical procedure of modeling T is to design a parametric
model of the conditional intensity function that satisfies the
conditions of Corollary 1 and train it by maximizing the
log-likelihood function (Equation (2)).

2.1.2. MULTIVARIATE POINT PROCESS

A multivariate point process is a set of mutually dependent
point processes and can be defined via a marked point pro-
cess, in which each event is associated with a mark. We call
a marked point process whose mark belongs to set X , an
X-marked point process. Let TX denote an observation of
anX-marked point process, which contains a series of event
time stamps and marks, {(tn,pn) ∈ [0, T]×X}n∈[N]. As
illustrated in Figure 2, a D-variate point process can be

2A counting process is usually defined to be right-continuous.
We introduce the left-continuous one so as to represent the inte-
grand of the compensator concisely. See Appendix A for details.

defined by a 1D-marked point process, where each mark pn
indicates which dimension the event belongs to. For exam-
ple, if pn = 11, the n-th event occurs at the first dimension.
In Figure 2, blue-circle and red-diamond marks correspond
to the first and the second dimensions respectively.

Letting f(t,p | T ≤tn
1D) be the probability density function

of each event (tn+1,pn+1) given its past events T ≤tn
1D , the

conditional intensity function can be defined similarly:

λ
(
t,p | T ≤tn

1D

)
=

f
(
t,p | T ≤tn

1D

)
1− F

(
t | T ≤tn

1D

) , (3)

where F (t | T ≤tn
1D) =

∫ t
tn

ds
∑

p∈1D f(s,p | T ≤tn
1D).

The conditional intensity function represents how likely
event (t,1d) occurs: λ(t,1d | T ≤tn1D)dt = Pr[tn+1 ∈
[t, t + dt],pn+1 = 1d | tn+1 /∈ (tn, t), T ≤tn1D]. Proposi-
tion 2 states conditions under which the conditional inten-
sity function uniquely specifies a marked point process. See
Appendix B for its proof. LetMPP(λ) be the multivariate
point process with the conditional intensity function λ.

Proposition 2. Let X be a set. A conditional intensity
function λ uniquely defines an X-marked point process if it
satisfies the following conditions for any T ≤tnX and t > tn:

1. λ(t,p | T ≤tnX) ≥ 0 and integrable w.r.t. p and w.r.t. t
on any interval starting at tn,

2.
∫ t
tn

ds
∫
X

dpλ(s,p | T ≤tnX)→∞ as t→∞, and

3.
∫ t
tn

ds
∫
X

dpλ(s,p | T ≤tnX) is right continuous in t.

The log-likelihood of observation T1D is written as:

log p(T1D)

=
∑

(t,p)∈T
1D

log λ
(
t,p | T ≤tn(t)

1D

)
− Λ[0,T](T1D), (4)

where let Λ[0,T](T1D) =
∫ T

0

∑
p∈1D λ(t,p | T ≤tn(t)

1D)dt
be the compensator. Since its analytical form is not available
for a general conditional intensity function, we resort to
Monte-Carlo approximation to estimate the compensator. In
specific, we draw M examples, {tm}m∈[M], from U [0, T]
and approximate it as,

Λ[0,T](T1D) ≈ T

M

M∑
m=1

∑
p∈1D

λ
(
tm,p | T ≤tn(tm)

1D

)
. (5)

2.2. Sampling Algorithms

This section introduces sampling algorithms for a point
process given a conditional intensity function. A notable

A Differentiable Point Process with Its Application to Spiking Neural Networks

Algorithm 1 Thinning algorithm forMPP
Input: Conditional intensity function λ and upperbound λ̄
Output: Realization ofMPP(λ)

1: S ← ∅, T ← ∅
2: while true do
3: Sample s ∼ PP(λ̄ | S)
4: if s > T then
5: break

6: Sample
[
p
r

]
∼ Cat (πλ̄ ◦ λ (s | T))

7: if r 6= 1 then
8: T ← T ∪ {(s,p)}
9: S ← S ∪ {s}

10: return T

feature of the algorithms is that they can exactly simulate
point processes without any approximation. This indicates
that there exists no hyperparameter controling the trade-off
between computational cost and accuracy of the simulation,
which greatly facilitates simulating SNNs.

2.2.1. HOMOGENEOUS POISSON PROCESS

The simplest point process is the homogeneous Poisson
process whose conditional intensity function is constant;
λ(t | T ≤tn) = λ for any T ≤tn . It is straightforward to
sample from it because the interval between two succes-
sive events τ is independently and identically distributed
according to the exponential distribution, f(τ ;λ) = λe−λτ .

