
Off-Policy Confidence Sequences

A. Proofs
A.1. Main Lemma

The following lemma will be helpful in the proofs of all our Theorems.

Lemma 2. Suppose we have a family of stochastic processes (Mt(m))∞t=0 indexed by m ∈ [0, 1] and further assume the
process (Mt(µ))∞t=0 for some µ ∈ [0, 1] is a non-negative martingale with respect to a filtrationFt (i.e. E[Mt|Ft−1] = Mt−1

for t ≥ 1) with initial value M0 = 1. Then for any given α ∈ [0, 1] the sequence of sets Ct =
{
m : Mt(m) ≤ 1

α

}
is a

(1− α) confidence sequence for µ and so is its running intersection
⋂t
i=1 Ci.

Proof. For the first part, by the definition of a CS it suffices to show that Pr (∃t ∈ N : µ /∈ Ct) ≤ α or

Pr

(
∃t ∈ N : µ /∈

{
m : Mt(m) ≤ 1

α

})
≤ α.

An error occurs only if Mt(µ) exceeds 1/α at any point. This means that it suffices to show that

Pr

(
∃t ∈ N : Mt(µ) ≥ 1

α

)
≤ α,

which is true by Ville’s inequality (Ville, 1939) since Mt(µ) is a non-negative martingale with initial value 1.

For the second part, we need to show that

Pr

(
∃t ∈ N : µ /∈

t⋂
s=1

{
m : Ms(m) ≤ 1

α

})
≤ α.

This reduces to showing

Pr

(
∃t ∈ N : ∃s ∈ {1, . . . , t} : Ms(µ) ≥ 1

α

)
≤ α,

which further simplifies to

Pr

(
∃t ∈ N : Mt(µ) ≥ 1

α

)
≤ α,

and this is again implied by Ville’s inequality.

A.2. Proof of Theorem 1

Proof. Consider the filtration (Ft)∞t=0 generated by the sequence of sigma-fields F0 ⊂ F1 ⊂ . . . with F0 the trivial
sigma-field and Ft = σ((w0, r0), (w1, r1), . . . , (wt, rt)). It suffices to show that our betting ensures that Kt(V (π)) is a
non-negative martingale with initial value 1 as we can then apply lemma 2. K0(v) = 1 is by the definition of the process
(we start with a wealth of 1), and Kt(v) ≥ 0 for all v ∈ [0, 1] because our bets are in the set D0

v (c.f. eq (4)). Thus it remains
to show E [Kt (V (π)) |Ft−1] = Kt−1(V (π)). We have the following chain of equalities

E [Kt (V (π)) |Ft−1] = E [Kt−1 (1 + λ1,t(wt − 1) + λ2,t(wtrt − V (π))) |Ft−1]

= Kt−1E [1 + λ1,t(wt − 1) + λ2,t(wtrt − V (π))|Ft−1]

= Kt−1 (1 + E [λ1,t(wt − 1)|Ft−1] + E [λ2,t(wtrt − V (π))|Ft−1])

= Kt−1 (1 + λ1,tE [(wt − 1)|Ft−1] + λ2,tE [(wtrt − V (π))|Ft−1])

= Kt−1 (1 + λ1,t · 0 + λ2,t · 0) = Kt−1

where we have used that Kt−1, λ1,t, λ2,t are measurable with respect to Ft−1 and that E[w] = 1 and E[wr] = V (π).

A.3. Proof of Lemma 1

Proof. Consider the function f(x) = ln(1 + x) − x − ψx2 with domain
[
− 1

2 ,∞
)
. Note that f

(
− 1

2

)
= 0 and

limx→∞ f(x) = ∞. Furthermore f has two critical points: 0 and − 2ψ+1
2ψ . But f(0) = 0 and f

(
− 2ψ+1

2ψ

)
> 0 so

we conclude that f(x) ≥ 0 for all x ≥ − 1
2 .
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A.4. Proof of Theorem 2

