
Projection techniques to update the truncated SVD of evolving matrices with applications

Supplementary Material

Proofs
Proof of Proposition 1

The scalar-vector pair (σ̂2
i , û

(i)) satisfies the equation (AAH − σ̂2
i Im+s)û

(i) = 0. If we partition the i’th left singular vector
as
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The leading m rows satisfy (BBH − σ̂2
i Im)f̂ (i) = −BEH ŷ(i). Plugging the expression of f̂ (i) in the second block of rows

and considering the full SVD B = UΣV H leads to
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The proof concludes by noticing that
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where for the case m < n, we have σj = 0 for any j = m+ 1, . . . , n. In case σ̂i = σj , the Moore-Penrose pseudoinverse
(BBH − σ̂2

i Im)† is considered instead.

Proof of Proposition 2

Since the left singular vectors of B span Rm, we can write

BEH ŷ(i) =

m∑
j=1

σju
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(
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)H
ŷ(i).

The proof concludes by noticing that the top m× 1 part of û(i) can be written as
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Proof of Proposition 3

We have

minz∈range(Z)‖û(i) − z‖ ≤
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The proof follows by noticing that due to Cauchy’s interlacing theorem we have σ2
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i , i = 1, . . . , k, and thus∣∣∣∣ σk+1
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Proof of Lemma 1

We can write
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where σj = 0 for any j > min(m,n). Let us now define the scalar γj,i =
σ̂2
i − λ
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. Then,
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Accounting for all powers p = 0, 1, 2, . . ., gives
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Since λ > σ̂2
k ≥ σ2

k, it follows that for any j > k we have |γj,i| < 1. Therefore, the geometric series converges and∑∞
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We finally have
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This concludes the proof.

Proof of Proposition 4

First, notice that

(BBH − σ̂2
i Im)−1 = UkU

H
k (BBH − σ̂2

i Im)−1 + (Im − UkUHk )(BBH − σ̂2
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Therefore, we can write
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i Im)−1BEH ŷ(i) = Uk(Σ2

k − σ̂2
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The left singular vector û(i) can be then expressed as
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The proof concludes by noticing that by Lemma 1 we have B(σ̂2
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Proof of Proposition 5

The proof exploits the formula
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It follows
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Asymptotic complexity
The asymptotic complexity analysis of the method in (Zha & Simon, 1999) is as follows. We need O

(
ns2 + nsk

)
FLOPs to

form (Is − VkV Hk )EH and compute its QR decomposition. The SVD of the matrix ZHAW requires O
(
(k + s)3

)
FLOPs.

Finally, the cost to form the approximation of matrices Ûk and V̂k is equal to O
(
k2(m+ n) + nsk

)
FLOPs.

The asymptotic complexity analysis for the “SV” variant of the method in (Vecharynski & Saad, 2014) is as follows. We
need O

(
(nnz(E) + nk)δ1 + (n+ s)δ21

)
FLOPs to approximate the r leading singular triplets of (Is − VkV Hk )EH , where

δ1 ∈ Z∗ is greater than or equal to r (i.e., δ1 is the number of Lanczos bidiagonalization steps). The cost to form and
compute the SVD of the matrix ZHAW is equal to (k+s)(k+r)2 +nnz(E)k+rs where the first term stands for the actual
SVD and the rest of the terms stand for the formation of the matrix ZHAW . Finally, the cost to form the approximation of
matrices Ûk and V̂k is equal to O

(
k2(m+ n) + nrk

)
FLOPs.