2.2.2. GENERAL POINT PROCESS

It is not straightforward to sample from a general point
process when a closed-form expression of the inter-event
time distribution is not available. This is true for many
point processes including SNNs. Among several sampling
methods, the thinning algorithm (Lewis & Shedler, 1979;
Ogata, 1981) allows us to sample from such a point process
without knowing the closed-form expression. For other
sampling algorithms, please refer to Section 6.

The main idea is to generate a sequence of time stamps
from a homogeneous Poisson process with sufficiently high
intensity (which we call the base process) and then to thin
some of the events so that the sequence follows the given
point process. Algorithm 1 describes it for the multivariate
case, where let λ (t | T) =

[
λ (t,1d | T)

]
d∈[D]

, and let
πλ̄◦ be an operator that receives a D-dimensional vector λ

and returns 1
λ̄

[
λ

λ̄− ‖λ‖1

]
.

It first generates a new time stamp s from the homoge-
neous Poisson process with intensity λ̄ (line 3). Then
it decides whether or not to accept the event, and if ac-
cepting, decides which dimension the event is assigned

to (lines 6-8); s is rejected if r = 1, i.e., with probability
1 − 1

λ̄

∑
p∈1D λ(s,p | T), and s is accepted as the event

from the d-th dimension (d ∈ [D]) if pd = 1, i.e., with
probability λ (s,1d | T) /λ̄,

Intuitively, the correctness of Algorithm 1 is understood
as follows. Assuming we have sampled T ≤tn

1D , at any time
t > tn, the probability that the algorithm generates the event
with mark 1d in interval [t, t+ dt] is,

Pr
[
tn+1 ∈ [t, t+ dt],pn+1 = 1d | T <t1D

]
= λ̄dt︸︷︷︸

Prob. that the base process
generates the event in [t,t+dt]

·λ
(
t,1d | T ≤tn1D

)
/λ̄︸ ︷︷ ︸

Prob. that t is
assigned the d-th mark

=λ
(
t,1d | T ≤tn1D

)
dt,

where let T <t
1D denote the event tn+1 /∈ (tn, t) and T ≤tn

1D .
This shows that the output followsMPP(λ). For its formal
proof, please refer to Reference (Ogata, 1981).

3. Differentiable Point Process
We present the key building block of our method called a
differentiable point process, whose realization is differen-
tiable with respect to its parameters. Differentiability plays
an essential role when designing a learning algorithm for
latent variable models as will be discussed in Section 4.2.

The key idea is that the output of Algorithm 1 becomes dif-
ferentiable if we replace the categorical distribution in line 6
with a reparameterizable distribution such as the concrete
distribution, also known as the Gumbel-softmax distribu-
tion (Maddison et al., 2017; Jang et al., 2017). We first
review the concrete distribution (Section 3.1), and then we
present the differentiable point process (Section 3.2).

3.1. Concrete Distribution

The concrete distribution has been developed as a repa-
rameterizable substitute for the categorical distribution.
The idea comes from the Gumbel-max trick, which en-
ables us to sample from the categorical distribution. Let-
ting π ∈ RD≥0 be an unnormalized parameter of the cat-
egorical distribution, the Gumbel-max trick first samples
ud ∼ U [0, 1] for each d ∈ [D], and then outputs 1d? where
d? = arg maxd∈[D] log πd − log(− log ud). The output is
known to be distributed according to Cat(π/‖π‖1). While
the Gumbel-max trick successfully divides the sampling
procedure into random sampling from the fixed distribution
and a parameterized transformation of it, which is necessary
to be differentiable, the gradient of its realization with re-
spect to π is non-informative, because a small variation to
π does not change the gradient.

The concrete distribution is defined by relaxing the range of

A Differentiable Point Process with Its Application to Spiking Neural Networks

Algorithm 2 Thinning algorithm for ∂PP
Input: Conditional intensity function λ, its upperbound λ̄,
and temperature τ > 0.
Output: Realization of ∂PP

(
λ, λ̄, τ

)
1: S ← ∅, T ← ∅
2: while true do
3: Sample s ∼ PP(λ̄ | S)
4: if s > T then
5: break

6: Sample
[
p
r

]
∼ Concreteτ (πλ̄ ◦ λ (s | T))

7: T ← T ∪ {(s,p)}
8: S ← S ∪ {s}
9: return T

the random variable from 1D to its convex hull conv(1D)
so that its gradient is more informative. Accordingly, the
argmax operator in the Gumbel-max trick is replaced with
the softmax operator with temperature τ > 0. Since soft-
max becomes equivalent to argmax as τ → 0, the concrete
distribution also becomes equivalent to the categorical dis-
tribution as τ → 0. Let gτ (p;π) denote the probability
density function of the concrete distribution with tempera-
ture τ and unnormalized parameter π ∈ RD>0.