Proof. We will first show that K±t (V (π)) is a non-negative martingale with initial value 1. Consider the same filtration as
for Theorem 1. Note that K±0 (v) = 1 is by the definition of the process (we start with a wealth of 1). We analyze K+

t (v)
and K−t (v) separately. Note that K+

t (v) ≥ 0 for all v ∈ [0, 1] because our bets are in the set C ⊂ D0
v (c.f. eq (4)). For

K−t (v) we note that the process is isomorphic to a process similar to K+
t (v) but with the reward and v redefined. Thus our

bets keep K−t (v) ≥ 0. We now show the equality

E
[
K−t (V (π)) |Ft−1

]
= K−t−1(V (π)),

as the equality E
[
K+
t (V (π)) |Ft−1

]
= K+

t−1(V (π)) is exactly what was shown in Theorem 1. We have

E
[
K−t (V (π)) |Ft−1

]
= E

[
K−t−1

(
1 + λ−1,t(wt − 1) + λ−2,t(wt(1− rt)(1− V (π)))

)
|Ft−1

]
= K−t−1E

[
1 + λ−1,t(wt − 1) + λ−2,t(wt − 1 + V (π)− wtrt)|Ft−1

]
= K−t−1

(
1 + (λ−1,t + λ−2,t)E [(wt − 1)|Ft−1] + λ−2,tE [(V (π)− wtrt)|Ft−1]

)
= K−t−1

(
1 + (λ−1,t + λ−2,t) · 0 + λ−2,t · 0

)
= K−t−1.

Therefore 1
2

(
K+
t (V (π)) +K−t (V (π))

)
is also a non-negative martingale with initial value 1. Applying Lemma 2 finishes

the proof of the theorem.

A.5. Proof of Theorem 3

Proof. We note that the proof below works for a sequence of predictable functions qt(x, a) but to reduce notation we use
q(x, a). Consider the filtration (Ft)∞t=0 generated by the sequence of sigma-fields F0 ⊂ F1 ⊂ . . . with F0 the trivial
sigma-field and Ft = σ((x1, a1, r1), . . . , (xt, at, rt)). Note that Kq

0(v) = 1 and Kq
t (v) ≥ 0 for all v ∈ [0, 1] because

our bets are in the set Cq. Thus it remains to show E [Kq
t (V (π)) |Ft−1] = Kt−1(V (π)). We have the following chain of

equalities

E [Kq
t (V (π)) |Ft−1] = E

[
Kq
t−1 (1 + λ1,t(wt − 1) + λ2,t(wtrt − ct − V (π))) |Ft−1

]
= Kq

t−1(1 + λ1,tE [wt − 1|Ft−1] + λ2,tE [wtrt − V (π)|Ft−1]− λ2,tE [ct|Ft−1])

= Kq
t−1

(
1− λ2,tE

[
wtq(xt, at)−

∑
a′

π(a′;xt)q(xt, a
′)

∣∣∣∣∣Ft−1

])
= Kq

t−1,

where we have used that Kt−1, λ1,t, λ2,t are measurable with respect to Ft−1 and that E[w] = 1 and E[wr] = V (π) as
well as Ext∼D,at∼h [wtq(xt, at)] = Ext

[
∑
a′ π(a′;xt)q(xt, a

′)]. Thus the claim for Cqt and its running intersection can
be shown by applying lemma 2. The claim for C±qt is completely analogous using the ideas here and in the proof of
Theorem 2.

A.6. Proof of Theorem 4

Proof. Consider the same filtration as for Theorem 1. Note that Kgd
0 (v) = 1 is by the definition of the process and that

Kgd
t (v) ≥ 0 for all v ∈ [0, 1] because our bets are in the set G0

v (c.f. eq (17)). Finally, we have

E
[
Kgd

t (V (π)− V (h)) |Ft−1

]
= E

[
Kgd

t−1

(
1 + λ1,t(wt − 1) + λ2,t

(
wtrt − rt − (V (π)− V (h))

))
|Ft−1

]
= Kgd

t−1 (1 + λ1,tE [wt − 1|Ft−1] + λ2,tE [wtrt − V (π)|Ft−1]− λ2,tE [rt − V (h)|Ft−1])

= Kgd
t−1 (1 + λ1,t · 0 + λ2,t · 0− λ2,t · 0) = Kgd

t−1.