The asymptotic complexity analysis of Algorithm 1 is as follows. First, notice that Algorithm 1 requires no effort to build
W . For the case where Z is set as in Proposition 3, termed as “Alg. 1 (a)”, we also need no FLOPs to build Z. The cost
to solve the projected problem by unrestarted Lanczos is then equal to O

(
(nnz(E) + nk)δ2 + (k + s)δ22

)
FLOPs, where

δ2 ∈ Z∗ is greater than or equal to k (i.e., δ2 is the number of steps in unrestarted Lanczos). Finally, the cost to form the
approximation of matrices Ûk and V̂k is equal to O

(
k2m+ (nnz(A) + n)k

)
FLOPs. For the case where Z is set as in

Proposition 5, termed as “Alg. 1 (b)”, we need

χ = O
(
nnz(A)δ3 +mδ23

)
FLOPs to build Xλ,r, where δ3 ∈ Z∗ is greater than or equal to k (i.e., δ3 is either the number of Lanczos bidiagonalization
steps or the number of columns of matrix R in randomized SVD).

Table 6. Detailed asymptotic complexity of Algorithm 1 and the schemes in (Zha & Simon, 1999) and (Vecharynski & Saad, 2014). All δ
variables are replaced by k.

Scheme Building Z Building W Solving the projected problem Other

(Zha & Simon, 1999) - ns2 + nsk (k + s)3 k2(m+ n) + nsk
(Vecharynski & Saad, 2014) - (nnz(E) + nk)k + (n+ s)k2 (k + s)(k + r)2 + nnz(E)k + rs k2(m+ n) + nrk
Alg. 1 (a) - - (nnz(E) + nk)k + (k + s)k2 k2m+ (nnz(A) + n)k
Alg. 1 (b) χ - (nnz(E) + (n+ r)k)k + (k + r + s)k2 k2m+ (nnz(A) + n)k

The above discussion is summarized in Table 6 where we list the asymptotic complexity of Algorithm 1 and the schemes in
(Zha & Simon, 1999) and (Vecharynski & Saad, 2014). The complexities of the latter two schemes were also verified by
adjusting the complexity analysis from (Vecharynski & Saad, 2014). To allow for a practical comparison, we replaced all δ
variables with k since in practice these variables are equal to at most a small integer multiple of k.
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Consider now a comparison between Algorithm 1 (a) and the method in (Zha & Simon, 1999). For all practical purposes,
these two schemes return identical approximations to Ak. Nonetheless, Algorithm 1 (a) requires no effort to build W .
Moreover, the cost to solve the projected problem is linear with respect to s and cubic with respect to k, instead of cubic
with respect to the sum s + k in (Zha & Simon, 1999). The only scenario where Algorithm 1 can be potentially more
expensive than (Zha & Simon, 1999) is when matrix A is exceptionally dense, and both k and s are very small. Similar
observations can be made for the relation between Algorithm 1 (b) and the methods in (Vecharynski & Saad, 2014), although
the comparison is more involved.

Eigenfaces
A brief description of the eigenfaces technique is as follows.

1. Load the training dataset consisting of n images, where each image is of size
√
m×

√
m pixels.

2. Let Â ∈ Rm×n denote the matrix where each column denotes a vectorized image of size
√
m×

√
m pixels. Moreover,

let A = Â− zeTn , where z ∈ Rm denotes the column mean, and en ∈ Rn denotes the vector of all ones.

3. Form the covariance matrix M = ATA/(n− 1), and compute its k leading eigenpairs (λi, x
(i)), i = 1, . . . , k. The

value of k is set as the smallest integer such that the explained variance
λ1 + . . .+ λk
λ1 + . . .+ λn

is above a chosen threshold

ε ∈ R. Let X = [x(1), . . . , x(k)].

4. Compute the projection of the training dataset F = ÂX .

5. For any new test image b ∈ Rm, compute its projection b̂ = XT (b− z).

6. Classify the test image b by ρ-Nearest Neighbor classification between b̂ and the rows of matrix F .

Our implementation of the eigenfaces technique replaces Step 3 as follows. Instead of computing the covariance matrix
M , we set k a-priori and compute X by instead computing the k leading singular triplets of AT . Note that the left singular
vectors of AT and the eigenvectors of ATA are the same up to sign. Instead of using a standard SVD solver, we compute
the rank-k truncated SVD of AT using our updating scheme. This can be especially useful for very large data collections.