3.2. Multivariate Differentiable Point Process

We present a constructive definition of a differentiable point
process in Definition 3.

Definition 3. Assume the conditional intensity function
λ(t,p | T ≤tn

1D) can be computed with an observation of
a conv0(1D)-marked point process. Let λ̄ be a constant sat-
isfying λ̄ >

∑
p∈1D λ(t,p | T ≤tn

conv0(1D)
) for any T ≤tn

conv0(1D)

and t > tn, and τ > 0 be temperature. The differentiable
point process ∂PP

(
λ, λ̄, τ

)
is defined as a conv0(1D)-

marked point process constructed by Algorithm 2.

Algorithms 1 and 2 are different in two ways. First, all
events from the base process are accepted in Algorithm 2,
while some are rejected in Algorithm 1. Second, in Algo-
rithm 1, the mark is defined over 1D, while in Algorithm 2,
it is defined over conv0(1D); each mark is associated with
amplitude that is continuous w.r.t. the model parameter.

The differentiable point process as defined above can be
understood as a marked point process (Proposition 4).

Proposition 4. The differentiable point process
∂PP(λ, λ̄, τ) is a conv0(1D)-marked point process
with conditional intensity function,

λ∂

(
t,p | T ≤tn

conv0(1D)
;λ, λ̄, τ

)
=λ̄ · gτ

([
p

1− ‖p‖1

]
;πλ̄ ◦ λ

(
t | T ≤tn

conv0(1D)

))
.

We can confirm the differentiability of a realization of
∂PP (Proposition 5). We can also confirm that in the limit
of τ → 0, the differentiable point process becomes equiv-
alent to the original point process (Proposition 6). See
Appendix C for their formal statements and proofs.

As discussed by Maddison et al. (2017), the concrete distri-
bution often suffers from underflow and we have to imple-
ment it in the logarithmic scale. Our implementation also
suffers from the same issue, and we provide a numerically
stable implementation idea in Appendix E.

4. Learning Algorithm for SNNs
We present a learning algorithm for spiking neural net-
works (SNNs) based on the differentiable point process.
We first define a probabilistic model of SNNs (Section 4.1)
and then will present our learning algorithm, highlighting
the difference from the existing one (Section 4.2).

4.1. Probabilistic Model of Spiking Neural Networks

We employ the standard probabilistic model in the litera-
ture (Pfister et al., 2006). Let D be the number of neurons,
let N = 1D be the set of neurons, each of which is indexed
by a one-hot vector, and let TN be spike trains emitted from
SNN during time interval [0, T]. We assume that TN is a
realization of an N -marked point process.

We define the conditional intensity function based on a
spike response model (SRM) (Gerstner et al., 2014). SRM
assumes that the d-th spiking neuron is driven by its internal
state called a membrane potential,

ud

(
t | T ≤tnN

)
= ūd +

∑
(t′,p)∈T ≤tn

N

fd(t− t′) · p, (6)

where fd(s) =
[
fd′,d(s)

]
d′∈[D]

is a vector of filter functions
from all of the neurons to the d-th neuron. In specific,
fd′,d(s) describes the time course of the membrane potential
of neuron d in response to a spike emitted by neuron d′ at
time s = 0. We assume fd,d(s) ≤ 0 for all d ∈ N . This
assumption allows us to reproduce the resetting behavior
of a biological neuron; the membrane potential is reset to
a lower level after the neuron fires. We also assume that
fd′,d(s) = 0 for s < 0. This assumption ensures that future
events have no influence on past events.

Then, the conditional intensity function is defined by,

λSNN(t,p | T ≤tnN) = p · σ(u(t | T ≤tnN)), (7)

where σ : RD → RD≥0 is element-wisely non-decreasing and
differentiable3 and let u(t | T ≤tnN) =

[
ud(t | T ≤tnN)

]
d∈[D]

.

3We use the sigmoid function multiplied by amplitude a > 0
element-wisely as σ, for which λ̄ is easy to derive.

A Differentiable Point Process with Its Application to Spiking Neural Networks

As the membrane potential of one neuron increases, the
neuron is more likely to fire and generate a spike.