Therefore Kgd
t (V (π)− V (h)) is a non-negative martingale with initial value 1. Applying lemma 2 finishes the proof of the

theorem.
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B. Avoiding Grid Search
We first lower bound each process separately, then lower bound the hedged process. We denote the bets for K+ (respectively
K−) as λ+, (resp. λ−). From lemma 1 we have

ln(K+
t (v)) ≥

t−1∑
i=1

λ+
i

>
bi(v) + ψ

∑
i

λ+
i

>
Ai(v)λ+

i ,

and

ln(K−t (v)) ≥
t−1∑
i=1

λ−i
>
b′i(v

′) + ψ
∑
i

λ−i
>
A′i(v

′)λ−i ,

where v′ = 1− v, b′i(v) =

[
wi − 1

wi(1− ri)− v

]
and A′i(v) = b′i(v)b′i(v)>. For the Hedged process, using that for any a, b

ln (exp(a) + exp(b)) ≥ max(a, b)

to first establish
ln(K±(v)) ≥ max(ln(K+(v))− ln(2), ln(K−(v))− ln(2))

and further bound each term in the maximum by the respective quadratic lower bound. We conclude that if a v achieves

t−1∑
i=1

λ+
i

>
bi(v) + ψ

∑
i

λ+
i

>
Ai(v)λ+

i = ln

(
2

α

)
,

or a v′ = 1− v achieves
t−1∑
i=1

λ−i
>
b′i(v

′) + ψ
∑
i

λ−i
>
A′i(v

′)λ−i = ln

(
2

α

)
,

then we also achieve K±t (v) ≥ 1
α . In terms of v and v′ these expressions are second degree equations and thus their real

roots in [0, 1] (if any) provide a safe bracketing of the confidence region {v : K±t (v) ≤ 1/α}. For K+
t let

Ct =

t−1∑
i=1

λ+
i

>
[
wi − 1
wiri

]
, (18)

St =

t−1∑
i=1

λ+
i

>
[

0
1

]
, (19)

Qt =

t−1∑
i=1

ψλ+
i

>
[

(wi − 1)2 (wi − 1)wiri
(wi − 1)wiri w2

i r
2
i

]
λ+
i , (20)

Tt =

t−1∑
i=1

ψλ+
i

>
[

0 −(wi − 1)
−(wi − 1) −2wiri

]
λ+
i , (21)

Ut =

t−1∑
i=1

ψλ+
i

>
[

0 0
0 1

]
λ+
i , (22)

and define C ′t, S
′
t, Q
′
t, T
′
t , U

′
t similarly by using λ−i instead of λ+

i and 1− ri instead of ri. Then the largest real root v+ of

Ct − Stv +Qt + Ttv + Utv
2 − ln

(
2

α

)
= 0,

if it exists, satisfies K±t (v+) ≥ 1
α . Similarly we can obtain v′ as the largest real root of the quadratic with C ′t, S

′
t, Q
′
t, T
′
t , U

′
t

in place of Ct, St, Qt, Tt, Ut, if it exists. Then v− = 1− v′ satisfies K±t (v−) ≥ 1
α .
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C. Details of the Scalar Betting Strategy
C.1. Elimination of a Bet

Since in the long term λ1 should be 0 its purpose can only be as a hedge in the short-term. We formulate this by considering
the worst case wealth reduction among three outcomes : (w, r) = (wmax, 1), (w, r) = (wmax, 0) and w = 0 with any
reward. We choose λ1 to maximize the wealth in the worst of these outcomes. Thus we set up a family of Linear Programs
(LPs) parametrized by λ2 and v and with optimization variables α and λ1:

maximize α
subject to α ≤ 1 + λ1(wmax − 1) + λ2(wmax − v) (z1)

α ≤ 1 + λ1(wmax − 1)− λ2v (z2)
α ≤ 1− λ1 − λ2v (z3),

where the variable zi in parentheses next to each constraint is the corresponding dual variable.

Theorem 5. For any v ∈ [0, 1] and any λ2 ∈ R, the optimal value of λ1 in the above LP is λ∗1 = max(−λ2, 0).

Proof. The dual program is

minimize (1 + λ2(wmax − v))z1 + (1− λ2v)z2 + (1− λ2v)z3

subject to zi ≥ 0 i = 1, 2, 3
−(wmax − 1)(z1 + z2) + z3 = 0
z1 + z2 + z3 = 1.

Consider the following two dual feasible settings:

z1 = 0, z2 =
1

wmax
, z3 =

wmax − 1

wmax
,

and

z1 =
1

wmax
, z2 = 0, z3 =

wmax − 1

wmax
,

with corresponding dual objectives: 1− λ2v and 1− λ2v + λ2. From here we see that if λ2 > 0 the former attains a better
dual objective and is thus a better bound for the primal objective. When λ2 < 0 the latter is better.

When λ2 > 0, a primal feasible setting is α = 1− λ2v, λ1 = 0. Furthermore this setting achieves the same objective as the
first dual feasible setting so we conclude that these are the optimal primal and dual solutions when λ2 > 0.

When λ2 < 0, a primal feasible setting is α = 1 − λ2v + λ2, λ1 = −λ2. Furthermore this setting achieves the same
objective as the second dual feasible setting so we conclude that these are the optimal primal and dual solutions when
λ2 < 0.

Finally when λ2 = 0 the two cases give the same value for λ1 so we conclude λ1 = max(−λ2, 0) for all λ2 ∈ R (and
v ≥ 0).

The theorem suggests that in a hedged strategy the wealth process eliminating low values of V (π) should set λ>1 = 0
because E[wr − v] > 0 and thus λ>2 > 0. The wealth process that eliminates high values of V (π) on the other hand should
have λ1 = −λ2 because E[wr − v] < 0 and thus λ2 < 0. Thus the two processes look like

K>
t (v) =

∏
i=1

(
1 + λ>2,i(wiri − v)

)
,

K<
t (v) =

∏
i=1

(
1− λ<2,i(wi − 1) + λ<2,i (wiri − v)

)
=
∏
i=1

(
1− λ<2,i (wi(1− ri)− (1− v))

)
.

In the main text we have redefined λ<2,i := −λ<2,i for symmetry.
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C.2. A Technical Lemma

The following result can be extracted from the proof of Proposition 4.1 in (Fan et al., 2015).

Lemma 3. For ξ ≥ −1 and λ ∈ [0, 1) we have

ln(1 + λξ) ≥ λξ + (ln (1− λ) + λ) · ξ2. (23)

Proof. Note that λξ ≥ −λ > −1. For x > −1 the function f(x) = ln(1+x)−x
x2 is increasing in x, therefore f(λξ) ≥ f(−λ).

Rearranging leads to the statement of the lemma.

We will be using this lemma with bets λ ∈ [0, 1) and ξi = wiri − v or ξi = wi(1− ri)− (1− vi). In either case ξi ≥ −1.
This lemma provides a stronger lower bound than that of Lemma 1. The reason we use the latter for vector bets is that the
natural extension of (23) to the vector case does not lead to a convex problem.

C.3. Avoiding Grid Search

Suppose that our bets λ+
2,i and λ−2,i do not depend on v. We have the individual lower bounds

ln(K+(v)) ≥
∑
i

λ+
2,i(wiri − v) +

∑
i

(ln(1− λ+
2,i) + λ2,i)(wiri − v)2

and
ln(K−(v)) ≥

∑
i

λ−2,i(wir
′
i − v′) +

∑
i

(ln(1− λ−2,i) + λ−2,i)(wir
′
i − v′)2,

where r′ = 1− r, v′ = 1− v. For the Hedged process, using that for any a, b

ln (exp(a) + exp(b)) ≥ max(a, b)

to first establish
ln(K±(v)) ≥ max(ln(K+(v))− ln(2), ln(K−(v))− ln(2))

and further bound each term in the maximum by the respective quadratic lower bound. We conclude that if a v achieves∑
i