For numerical simulation, we assume that the filter functions
are parameterized by weights {wd′,d,l ∈ R}Ll=1 as,

fd′,d(s) =

{∑L
l=1 wd′,d,l · κ(s− sl) (s ≥ 0),

0 (s < 0),
(8)

where {sl ∈ R}Ll=1 are fixed and κ(s) = max{ 3
4 (1−s2), 0}

is the Epanechnikov kernel. We chose this kernel because
the bounded support of the kernel allows us to ignore events
that occurred more than a certain period ago for membrane
potential computation. Let θ = {ūd ∈ R}Dd=1 ∪ {wd′,d,l ∈
R | l ∈ [L]}Dd,d′=1 denote the set of model parameters.

4.2. Learning Algorithms

Assume some of the neurons are hidden and their spike
trains are unobservable. Let O ⊂ N and H = N\O
be the sets of observable and hidden neurons, respectively.
Accordingly, the spike trains of all of the neurons are divided
into observable and hidden ones: TN = TO ∪ TH. We
consider an estimation procedure for the model parameters
of SNN, θ, given a set of observed spike trains {TO,n}Nn=1.

Letting p(TN ; θ) = p(TO, TH; θ) be the joint distribution
of the observable and hidden spike trains, the parameter θ is
estimated by maximum likelihood estimation:

maximize
θ

N∑
n=1

` (θ; TO,n)

where `(θ; TO) = log
∫
p(TO, TH; θ)dTH is the marginal-

ized log-likelihood function. Since it is intractable to com-
pute it, we substitute its lower bound called an evidence
lower bound (ELBO) for the marginalized log-likelihood
function as the objective function:

`(θ, φ; TO) = Eq(TH;φ) [log p(TO, TH; θ)− log q(TH;φ)] ,

≡ Eq(TH;φ)`(θ, φ; TO, TH), (9)

where q(TH;φ) is an arbitrary distribution called a vari-
ational distribution, parameterized by φ. We specifically
assume that the variational distribution is modeled by SNN
driven by both observable and hidden spike trains. In the fol-
lowing, we omit the index of data n for ease of presentation
and consider ELBO using a single observation TO.

Since there exists no closed-form solution to the maximiza-
tion problem, we resort to stochastic gradient ascent meth-
ods, resulting in Algorithm 3. The basic procedure to train
SNN is to choose one realization TO from the data set ran-
domly, and update θ and φ so as to maximize Equation (9).
In the following, we present both an existing approach and
our novel approach to compute the gradients, ∂`∂θ and ∂`

∂φ .

Algorithm 3 Generic learning algorithm
Input: Observation TO, learning rate {αk}Kk=1.
Output: Model parameters θ, φ.

1: Initialize θ, φ
2: for k = 1, . . . ,K do
3: Update θ ← θ + αk

∂`
∂φ (θ, φ; TO)

4: Update φ← φ+ αk
∂`
∂φ (θ, φ; TO)

5: return θ, φ

4.2.1. GRADIENT WITH RESPECT TO θ

The gradient with respect to θ is straightforwardly computed
by applying Monte-Carlo approximation: ∂

∂θ `(θ, φ; TO) ≈
Êq(TH;φ)

[
∂
∂θ log p(TO, TH; θ)

]
. This can be numerically

calculated with the help of automatic differentiation tools.

4.2.2. GRADIENT WITH RESPECT TO φ

The gradient with respect to φ is more involved. In Equa-
tion (9), the expectation operator depends on φ and we
cannot exchange ∂

∂φ and Eq(TH;φ). There are at least
two approaches to computing the gradient in this situa-
tion (Mohamed et al., 2019). One approach is to rely on the
score function gradient estimator, also known as the RE-
INFORCE estimator (Williams, 1992). While it is widely
applicable to a variety of models, it is often reported that
the gradient estimator has high variance. Another approach
is the path-wise gradient estimator, which makes use of the
reparameterization trick (Kingma & Welling, 2014). While
its variance is often reported to be lower than that of the
score function gradient estimator (Mohamed et al., 2019),
its application is limited because the probability distribution
q must be reparameterizable.

In the literature of SNNs, the score function gradient es-
timator with respect to φ has been developed by Jimenez
Rezende & Gerstner (2014). Our contribution is to develop
a path-wise gradient estimator for SNNs based on a differ-
entiable point process presented in Section 3.

Score function gradient estimator. Jimenez Rezende
& Gerstner (2014) used the score function gradient es-
timator for computing the gradient with respect to φ:
∂`
∂φ (θ, φ; TO) ≈ Êq(TH;φ)[

∂ log q(TH;φ)
∂φ (`(θ, φ; TO, TH) −

1)]. While this is an unbiased estimator of the gradient,
its high variance is often problematic. We employ the varia-
tional distribution with the conditional intensity function,

λq(t,p | T ≤tnN ;φ) = p · σ(u(t | T ≤tnN ;φ)), (10)

for any p ∈ H. In particular, we use shared parameters for
the model and the variational distribution, i.e., we set φ = θ
as we observe it improves the performance.