λ+
2,i(wiri − v) +

∑
i

(ln(1− λ+
2,i) + λ+

2,i)(wiri − v)2 = ln

(
2

α

)
or a v′ = 1− v achieves∑

i

λ−2,i(wir
′
i − v′) +

∑
i

(ln(1− λ−2,i) + λ−2,i)(wir
′
i − v′)2 = ln

(
2

α

)
then we also achieve K±(v) > 1

α . Thus, a valid confidence interval can be obtained by considering the roots of these
quadratics. Let

C =
∑
i

λ+
2,iwiri C ′ =

∑
i

λ−2,iwir
′
i

S =
∑
i

λ+
2,i S′ =

∑
i

λ−2,i

Q =
∑
i

(
ln(1− λ+

2,i) + λ+
2,i

)
w2
i r

2
i Q′ =

∑
i

(
ln(1− λ−2,i) + λ−2,i

)
w2
i r
′2
i

T =
∑
i

(
ln(1− λ+

2,i) + λ+
2,i

)
wiri T ′ =

∑
i

(
ln(1− λ−2,i) + λ−2,i

)
wir
′
i

U =
∑
i

(
ln(1− λ+

2,i) + λ+
2,i

)
U ′ =

∑
i

(
ln(1− λ−2,i) + λ−2,i

)
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We obtain:

vmin =
2T + S −

√
(2T + S)2 − 4U(Q+ C − ln(2/α))

2U

or vmin = 0 if the discriminant is negative, and

vmax = 1− v′ = 1−
2T ′ + S′ −

√
(2T ′ + S′)2 − 4U ′(Q′ + C ′ − ln(2/α))

2U ′

or vmax = 1 if the discriminant is negative.

D. Reward Predictors
D.1. Betting

We describe betting for K+q
t (v). Betting for K−qt (v) is analogous. We overload the log wealth at step i when betting

against v as `vi (λ) = ln(1 + λ1,i(wi − 1) + λ2,i(wiri − ci − v). We use lemma 1 to obtain that for any λ ∈ E1/2
v , we have

ln(K+q
t (v)) =

t−1∑
i=1

`vi (λ) ≥ λ>
t−1∑
i=1

bi(v) + ψλ>

(
t−1∑
i=1

Ai(v)

)
λ,

where now bi(v) =

[
wi − 1

wiri − ci − v

]
and Ai(v) = bi(v)bi(v)>. As in the case without reward predictor we have that the

wealth lower bound is a polynomial in v with

t−1∑
i=1

Ai(v) = A
(0)
t + vA

(1)
t + v2A

(2)
t ,

t−1∑
i=1

bi(v) = b
(0)
t + vb

(1)
t ,

and the coefficients can be maintained as

A
(0)
t =

t−1∑
i=1

[
(wi − 1)2 (wi − 1)(wiri − ci)

(wi − 1)(wiri − ci) (wiri − ci)2

]
,

A
(1)
t =

t−1∑
i=1

[
0 −(wi − 1)

−(wi − 1) −2(wiri − ci)

]
,

A
(2)
t =

t−1∑
i=1

[
0 0
0 1

]
,

b
(0)
t =

t−1∑
i=1

[
wi − 1
wiri − ci

]
,

b
(1)
t =

t−1∑
i=1

[
0
−1

]
.

Given a v we compute concrete values for these coefficients and then solve

λt = argmax
λ∈E1/2

λ>
t−1∑
i=1

bi(v) + ψλ>

(
t−1∑
i=1

Ai(v)

)
λ.

A similar procedure like the one in Algorithm 1 can then be used for solving this problem.
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D.2. Avoiding Grid Search

To find the value of v that we can plug in to the above optimization problem we proceed as in section 4.4, and further
explained in Appendix B. To find a v such that K±qt (v) ≥ 1

α it suffices to solve

t−1∑
i=1

λ>i bi(v) + ψ

t−1∑
i=1

λ>i Ai(v)λi = ln

(
2

α

)
,

given the previous bets λ1, . . . , λt−1. This is a second degree equation which can be solved by maintaining the quantities

Ct =

t−1∑
i=1

λi
>
[

wi − 1
wiri − ci

]
,

St =

t−1∑
i=1

λi
>
[

0
1

]
,

Qt =

t−1∑
i=1

ψλi
>
[

(wi − 1)2 (wi − 1)(wiri − ci)
(wi − 1)(wiri − ci) (wiri − ci)2

]
λi,

Tt =

t−1∑
i=1

ψλi
>
[

0 −(wi − 1)
−(wi − 1) −2(wiri − ci)

]
λi,

Ut =

t−1∑
i=1

ψλi
>
[

0 0
0 1

]
λi,

and finding the largest real root v of

Ct − Stv +Qt + Ttv + Utv
2 − ln

(
2

α

)
= 0,

if it exists, otherwise setting v = 0.

D.3. Double Hedging

Double Hedging boils down to running four processes: K+q
t ,K−qt ,K+

t , and K−t . Note that the wealth is split in 4 so
anywhere we used ln

(
2
α

)
in a hedged process now we need to use ln

(
4
α

)
. Note that both K+q

t (v) and K+
t (v) are trying

to establish bounds for the same random variable and in principle they could communicate about values that have been
eliminated. However we keep things simple and just run the four processes without sharing any information. The wealth of
the doubly hedged process can then be lower bounded by the wealth of the most successful betting strategy starting from a
wealth of 1

4 .

E. Gated Deployment
E.1. Hedging

Since we don’t typically know whether π is better or worse that h we can hedge our bets via the process

K±gdt (v) =
1

2
(K+gd

t (v) +K−gdt (v)),

where

K+gd
t (v) =

t∏
i=1

(
1 + λ+

1,i(wi − 1) + λ+
2,i(wiri − ri − v)

)
,

K−gdt (v) =

t∏
i=1

(
1 + λ−1,i(wi − 1) + λ−2,i(wir

′
i − r′i − v′)

)
,

for predictable λ+
1,i, λ

+
2,i, λ

−
1,i, λ

−
2,i subject to λ+

i , λ
−
i ∈ G0

v . As before, r′i = 1− ri and v′ = 1− v.
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E.2. Betting and Avoiding Grid Search

Betting and avoiding grid search can be obtained using the same equations as for reward predictors but replacing all
occurrences of ci with ri.

A key difference we spell out is the feasible region. In order to use common bets and to be able to use the quadratic lower
bound of the log wealth we need to specify the set

⋂
v∈[0,1] Gmv . This set is equivalent to

Gm =

λ :


−1 −2
−1 0
W −1
W W

λ ≥ m− 1

 ,

where W = wmax − 1. If we further restrict λ2 ≥ 0 for each of the subprocesses because we expect each to eliminate v
such that E[wr − v] > 0 and v′ such that E[wr′ − v′] > 0 then the feasible region further simplifies to

G = {λ : λ2 ≥ 0,Wλ1 − λ2 ≥ m− 1,−λ1 − 2λ2 ≥ m− 1}.

Placing bets in this region can be done using the same ideas as Algorithm 1.

F. Reproducibility Checklist
Assumptions: The contextual bandit data is iid. The policy π is absolutely continuous with respect to behavior policy h.

Complexity: MOPE and the scalar Betting Strategy are streaming algorithms. They require constant time per sample and
constant memory independent of number of samples. The exact wealth ablation requires memory that scales linearly
with the number of samples and time per step that scales at least linearly with the number of samples. The ablation that
solves a QP per value v requires at least 1

ε times more memory and computation that MOPE and provides results that
are accurate up to ε. We used ε = 0.005 in the experiments.

Code: Available at https://github.com/n17s/mope

Data: synthetic environments are part of the code. Instructions for getting the mnist8m data are in the “Mnist-Policies”
notebook.

Hyperparameters: There are no hyperparameters. The confidence level is an input and is stated in each experiment
description or the corresponding figure.

Computing infrastructure: Off-the-shelf workstation running Linux (Code works on Windows as well).

https://github.com/n17s/mope