Path-wise gradient estimator. We propose a path-wise gra-

A Differentiable Point Process with Its Application to Spiking Neural Networks

dient estimator for SNNs. Our main idea is to employ the
differentiable point process, ∂PP(λq(t,p | TN ;φ); λ̄, τ),
as the variational distribution, where λq is defined in Equa-
tion (10). This allows us to differentiate a Monte-Carlo
approximation of ELBO (Equation (9)) using automatic
differentiation tools:

∂`(θ, φ; TO)

∂φ
≈ ∂Ê∂PP`(θ, φ; TO, Tconv0(H)(φ))

∂φ
. (11)

The main technical issue in applying the differentiable point
process is that its realization Tconv0(H)(φ) is incompatible
with the SNN model defined by Equations (6) and (7). The
model assumes that a mark p is a one-hot vector, while a
mark of a differentiable point process belongs to conv0(H).
We address this by devising a differentiable spiking neural
network (∂SNN), which can handle a mark in conv0(H),
while keeping the conditional intensity function proper.

Let N̄ = O ∪ conv0(H) be the set of marks for ∂SNN. We
define the membrane potential of neuron d ∈ N as,

ud

(
t | T ≤tnN̄

)
= ūd +

∑
(t′,p)∈T ≤tn

N̄

fd(t− t′) · p, (12)

and the conditional intensity of ∂SNN for p ∈ N̄ as,

λ∂SNN
(
t,p | T ≤tnN̄ ; λ̄, τ

)
(13)

=
∑
1d∈O

δ(p− 1d)λ
SNN

(
t,p | T ≤tnN̄

)
+ I[p ∈ conv0(H)]λ∂

(
t,pH | T ≤tnN̄ ;λH, λ̄, τ

)
where λH

(
t | T ≤tnN̄

)
= σ

([
ud(t | T ≤tnN̄)

]
d∈H

)
, I[·] is

the indicator function, and pH =
[
pd
]
d∈H.

It is necessary to confirm that (i) the conditional inten-
sity function can be calculated using past events whose
marks are in N̄ and (ii) the conditional intensity function
satisfies all of the conditions listed in Proposition 2 for
X = N̄ . The first requirement immediately follows from
Equations (12) and (13). In Appendix D, we provide the for-
mal statement and proof of the second requirement (Proposi-
tion 7). We also confirm that ELBO is differentiable (Propo-
sition 8) and that the differentiable SNN becomes equivalent
to the vanilla SNN in the limit of τ → 0 (Proposition 9).

5. Empirical Studies
Let us investigate the effectiveness of our gradient estima-
tor through numerical simulation. Our hypothesis is that
(i) the path-wise gradient estimator will have lower variance
than the score function estimator and (ii) lower variance
will improve the predictive performance. We design two

Table 1. Configuration of SNN generating a synthetic data set.

Network size D = 6, |O| = 2, |H| = 4
Activation/filter functions a = 5, L = 2, s1 = 0, s2 = 10
∂PP τ = 0.3, λ̄ = 20
of samplings 100 (Eq. (5)), 1 (Eq. (9))

experiments (Sections 5.1 and 5.2) to verify these two hy-
potheses. We additionally compare computation cost of the
learning algorithms using each of the gradient estimators
in Section 5.3. All the experiments are conducted on IBM
Cloud4, and the code is publicly available (Kajino, 2021).

Data set. We use a synthetic data set generated by the
vanilla SNN (Equation (7)). Table 1 summarizes its config-
uration. We set λ̄ = a|H| = 20, which is the tightest upper-
bound because we use the sigmoid activation function with
amplitude a. The weights are randomly sampled: biases
from U [−1, 1], off-diagonal kernel weights from U [−5, 5],
and diagonal kernel weights from U [−5,−0.1].

Methods compared. Since our objective is to highlight
the performance gap between our path-wise gradient estima-
tor (∂SNN) and the score function gradient estimator (SNN),
we use the same hyperparameters and initialization for both
of them as much as possible. We initialize their parameters
randomly using the same random seed so that both of them
have random but the same initial parameters. We also set
their hyperparameters as Table 1. The temperature is the
only hyperparameter that impacts the performance gap. In
preliminary experiments, we observe no significant impact
for τ ∈ [0.1, 0.5], and we only report the result at τ = 0.3.

5.1. Variance of the Gradient Estimators

First, let us study the variance of the gradient estimators.

Protocol. We generate a single random parameter setting
and use it to generate a synthetic data set consisting of 10
examples of length 50. Then, we compute the gradient es-
timators using the whole data set 1000 times, which yields
1000 gradient estimates for each method. Finally, we com-
pute the standard deviations of each element of the gradients,
and report the mean of the standard deviations.

Result. The mean standard deviation of ∂SNN was 66.3,
whereas that of SNN was 2.49× 103. This clearly demon-
strates that the variance of our estimator tends to be lower
than that of the existing estimator.

5.2. Predictive Performance

The second experiment studies the predictive performance
of the models learned by each of the methods compared.

4Intel Xeon Gold 6248 2.50GHz 48 cores and 192GB memory.

A Differentiable Point Process with Its Application to Spiking Neural Networks

25 50 75 100 125 150 175 200

of training examples

−450

−400

−350

−300

−250

−200

−150

−100
E

L
B

O

SNN

∂SNN

Figure 3. Predictive performance of SNN and ∂SNN.

Protocol. We generate 24 random parameter settings, and
consistently use them in this experiment. We aim to evaluate
the performance gap between SNN and ∂SNN in different
sizes of training sets. To this end, we execute the following,
varying the size as Ntrain = 10, 20, 30, 40, 50, 75 100, 200,
and for each parameter setting.

We generate training/test sets consisting ofNtrain/100 exam-
ples of length 50 respectively. SNN and ∂SNN are trained
on the training set using AdaGrad (Duchi et al., 2011) with
initial learning rate 0.05 for 10 epochs. We evaluate the
predictive performance by computing ELBO (Equation (9))
on the test set. For fair comparison, we evaluate the per-
formance of ∂SNN by transferring its parameters to the
vanilla SNN5. By repeating this over 24 parameter settings,
we obtain 24 ELBO scores. We report their mean as the
performance of each method for each Ntrain.

Result. Figure 3 summarizes the experimental results. It
clearly shows that ∂SNN consistently outperforms SNN
especially in the small-sample regime, which supports the
benefit of our low-variance estimator.

5.3. Computational Overhead

The last experiment studies computation overhead of ∂SNN
over SNN. The computation time depends on the number
of spikes, and the number of (hidden) spikes is proportional
to a, the amplitude of the non-linearlity σ that maps the
membrane potential into the conditional intensity function.
In general, ∂SNN generates more hidden spikes than SNN
because the thinning algorithm for the differentiable point
process does not reject any of the candidate spikes. There-
fore, we expect that ∂SNN requires more computation time
than SNN. The purpose of this experiment is to measure the
computational overhead of ∂SNN over SNN.

Protocol. We generate a single parameter setting, and gen-

5For better transfer, we decrease τ geometrically by ratio 0.95
at every epoch, which slightly improves the performance.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Amplitude a

0

100

200

300

400

500

P
er

-e
p

o
ch

co
m

pu
ta

ti
on

ti
m

e
[s

ec
] SNN

∂SNN

Figure 4. Per-epoch computation time of SNN and ∂SNN.

erate a training set of 10 examples of length 50. We then set
up both SNN and ∂SNN with amplitude a = 1, 2, . . . , 20,
resuting in 40 models to be trained. For each model, we
measure the computation time of running 100 epochs, and
obtain per-epoch computation time by averaging them.

Result. Figure 4 summarizes the experimental results. As is
expected, ∂SNN requires 2.8 times more computation time
than SNN on average. This result can be used as a reference
for users to decide which gradient estimator to be employed.
If a user can afford this overhead, our path-wise gradient
estimator is recommended; otherwise, please consider to
use the score function gradient estimator.

Note that we can improve the computation time of our
method by introducing an adaptive upperbound λ̄ in Al-
gorithm 3, if it is a tigher upperbound than the fixed upper-
bound. We leave this improvement as future work.

6. Related Work
The present work is related to the communities of SNNs and
point processes. Let us discuss our contributions to them.

6.1. Spiking Neural Networks

The most relevant work is the stochastic variational learning
algorithm for SNNs (Jimenez Rezende & Gerstner, 2014).
As discussed in Section 4.2.2, the difference is the gradient
estimator. The authors used the score function gradient
estimator, because the path-wise gradient estimator (which
became popular by VAE (Kingma & Welling, 2014)) was
not popular at that time and the reparameterization trick
for point processes was not trivial. Our contribution is to
develop a differentiable point process that enables us to
derive the path-wise gradient estimator.

Less relevant but still worth mentioning are the line of work
in learning algorithms for deterministic SNNs, where a neu-
ron fires when the membrane potential exceeds a threshold.
Although our technique cannot directly contribute to them,

A Differentiable Point Process with Its Application to Spiking Neural Networks

we believe it is worthwhile to compare the pros and cons
of these different approaches for further development. Of a
number of approaches proposed so far (Neftci et al., 2019),
we introduce two inspiring studies.

SpikeProp (Bohte et al., 2000) is one of the earliest attempts
to develop a learning algorithm for deterministic SNNs.
SpikeProp uses backpropagation to minimize the difference
between the target firing times {t?n}Nn=1 and the actual firing
times {tn}Nn=1 of the network, i.e.,

∑N
n=1 |t?n − tn|2. The

gradient is approximated by assuming a linear relationship
between the firing time and the membrane potential, which
is valid only for a small learning rate.

Huh & Sejnowski (2018) propose a differentiable alternative
to the threshold-based spike generation, which facilitates
gradient computation. They employ a soft-threshold mecha-
nism, and therefore, is differentiable without approximation.
Another important contribution is that their model can han-
dle not only spike trains but also a real-valued time-series.
They use a readout network that maps spike trains from/into
a real-valued time-series. This end-to-end formulation is
significant towards practical applications of SNNs, and prob-
abilistic SNNs should be equipped with this feature.

One interesting feature of probabilistic SNNs including our
method is that both inference and learning algorithms can
be executed naturally in an event-based manner without any
discretization of time axis. This is in contrast to determin-
istic SNNs, where many learning algorithms require us to
discretize the continuous-time dynamics for simulation.

6.2. Differentiable Point Processes

Our differentiable point process is significant in the com-
munity of point processes in that it largely expands the
applicability of the reparameterization trick for point pro-
cesses. Let us review the approaches to differentiable point
processes, and discuss their pros and cons.

There are mainly three approaches to sample from point
processes, and each of them can be used as a basis of dif-
ferentiable point processes. The first approach (Shchur
et al., 2020a) is to model the inter-event time conditioned
on the past history by a log-normal mixture model, instead
of modeling the conditional intensity function. Since it is
straightforward to develop a reparameterizable sampling
algorithm for the mixture model, the resultant point process
is also reparameterizable. The second one is the inverse
method (Rasmussen, 2018), which utilizes the fact that the
inverse of the compensator Λ[0,t] can convert a unit-rate
Poisson process into the point process with the correspond-
ing conditional intensity function. Shchur et al. (2020b) pro-
pose a reparameterization trick based on the inverse method.
The third one is the thinning algorithm, as we presented.

Of these three approaches, it is interesting to compare the

second and the third approaches. When applying the inverse
method (Shchur et al., 2020b) to computing ELBO, it is
reported that the objective function contains discontinuous
points, making optimization difficult. The discontinuity
arises because time stamps of a realization are parameter-
ized, and the algorithm involves a discrete decision whether
a time stamp is less than T or not for termination. In con-
trast, Our differentiable point process does not suffer from
it because not time stamps but marks are parameterized. In
this sense, these two approaches are complementary.

When developing a path-wise gradient estimator for SNNs,
only the third approach is feasible. The first approach is
difficult to be applied because SNNs are modeled via the
conditional intensity function, and the inter-event time dis-
tribution is not available in a closed form. The second
approach is also difficult due to the lack of a closed-form
expression of the inverse of the compensator. Our approach
only assumes the existence of an upperbound of the con-
ditional intensity function, and therefore, can be applied
to SNNs. The assumption on the existence of a constant
upperbound can be relaxed in the same way as Ogata’s
method (Ogata, 1981), which determines λ̄ adaptively.

7. Conclusion and Future Work
We develop a path-wise gradient estimator for SNNs based
on a differentiable point process. Given the experimental
results in Section 5, we conclude that our estimator has
lower variance than the existing one, which contributes to
improve the learning capability.

Throughout this paper, we only focus on the dependency of
the gradient estimator on learning capability, and we have
not discussed about its practical applications. In the com-
munity of SNNs, however, an increasing number of studies
have started to apply SNNs to real-world tasks (Shrestha
& Orchard, 2018; Woźniak et al., 2020). One of the major
concerns towards applying our method to real-world tasks is
a method to convert real-valued data into/from spike trains.
While there are a number of information encoding methods
for spike trains, it is still an open problem which encod-
ing is preferred. One interesting direction is to empirically
and theoretically investigate the performance of different
encoding methods and to understand their pros and cons.

Another limitation is the computational overhead as dis-
cussed in Section 5.3. While the probabilistic formu-
lation can be simulated by an event-based manner, the
gradient computation involves backpropagation through
time (BPTT), whose complexity increases proportionally to
the number of spikes. In addition to relying on the adaptive
upperbound λ̄, applying online BPTT calculation and its ap-
proximation techniques (Williams & Zipser, 1989) to SNNs
may be an interesting research direction.

A Differentiable Point Process with Its Application to Spiking Neural Networks

References
Bohte, S. M., Kok, J. N., and Poutré, H. L. SpikeProp:

Backpropagation for Networks of Spiking Neurons. In
Proceedings of the 8th European Symposium on Artificial
Neural Networks (ESANN 2000), pp. 419–424, 2000.

Bothe, S. M. The evidence for neural information processing
with precise spike-times: A survey. Natural Computing,
2:195–206, 2004.

Daley, D. J. and Vere-Jones, D. An Introduction to the
Theory of Point Processes: Volume I: Elementary Theory
and Methods. Springer-Verlag New York, 2003.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159,
2011. ISSN 15324435.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L.
Neuronal Dynamics. Cambridge University Press, 2014.

Huh, D. and Sejnowski, T. J. Gradient Descent for Spiking
Neural Networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 1433–1443. Curran Associates, Inc., 2018.

Jang, E., Gu, S., and Poole, B. Categorical Reparameteriza-
tion with Gumbel-Softmax. In Proceedings of the Fifth
International Conference on Learning Representations,
2017.

Jimenez Rezende, D. and Gerstner, W. Stochastic variational
learning in recurrent spiking networks. Frontiers in Com-
putational Neuroscience, 8:38, 2014. ISSN 1662-5188.
doi: 10.3389/fncom.2014.00038.

Kajino, H. diffsnn, 2021. URL https://github.com/
ibm-research-tokyo/diffsnn.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In Proceedings of the Second International Con-
ference on Learning Representations, 2014.

Lewis, P. A. W. and Shedler, G. S. Simulation of nonho-
mogeneous poisson processes by thinning. Naval Re-
search Logistics Quarterly, 26(3):403–413, 1979. doi:
10.1002/nav.3800260304.

Mächler, M. Accurately computing log(1 − exp(−|a|))
assessed by the Rmpfr package. Technical report, 2012.

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete
Distribution: A Continuous Relaxation of Discrete Ran-
dom Variables. In Proceedings of the Fifth International
Conference on Learning Representations, 2017.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte Carlo Gradient Estimation in Machine Learning,
2019.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate Gra-
dient Learning in Spiking Neural Networks: Bringing
the Power of Gradient-Based Optimization to Spiking
Neural Networks. IEEE Signal Processing Magazine, 36
(6):51–63, 2019. doi: 10.1109/MSP.2019.2931595.

Ogata, Y. On Lewis’ simulation method for point processes.
IEEE Transactions on Information Theory, 27(1):23–31,
jan 1981. ISSN 1557-9654. doi: 10.1109/TIT.1981.
1056305.

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W.
Optimal Spike-Timing-Dependent Plasticity for Precise
Action Potential Firing in Supervised Learning. Neural
Computation, 18(6):1318–1348, 2006. doi: 10.1162/neco.
2006.18.6.1318.

Rasmussen, J. G. Lecture notes: Temporal point processes
and the conditional intensity function. arXiv preprint
arXiv:1806.00221, 2018.

Shchur, O., Biloš, M., and Günnemann, S. Intensity-free
learning of temporal point processes. In International
Conference on Learning Representations, 2020a.

Shchur, O., Gao, N., Biloš, M., and Günnemann, S. Fast
and Flexible Temporal Point Processes with Triangular
Maps. In Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M. F., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 73–84.
Curran Associates, Inc., 2020b.

Shrestha, S. B. and Orchard, G. SLAYER: Spike Layer
Error Reassignment in Time. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc., 2018.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229–256, 1992. ISSN 1573-0565. doi:
10.1007/BF00992696.

Williams, R. J. and Zipser, D. A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks.
Neural Computation, 1(2):270–280, 1989. ISSN 0899-
7667. doi: 10.1162/neco.1989.1.2.270.

Woźniak, S., Pantazi, A., Bohnstingl, T., and Eleftheriou, E.
Deep learning incorporating biologically inspired neural
dynamics and in-memory computing. Nature Machine
Intelligence, 2(6):325–336, 2020. ISSN 2522-5839. doi:
10.1038/s42256-020-0187-0.

https://github.com/ibm-research-tokyo/diffsnn
https://github.com/ibm-research-tokyo/diffsnn

